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Abstract— As technology rapidly progresses, more devices will
combine both communication and mobility capabilities. With
mobility in devices, we envision a new class of proactive networks
that are able to adapt themselves, via physical movement, to meet
the needs of applications. To fully realize these opportunities,
effective control of device mobility and the interaction between
devices is needed. In this paper, we consider the Message Ferrying
(MF) scheme which exploits controlled mobility to transport data
in delay-tolerant networks, where end-to-end paths may not exist
between nodes. In the MF scheme, a set of special mobile nodes
called message ferries are responsible for carrying data for nodes
in the network. We study the use of multiple ferries in such
networks, which may be necessary to address performance and
robustness concerns. We focus on the design of ferry routes. With
the possibilities of interaction between ferries, the route design
problem is challenging. We present algorithms to calculate routes
such that the traffic demand is met and the data delivery delay
is minimized. We evaluate these algorithms under a variety of
network conditions via simulations. Our goal is to guide the
design of MF systems and understand the tradeoff between the
incurred cost of multiple ferries and the improved performance.
We show that the performance scales well with the number of
ferries in terms of throughput, delay and resource requirements
in both ferries and nodes.

Index Terms— System design, Simulations

I. INTRODUCTION

As technology rapidly progresses, more devices will com-
bine both communication and mobility capabilities. For ex-
ample, mobile robots have been developed for a wide range
of applications, such as military, disaster recovery, home and
factories [3], [4], [5], [19]. Researchers are also developing
robotic prototypes, such as robotic insects that can fly or walk
on water [1], [2]. It is anticipated that devices with mobility
and communication capabilities will become more popular in
the future. In addition, device mobility can be achieved via the
movement of other entities. For example, movement of people,
ground or aerial vehicles may provide the required mobility for
the carried devices. With mobility capability in communication
devices, we envision a new class of proactive networks that are
able to adapt themselves, via physical movement, to meet the
needs of applications. This is in contrast to traditional networks
where applications are required to adapt to network mobility
conditions [23]. The physical adaptability of these networks
has the potential to provide new or better services to users.
To fully realize these benefits, however, effective control of
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the network, or the mobility of devices and the interaction
between devices, is needed.

While controlled mobility is an active research area in
the robotics community [10], there has been little effort in
exploiting this capability for communication purposes. Li and
Rus [20] consider proactive movement of nodes to deliver mes-
sages in a disconnected environment and present an algorithm
to compute optimal node trajectories. In [12], Goldenberg et al.
study mobility as a control primitive in mobile networks and
present a distributed mobility control scheme to adjust node
positions such that energy consumption in communication is
minimized. In the NIMS project [18], Kaiser et al. propose
the use of infrastructure-supported mobility in sensor networks
for autonomous operations and physical reconfiguration. They
describe the use of mobility to transport data and optimize
wireless links.

In prior work [29], [30], we have proposed the Message
Ferrying (MF) scheme for delay-tolerant networks where end-
to-end paths do not exist between some or all nodes [11],
[15]. To overcome network partitions, the MF scheme exploits
controlled mobility to transport data. Specifically, a set of
special mobile nodes called message ferries move around the
deployment area and are responsible for carrying data between
nodes. The MF scheme can be used in different delay-tolerant
environments. For example, in a disaster scene where existing
infrastructure is unusable, airplanes or vehicles can be used as
ferries to transport data between users in separated areas. In
sensor networks where power supplies are severely limited,
mobile entities such as robots or manned vehicles can be
deployed to approach and collect data from sensors in order
to conserve sensor energy.

In MF networks, data is transported via ferry mobility.
Therefore, the design of ferry movement, or ferry routes, will
have significant impact on network performance. In our earlier
work [29] we consider ferry route design in networks with a
single ferry and develop algorithms to compute a ferry’s route
in order to achieve certain performance objectives1.

In this paper, we study the use of multiple ferries in
networks with stationary nodes, focusing on the design of
ferry routes. The use of multiple ferries may be necessary in
many situations due to performance and robustness concerns.
First, the capacity of a single ferry to carry and forward traffic

1In [30], we study the MF scheme in mobile networks but do not consider
the ferry route design problem.



is limited by its movement capability. To allow for scala-
bility in traffic load or geographic coverage, multiple ferries
are required. Second, a single ferry system is vulnerable to
ferry failures, ferry compromise or malicious attacks. Multiple
ferries would provide the required level of fault tolerance
via redundancy. On the other hand, with the possibilities of
interaction between ferries, the use of multiple ferries brings
significant challenges to the route design problem as compared
to the single ferry case. Since data from nodes can be carried
by different ferries, there is a question of how ferries are
allocated to serve nodes. In addition, ferries may interact with
each other, either directly or indirectly via nodes, to provide
better communication services. In this case, the design of ferry
routes should account for routing and load balancing among
ferries, which inevitably complicates the problem. There is
also the question of tradeoff between the increased cost of the
use of more ferries and the extent of performance improvement
realized.

We consider different strategies in the route design that
reflect different assumptions about the network, e.g., whether
the multiple ferries go over the same or different routes, and
how ferries interact with each other. We develop algorithms
to generate ferry routes that meet the traffic demand and
minimize the average data delivery delay. Using simulations,
we evaluate these algorithms under a variety of network
conditions and study the data delivery performance of the MF
schemes. Our goal is to guide the design of MF systems and
understand the tradeoff between the incurred cost of multiple
ferries and the improved performance. We show that the MF
scheme scales well with the number of ferries in terms of
throughput, delay and resource requirements in both ferries
and nodes.

The rest of this paper is structured as follows. Section II
gives an overview of the MF scheme and describes the network
model and the ferry route design problem. In Section III,
we provide an overview of four algorithms to compute ferry
routes, which will be described in details from Section IV to
Section VII. We present simulation results in Section VIII to
evaluate these algorithms and the MF performance. Related
work is reviewed in Section IX and the paper is concluded in
Section X.

II. OVERVIEW OF MESSAGE FERRYING NETWORKS

In this section we first give an overview of the Message
Ferrying scheme. Then we describe the network model and
the ferry route design problem.

A. Message Ferrying Scheme

The Message Ferrying (MF) scheme exploits controlled
mobility to provide physical connectivity between otherwise
disconnected nodes. In an MF scheme, network devices are
classified as message ferries (or ferries for short) or regular
nodes based on their roles in communication. Ferries are
devices which take responsibility of carrying data among other
nodes, while regular nodes are devices without such respon-
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Fig. 1. An example of data delivery in an MF scheme.

sibility2. Fig. 1 illustrates a simplified example of message
ferrying, in which two ferries move around the area and relay
data between otherwise disconnected nodes.

In this paper, we consider networks that use multiple ferries
to transport data between nodes. With multiple ferries, there
are many possibilities of interaction between ferries. For
example, data might be forwarded through multiple ferries
before reaching the destination. In general, there are three
types of ferry interaction.� No interaction. Each ferry operates on its own without

relaying data with other ferries.� Ferry relaying. Ferries exchange data between each other
directly. This requires ferries to be physically close to
each other in order to communicate.� Node relaying. Ferries interact with each other via sta-
tionary nodes, i.e., nodes buffer and relay data between
ferries. So nodes need to have enough storage and energy
for buffering and relaying data.

Note that with node relaying, there is no need for ferries
to meet each other because of the use of stationary nodes as
relays. With ferry relaying, however, ferries need to synchro-
nize their movement to meet each other for data exchange. As
discussed later, synchronization has significant impact on the
design of ferry routes.

B. Network Model

We now describe the network model considered in this
paper. We consider networks with � stationary regular nodes,
each equipped with a wireless radio capable of transmitting
to other nodes within a distance � . The data rate of the radio
is � bits per second3. We assume that the network is sparse
such that nodes are disconnected from each other (i.e., the
distance between each pair of nodes is larger than the radio
range � )4.

We assume that bandwidth requirement between each pair
of nodes is known and constant over time. In practice, while

2We will use the term “node(s)” to refer to regular nodes or both regular
nodes and ferries. The usage should be clear from the context.

3We can set � to account for the unreliability of the wireless medium,
e.g., the loss rate of the links.

4Our model can be applied to connected or partially connected networks.
In these networks, ferries can carry data among a set of gateway nodes, which
in turn communicate with other non-gateway nodes nearby using traditional
ad hoc routing algorithms.
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Fig. 2. Overview of ferry route design algorithms.

traffic might not be known in advance, traffic demand can often
be estimated. This is true especially for the MF scheme, which
is expected to operate at large time scales, e.g., in minutes or
hours. In addition, since ferries visit nodes occasionally, the
impact of traffic burstiness is of less concern. To provide com-
munication services to regular nodes, � ferries are deployed,�	��
 and ���
� . We assume that each ferry moves at a
constant speed and ferries are equipped with the same radios
as nodes, i.e., the radio range is � and the data rate is � bps.
Ferries and nodes communicate via a shared wireless channel.
Therefore transmission and reception cannot occur at the same
time. For a network with � ferries, the total data rate that
these ferries can support is no more than ��������� bps. This is
because the wireless channel is shared among transmissions
from data sources to the ferries and from the ferries to data
destinations. Given � ferries that could transmit or receive at� bps simultaneously, we have the maximum total data rate
of ��������� bps.

C. Ferry Route Design Problem

In this paper, we consider the design of ferry routes. We
choose to minimize the average data delivery delay. While the
delay of MF is significantly larger as compared to connected
networks, achieving lower delay is still desirable for many
applications. Specifically, we try to minimize the weighted
delay � for all traffic which is defined as

��� ���������  !��"$# �� &%'�( � �)�*�+�  !�*"$# �� (1)

where
# �( 

and
%,�( 

are the weight and average delay for data
from node - to node . . The weight

# �� 
specifies the relative

importance of reducing delay for certain traffic and may be
independent of the data rate.

Now we define the ferry route design problem, which
consists of finding optimal ferry routes such that the bandwidth
requirements are met and the weighted delay is minimized. In
this paper, we consider periodic ferry routes, i.e., ferries visit
the same set of nodes periodically. In previous work [29],
we show that designing an optimal route for a single ferry
is NP-hard. Thus as a generalized problem, the ferry route
design problem with multiple ferries described above is also
NP-hard. In the following sections, we will present several
heuristic algorithms to compute ferry routes.
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Fig. 3. Example of ferry routes generated by different algorithms.

III. OVERVIEW OF FERRY ROUTE DESIGN ALGORITHMS

In this section we give an overview of the four ferry route
design algorithms that we develop and present in the following
sections. In general, these algorithms calculate ferry routes
in three phases. In Phase 1, nodes are assigned to ferries.
Ferries are responsible for carrying data for assigned nodes
and cooperatively provide connectivity between each pair of
sender and receiver. This assignment can be flexible, e.g., a
node may be assigned to multiple ferries. Fig. 2(a) shows an
example of node assignment where the numbers near each
node denote the ferries the node is assigned to. We can see
that some nodes are assigned to more than one ferry. Phase 2
calculates each ferry route based on the locations of assigned
nodes and the traffic load. Fig. 2(b) depicts an example of
three ferry routes. In both Phase 1 and 2, the algorithms
focus on minimizing the weighted delay without considering
the bandwidth requirements. In Phase 3, the ferry routes are
extended, if necessary, such that the bandwidth requirements
are met. So, rather than directly addressing the ferry route
design problem, these algorithms break it into three sub-
problems and solve each sub-problem.

As discussed in Section II, there are three types of in-
teraction between ferries. In the following sections, we will
present algorithms to calculate ferry routes based on different
assumptions of ferry interaction. In Section IV, we describe
the Single-Route Algorithm (SIRA) in which all ferries follow
the same route. Section V presents the Multi-Route Algorithm
(MURA) in which ferries can follow different routes. In both
SIRA and MURA, there is no interaction between ferries. In
Section VI and VII, we present the Node Relaying Algorithm
(NRA) and the Ferry Relaying Algorithm (FRA), which utilize
node relaying and ferry relaying, respectively, to forward data
between ferries. Fig. 3 shows simplified examples of ferry
routes generated by these algorithms. These algorithms differ
mainly in how nodes are assigned to ferries because of the
different assumptions about ferry interaction. Besides, FRA
requires special treatment in calculating routes due to the
synchronization issue.

These four algorithms represent different strategies in de-



signing ferry routes. In an MF network with multiple ferries,
data may be relayed via multiple ferries before being delivered
to the destination. Thus for data between a sender/receiver pair,
the average delay consists of delay in each ferry hop, which
includes both the waiting time in node buffers before data is
forwarded to a ferry and the carrying time in the ferry before
data is relayed to another ferry or the destination. So, without
relaying data between ferries, SIRA and MURA minimize the
number of ferry hops. FRA tries to minimize the waiting delay
in nodes through direct interaction between ferries. NRA tries
to minimize the carrying delay in each ferry hop by using
stationary nodes as relays.

IV. SINGLE-ROUTE ALGORITHM (SIRA)

In this section, we describe the Single-Route Algorithm
(SIRA) in which all ferries follow the same route but with
different timing (see Fig. 3(a)). That is, each node is assigned
to all ferries which share the responsibility of transporting data
between nodes. In the following we focus on Phase 2 and 3,
i.e., how to design a single ferry route for � ferries. In prior
work [29], we have developed algorithms to compute a ferry
route for a single ferry. We now extend these algorithms for
the case with multiple ferries. We assume that ferries have the
same speed and move on the ferry route with equal distance
in between.

A. Single Ferry Route Design

We first describe how to calculate a single ferry route. We
try to minimize the weighted delay without considering the
bandwidth requirements, which will be addressed in the next
section. To compute the weighted delay, we need to determine
the average delay for data between each sender/receiver pair.
In an MF network, the average delay for data from node - to
node . consists of the waiting delay in node - before a ferry
picks up the data and the carrying delay in the ferry before
reaching node . . Given constant data rates and � ferries, the
average waiting delay is /10�2435�7698 where / is the length of the
ferry route and 6 is the ferry speed. This is because the round
trip time for a ferry is /10:6 . With � ferries, the time between
ferry visits is /$0;��6 and on average, the waiting delay is half
of that, i.e., /10�243���698 . Suppose that the distance from node -
to node . in the route is < �� . The carrying delay is < �( 056 . So the
average delay for data from node - to node . is /10=2>3���698@?< �� 0:6 . To compute the ferry route, we adapt solutions for the
well-studied traveling salesman problem (TSP) [7], [16] which
compute a route to visit nodes. But instead of optimizing the
length of the route as in TSP, we optimize the weighted delay.
Fig. 4 illustrates a sketch of the algorithm, which generates
an initial route using some TSP heuristic algorithm, e.g., the
nearest neighbor heuristic, and then refines the initial route
using local optimization techniques. We consider the following
2-opt and 2H-opt swap operations to improve the route.� 2-opt swap. Consider the route as a cycle with edges that

connect consecutive nodes in the route. A 2-opt swap
removes two edges ACB and DE� from the route and

Compute an initial route using TSP heuristic algorithm;
do

Apply 2-opt swaps;
Apply 2H-opt swaps;

while (weighted delay is reduced);
Extend ferry route to meet bandwidth requirements;

Fig. 4. Single-route algorithm.

replaces them with edges AFD and BG� while maintaining
the route as a single cycle.� 2H-opt swap. A 2H-opt swap moves a node in the route
from one position to another.

The algorithm tries to reduce the weighted delay of the route
by applying 2-opt swaps and 2H-opt swaps until no further
improvement can be found.

B. Bandwidth Requirements

In the previous section, we consider only the weighted delay.
Now we consider how to extend the ferry route, if necessary,
to meet the bandwidth requirements of the nodes. For any
given route, the achieved data rate of a node is H*� whereH is the fraction of time the node communicates with ferries.
So we need to extend the amount of time ferries spend in
the vicinity of those nodes that do not otherwise have enough
time to transmit or receive their data. In practice, the extension
could consist of changing ferry speed, so that the ferry spends
more time on certain parts of the route. However, since we
have assumed constant ferry speed, the extensions consist of
detours in the vicinity of the under-served node(s). Obviously
the detours should be as short as necessary, in order to reduce
the delay.

We formulate this problem using linear programming as
follows. Let I � be the length of detour in the vicinity of node - .
We assume ferries move to the location of each node, thus the
total length of the ferry route that is within the radio range of
node - is I � ?J3�� . Let K � be the total data rate for node - which
is the sum of data rates in both transmission and reception.
By distributing traffic load equally to ferries, each ferry is
responsible for supporting a data rate of K � 0;� . Thus we have2�I � ?L35�58M�/N? � " POQ� I  � K ��
where / is the length of the ferry route before extension. After
transformation, we get the following optimization problem.

minimize

"R �SOQ� I �PT (2)

subject to ����I �9U K � "R POQ� I  �VK � / U 3��W�5� TI � �V� and 
YXZ-[X\�]�
The above problem can be solved efficiently using methods
like Simplex [21].



EWD( ^M_ ): EWD of node assignment after operation ^M_
Set the number of ferries to ` ;
Assign each node to a ferry;
while number of ferries acb or EWD is reduced do

Identify the best ^ed5f)g&hjie_ or bkf)g!l:f operation ^M_�m ;
Identify the best bnf)gel:f;o or g&f)p�qsrtf operation ^M_�u ;
if EWD( ^M_ m ) v EWD( ^P_ u ) and

EWD( ^M_=m ) v current EWD then
Perform ^M_ m ;

else
Perform ^M_=u ;

Refine node assignment to maintain feasibility;
Compute each ferry route;

Fig. 5. Multi-route algorithm. EWD refers to estimated weighted delay.

V. MULTI-ROUTE ALGORITHM (MURA)

In the MURA algorithm, ferries may follow multiple routes
to carry data between nodes (see Fig. 3(b) for an example).
But ferries do not relay data between themselves. So data is
carried by at most one ferry.

Fig. 5 shows a sketch of the MURA algorithm which uses
a greedy heuristic for assigning nodes to ferries. MURA starts
with � ferries and each node is assigned to a ferry. That is,
each ferry route consists of one node. MURA refines the node
assignment and reduces the number of ferries to � by using
four types of operations, which will be described in Section
V-B. In each step, MURA estimates the weighted delay of
the resulting node assignment for each operation and chooses
to perform the best one until the number of ferries is � and
no further improvement can be found. We will describe the
estimation of weighted delay in Section V-A. Then MURA
modifies the node assignment, if necessary, to insure feasibil-
ity, i.e., there is a path between each sender/receiver pair and
the total traffic load on each route is lower than its capacity.
Given the node assignment, we can apply the algorithms in
SIRA to compute each ferry route.

In the following, we will describe how to estimate the
weighted delay for a node assignment. Then we explain how
to assign nodes to ferries and maintain feasibility.

A. Estimated Weighted Delay

We first describe how to estimate the weighted delay, or
calculate the estimated weighted delay (or EWD for short). For
a node assignment, the sender and receiver may be assigned to
the same route or different routes. The EWD needs to account
for the weighted delay contributed by both types of traffic.

To compute the EWD for traffic within a route, we consider
the following factors. First, the EWD should reflect the weights
of traffic within the route, as implied by the definition of the
weighted delay. Second, the data delay consists of the waiting
time at nodes and the carrying time at ferries, both related
to the length of the route. Thus the EWD should account for
the length of the route. Third, in an MF network, achieving
higher data rate implies that ferries need to spend more time
communicating with nodes, resulting in longer routes and

larger delays. So the EWD should consider the traffic load
in the route. Finally, the EWD should consider the number of
ferries used in a route because it affects both the waiting delay
at nodes and the amount of traffic carried by each ferry.

Combining these factors together, we now define the EWD.
Let / be the length of a TSP route for nodes in the route. Letw and x be the total data rate and weight of traffic within the
route. Suppose that the number of ferries following the route
is y . The maximum data rate z of the route, or the capacity
of the route, is �����:y�� bps. We define the EWD of the route
as a two-component tuple 24{n| T {G}S8 where{ | ��~ x�/�2�
�? w U z@8 if w �Lz]�� if wL� z]� (3)

{ } ��~ � if w �\z]�x�/C2M
�? �� 8!2�
�? ��'� � 8 if w�� z]� (4)

When the traffic load is over the capacity, {k| is positive
and measures how much the ferry route is overloaded. To
differentiate {n| between the case where w equals to z and
the case with w�� z , we add a constant term (1 in this
paper) in computing { | when w ��z . When the traffic load
is below the capacity, {k| is zero and {G} approximates the
weighted delay for traffic in the route. Obviously {k| is the
more significant component when comparing two EWDs, i.e.,2+{n|� T {�}� 8J��2+{�|� T {G}� 8 if either {n|� ��{�|� or {n|� ��{�|� and{�}� �V{�}� is true.

We now explain the definition of EWD in (4) in more
details. The use of total traffic weight x and the route length/ is obvious. The factor 2M
*? �� 8 is to approximate the average
delay for traffic within the route. As discussed in Section
IV, the average delay for data from node - to node . is/10�243,y�698�?�< �( 056 , where < �( is the distance from node - to
node . in the route. If we set < �( to /$053 , the average delay
becomes ���� 2M
Y? �� 8 . So we use the factor 2�
�? �� 8 in (4).
To account for the impact of traffic load, EWD incorporates
the factor 2M
1? ��'� � 8 . This is because to meet the bandwidth
requirements, ferries need to spend enough time within range
of nodes, which implies detours in ferry routes, as explained
in Section IV-B. Suppose that I is the total length of detours.
To support a total data rate of w , we haveI�zIn?L/ � w � IJ� w /z U w �
Here we make an approximation that the length of the route
that is within range of nodes is I . So the total length of
the route after extension is /�2�
�? ��'� � 8 . By combining these
factors, we obtain the definition of EWD in (4).

We further define the EWD for traffic between two routes,
say route - and . . To support this traffic, MURA may need to
extend route - or . such that both the sender and receiver are
on the same route because data is not relayed between ferries.
Therefore, we define the EWD for traffic between route - and .
as the increase in the EWD of the extended route. Specifically,
suppose that route - is extended to overlap with route . by
visiting the closest node in route . . The EWD of route - will
increase due to the increase in the length of the route and the



traffic load. Similarly, the EWD of route . would increase if
route . is extended. So we define the EWD for traffic between
route - and route . as the minimum increase in the EWD by
extending either route - or . . Given the EWDs for traffic within
each route and between routes, we can compute the EWD for
the node assignment by summing up these EWDs, i.e., adding
the two components of each EWD respectively.

To compute the EWD of a node assignment, we need to
determine the traffic each route is responsible for. In this paper,
we adopt the following routing strategy to balance load among
ferry routes. Initially, no traffic is assigned to ferry routes. We
assign traffic to a route if both the sender and receiver are on
the route. When traffic is within multiple routes, traffic will
be assigned to a route such that the increase of the EWD is
minimal. Then we consider traffic between routes. Similarly,
traffic will be assigned to routes with minimum increase of
EWD. Given the assignment of traffic, we can calculate the
EWD of the node assignment as described above.

B. Assigning Nodes to Ferries

In this section, we describe how MURA assigns nodes to
ferries using the EWD. We consider four types of operations
on ferry routes. Let - and . be two routes.�\�;�s� ��<4����2�- T .s8 . This operation overlaps two routes, i.e.,

one route is extended to include a node in the other route.
The number of ferries in each route does not change.
When there are multiple nodes in - or . , we choose the
overlapping node such that the resulting node assignment
has the minimum EWD.� � � �&� � 2�- T .s8 . This operation combines - and . into a new
route. The number of ferries in the new route is the sum
of the number of ferries in - and . .� � � �&� � � 2�- T .s8 . This operation is the same as � � �&� � 2�- T .'8
except that the number of ferries for the new route is one
less than that of � � �&� � 2+- T .s8 .� � � %: �¡ � 2�-�8 . This operation reduces the number of ferries
in route - by one. Thus it only applies to routes with more
than one ferry.

Now we describe how MURA chooses the best operation to
perform in each step. Specifically, MURA identifies the best�;�'� ��<+�&� operation among all pairs of routes by computing
the EWD of the resulting node assignment. Similarly, MURA
identifies the best � � �&� � , � � �&� � � and � � %, �¡ � operations.
Because the �;�s� ��<+�&� or � � �&� � operation does not reduce the
total number of ferries used, it will be chosen only when it
outperforms the � � �&� � � and � � %, �¡ � operations and improves
upon the current node assignment. If so, MURA will perform
either the �;�s� �;<4�&� or � � �&� � operation, depending on which
one achieves the lower EWD. Otherwise, MURA will perform
either the � � ��� � � or � � %, �¡ � operation, again depending on
the EWD. MURA will continue this process until the number
of ferries is � and no further improvement can be found.

So far, nodes are assigned to ferries such that the EWD is
minimized. Due to the fact that MURA is a greedy heuristic,
there is a possibility that the node assignment is not feasible,
i.e., some sender and receiver are not in the same route or

procedure NFRA(r, c)
Divide area into a grid of gF¢nr cells;
Assign each node to the cell it belongs to;
Compute traffic load on cells using geographic routing;
Add inter-route connectivity;
Allocate ferries to cells;

end

/* main algorithm */
minEWD £�¤ ;
for every ¥¦r�§t¨©r)ª)« that satisfies r�§�r�ª$¬Nb do

NFRA( r�§ , r)ª );
if current EWD v minEWD then

minEWD £ current EWD;
(min ­ § ,min ­ ª ) £ ( r § , r ª );

NFRA(min ­�§ , min ­]ª );
Compute each ferry route;

Fig. 6. Sketch of NRA and FRA algorithms.

the total amount of traffic in a route is over its capacity. To
insure feasibility, MURA further refines the node assignment
if necessary. Specifically, if the total amount of traffic in
a route is over its capacity, MURA performs a � � �&� � or�;�s� ��<4��� operation between this route and another route such
that the resulting EWD is minimal. Similarly, if there is
traffic between routes, MURA performs a � � �&� � or �;�'� ��<+�&�
operation between these routes. This procedure continues until
the node assignment is feasible.

VI. NODE RELAYING ALGORITHM (NRA)

In the Node Relaying Algorithm (NRA), data is relayed
between ferries via nodes. That is, ferries forward data to
a node and other ferries receive data from this node. By
exploiting the fact that nodes are stationary, node relaying
eliminates the requirement of synchronization between ferries.

Fig. 6 shows a sketch of NRA. NRA adopts a geographic
approach for assigning nodes to ferries. Specifically, the de-
ployment area is divided into a grid of

¡;�E®¯¡ � cells. Ferries
are assigned to cells and would carry data for nodes within
the cell and relay data between cells. This actually implicitly
assigns nodes to ferries via cells. Since the number of ferries
is � , we have

¡ � ¡ � X°� . For every possible combination of¡ �
and

¡ � , NRA computes the estimated weighted delay as
described in Section V-A and chooses to perform according
to the combination that achieves the minimum EWD. Given
the node assignment, we can compute each ferry route using
algorithms in Section IV.

In the following, we will describe how NRA adds connec-
tivity between ferry routes and allocates ferries to routes.

A. Connectivity between Ferry Routes

As described above, each ferry route is initially within a
cell. When the sender and receiver of traffic are located at
different cells, data has to be forwarded through multiple cells
before reaching the destination. In the following, we describe
the routing algorithm used and how NRA extends ferry routes
to maintain the required connectivity of the network. NRA
uses geographic routing, i.e., data is forwarded along cells



that intersect with the line segment connecting the source and
destination. Fig. 7 shows an example of geographic routing
where data from node � � to � � is routed through cells D � ,D�± and D1² . To support data forwarding between cells, NRA
extends ferry routes to add connectivity between ferry routes.
Specifically, when there is traffic between two neighboring
cells, NRA performs the �;�s� �;<4�&� operation defined in Section
V on the ferry routes in these cells. The �;�'� ��<+�&� operation
extends one route to overlap with the other and the overlapping
node will relay data between these two routes. NRA continues
this process until there is a path between each sender/receiver
pair according to the routing algorithm.

The above discussion assumes that each cell contains nodes.
In case of irregular node distribution, there might be empty
cells that contain no node. We classify two types of empty
cells, depending on whether there is traffic forwarded through
the cell. If there is no through traffic, we can ignore this cell.
When an empty cell has through traffic, however, a ferry route
needs to set up to relay data. Instead of using a separate ferry
route for each such empty cell, we use a single route for all
neighboring empty cells as follows. Suppose that D$³ is an
empty cell with through traffic. Let ´ be a set of empty cells,
which initially contains only cell D1³ . NRA adds an empty
cell to ´ if the cell has through traffic and it is adjacent to
another cell in ´ . NRA continues adding cells to ´ until no
more cells can be added. The cells in ´ then form a region
which contains no node but needs to relay traffic. To handle
through traffic in ´ , NRA sets up a new route by identifying
the set of non-empty cells that forward or receive traffic with
cells in ´ and constructing a ferry route that passes through all
these cells, e.g., choosing one node from each of these cells
and forming a new route. By overlapping routes in neighboring
cells and adding routes for empty cells, NRA insures that there
is a path, possibly through multiple ferry routes, between each
sender/receiver pair.

B. Assigning Ferries to Routes

The geographic routing algorithm used might distribute
traffic load unevenly among ferry routes. For example, the
ferry routes in the center of the deployment area often need
to carry more traffic because more traffic passes through that
area. Ferry routes might also have uneven load due to the
irregularity in node distribution. To provide load balancing,
NRA allocates ferries to routes according to the traffic load.
Specifically, NRA initially assigns one ferry to each route.
If there are remaining ferries, NRA computes the expected
weighted delay for each ferry route and allocates one of the
remaining ferries to the route with the highest EWD. The
addition of a ferry decreases the EWD of this route. NRA
will repeat this process until all ferries are allocated. Using
this approach, NRA accommodates uneven traffic load in ferry
routes by allocating more ferries to routes with higher load.

VII. FERRY RELAYING ALGORITHM (FRA)

In the Ferry Relaying Algorithm (FRA), data may be
forwarded through multiple ferry routes while being routed

C5
n2

C4C3C2

C1

n1

node

routing path

Fig. 7. Example of geographic routing in NRA.

to the destination. But instead of relaying data via nodes as in
NRA, ferries exchange data directly. Therefore, ferry routes
need to be synchronized, to some extent, for two ferries to
meet each other. When the length of two ferry routes are not
the same, the contacts between ferries often occur irregularly.
So data has to be buffered in a ferry for a significant period
of time before it can be forwarded to another ferry, leading to
long delays. In this paper, therefore, we consider ferry relaying
by synchronizing ferry routes in length.

The operation of FRA is similar to NRA (see Fig. 6 for
a sketch of the algorithm). Briefly, FRA divides the area
into a grid of

¡ � ®µ¡ � cells and uses the geographic routing
algorithm to forward data. Based on traffic load, FRA allocates
ferries to routes to balance load among routes. As in NRA,
FRA chooses the best combination of

¡ �
and

¡ � to minimize
the EWD. However, due to the synchronization requirement
between ferry routes, FRA differs in how to add connectivity
between routes and how to calculate ferry routes. In addition,
FRA sets up a ferry route for each cell except empty cells that
have no through traffic.

In the following, we will describe the issue of synchroniza-
tion between ferry routes and explain how to compute ferry
routes in FRA.

A. Synchronization between Ferry Routes

In this section, we describe how to achieve synchronization
between ferry routes. We assume that all routes have the same
length. In the next section, we will describe how routes are
extended to have the same length. Suppose that the area is
divided into a grid of

¡ � ®Z¡ � cells. We first consider the
case with a one-dimensional grid, i.e.,

¡ � �¶
 or
¡ � �¶
 .

In this case, a route interacts with at most two other routes in
the neighboring cells. We assume that ferries meet each other
at the middle points of the boundary between cells, which
we call contact points (see Fig. 8(a)). To insure ferries in
neighboring cells are able to meet each other in every period
of their movement, FRA requires that ferries in neighboring
cells move in reverse direction, and the contact points partition
each ferry route into two segments of the same length (see Fig.
8(a)).

Now we consider the case with a two-dimensional grid, i.e.,¡ � ��
 and
¡ � �°
 . In this case, a ferry route may interact with

up to eight other routes in neighboring cells. Similar to the



case with a one-dimensional grid, each route has eight contact
points. To insure contacts between ferries in all neighboring
cells, ferries move in different directions and timing, as shown
in Fig. 8(b). FRA also requires that contact points partition
each route into eight segments of the same length.

The above discussion assumes that each route has a single
ferry. When a route has multiple ferries, the contact points will
be visited more frequently. In this case, the above requirements
hold except that the route length should be proportional to the
number of ferries in the route, i.e., /$05y is the same for all
routes where / is the length of a route and y is the number
of ferries in the route.

B. Calculating Ferry Routes

In this section, we describe ferry route design in FRA, which
consists of designing individual ferry routes and synchronizing
routes to have the same length. As discussed above, for
synchronization purpose, the ferries need to visit regular nodes
within a cell as well as the contact points on the boundary of
the cell. In addition, the route segment between contact points
should be of the same length. We adopt the following approach
in computing the route for each cell. We first construct an
initial route that contains only the contact points. Then we
insert regular nodes to the route until all nodes are in the
route. This can be done by adding nodes to the route segment
that is between the two closest contact points to the node.

Given the ferry route computed as above, we need to
extend the ferry route, if necessary, to meet the bandwidth
requirements. We extend the linear programming problem in
(2) to account for synchronization. Specifically, in addition to
the constraints for bandwidth requirements for each node, we
add new constraints that the route segments between contact
points are of the same length.

Now we consider how to synchronize all ferry routes. FRA
identifies the ferry route with the maximum length and extends
other routes to have the same length. Let /1· be the maximum
length of ferry routes. Consider a route - that has length / � ,/ � � / · . To extend route - , FRA increases the detour of ferry
route within the radio range of each node. Suppose that the
length of the detour for node . in route - is I  . FRA extendsI  to I¸} such that 2+I*} ?Z3��58t0�/ · �¹2�I  ?L35��8t0�/ � where � is
the radio range. Note that the achieved data rate for node . is
proportional to the portion of time node . is within range of
ferries, i.e., 2+I  ?µ3��58P05/ � before extension and 2+I*} ?µ35��8t0�/�·
after extension. Therefore, the bandwidth requirements are met
after synchronization.

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of the Message
Ferrying schemes using simulations. We first compare the
performance of the four algorithms under different network
conditions. We then focus on how MF scales with traffic load
and the number of ferries used. Our results show that MF
scales well with the number of ferries in terms of throughput,
delay, and resource usage in nodes and ferries.

(a) (b)

ferry movement
contact point

Fig. 8. Synchronization between ferry routes.

We now describe the network settings studied in this paper.
In our simulations, � nodes are randomly distributed in a�:y=� ® �:ys� area. � ferries are deployed which move at a
speed of 
��:��0:K . The transmission range of both the nodes
and the ferries is 
&�:�:� and the data rate is 10mbps. We
consider both ad hoc traffic, where each node sends data to
a randomly chosen node, and sensor traffic, where all nodes
transmit data to a special node called the sink. In addition,
traffic rates can be uniform, i.e., all flow have the same data
rate, or non-uniform where ���S
e� flows transmit 90% of the
total traffic and the rest sends 10% of the total traffic. We
assume that data are generated at constant bit rates and set the
weights of all traffic to be the same as the data rates. Given
node locations and the traffic models, we use the algorithms
developed in previous sections to compute the ferry routes. For
each setting, the result is averaged over 20 runs with different
random seeds.

We use the weighted delivery delay defined in (1) as
the main performance metric to evaluate the MF schemes.
In addition, we consider the resource requirements, namely
buffers and energy, in nodes and ferries. We define the buffer
requirement for a node as the minimum amount of buffer
such that no data would be dropped in the node due to buffer
overflows. For a ferry route with length / and y ferries, the
buffer requirement for a node is º)/10:69y bits where º is the
transmission rate of the node and 6 is the ferry speed. This
is because ferries visit the node every /10:69y period of time.
Similarly, the buffer requirement for a ferry is the minimum
amount of buffer such that no data would be dropped in the
ferry due to buffer overflow. We also measure the energy
consumption in nodes and ferries, which can be approximated
using the average transmission rate of nodes and ferries,
including both originating and through traffic.

A. Comparison of Algorithms

In this section, we compare the performance of the four
algorithms presented in previous sections. We first present
results for networks with 40 nodes and uniform ad hoc traffic.
In Fig. 9, the results are normalized to the performance
of SIRA. Fig. 9(a) shows the weighted delivery delay for
routes computed using the four algorithms. The results are
normalized according to the SIRA algorithm. We make the
following observations. First, these algorithms achieve similar
weighted delay when the number of ferries is small or the
traffic load is high. In both cases the space for route design is
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Fig. 9. Performance of different algorithms with ad hoc traffic.

significantly limited. Second, MURA achieves the best delay
when the number of ferries is large. In contrast, FRA performs
worst due to the route synchronization which significantly
increases the length of each route. Third, SIRA achieves
reasonably good performance for ad hoc traffic regardless of
its simplicity. Fourth, when the traffic load is relatively high,
both NRA and FRA often become the same as SIRA, i.e., a
single route is used and all ferries are assigned to this route.
This is because relaying data increases the total traffic load in
the network, which would be costly when the original traffic
load is relatively high.

Fig. 9(b) depicts the buffer requirement in the ferries. We
can see that both NRA and MURA require less buffering
as compared to SIRA. This is because of the shorter routes
generated by these algorithms. In SIRA, the route must visit
all nodes, thus the length of the route is normally much larger
than routes in NRA or MURA. With a longer route, data will
be kept in ferry buffers for a longer period of time, leading
to larger buffer requirements in ferries. Similarly, the buffer
requirement for FRA is large because of route synchronization.

Fig. 9(c) shows node buffer requirements which differ
significantly from ferry buffer requirements in Fig. 9(b). We
can see that SIRA uses the smallest number of buffers in
nodes. While ferry buffers are determined by the length of
the routes, node buffers are determined by the average time
between contacts with the ferries. This is because node buffers
store data generated at the node before being transmitted to
a ferry. In SIRA, while the route is long, the average time
between contacts with ferries is short because all ferries are
following the same route. So nodes require fewer buffers in
SIRA. We note that MURA requires more buffers than NRA
which uses nodes to relay data. This is because in NRA, each
route is often limited within a cell. In contrast, the routes
generated by MURA may span the area due to the random
traffic pattern we used. Thus MURA uses more buffers.

We evaluate the performance of the four algorithms in
networks with uniform sensor traffic. The results are similar
to the case with ad hoc traffic and skipped here due to space
limits. One notable difference is that as compared with SIRA,
both MURA ad NRA perform better with sensor traffic, which
is due to the load balancing effects of using multiple routes.
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Fig. 10. Energy consumption of different algorithms with ad hoc traffic.

We also run simulations for networks with non-uniform ad hoc
traffic and non-uniform sensor traffic. The results are similar
but SIRA performs better with non-uniform traffic. This is
because with non-uniform traffic, estimation of the weighted
delay becomes less accurate, which degrades the performance
of MURA/NRA/FRA.

We now consider the energy consumption for these algo-
rithms. Since MURA and SIRA do not relay data, the total
energy consumption in the nodes and ferries are the same
for both algorithms. In addition, FRA does not relay traffic
using nodes, so the energy consumption in nodes is the same
as SIRA/MURA. Fig. 10 depicts the energy consumption in
NRA and FRA, normalized to that of SIRA/MURA. We can
see that in NRA, nodes may need to transmit as much as twice
of its own data, which suggests that NRA is not suitable for
environments where nodes are constrained in power supplies.

As we can see, these algorithms perform differently in the
achieved delay and resource requirements in ferries and nodes.
In general, MURA achieves the best delay among the four
algorithms. Thus in the rest of this paper, we present only
results of MURA.

B. Impact of Traffic Load

We now study the performance of the MF scheme under
different traffic loads. Fig. 11(a) shows the weighted delay for
ad hoc traffic. We can see that the delay increases with the
throughput per node. The increase of delay is slow when the
throughput is low but becomes dramatic when the throughput
is above some threshold. This behavior suggests that the



network should operate under this threshold. Fig. 11(a) also
illustrates that this threshold can be increased by using more
ferries. The behavior of the tradeoff between throughput and
delay shown in Fig. 11(a) is similar to that in connected
networks. However, in an MF network, this tradeoff is the
consequence of the physical separation between nodes, instead
of the burstiness of traffic as in connected networks.

Fig. 11(b) and Fig. 11(c) show the buffer requirements in
ferries and nodes, which have similar behavior as the weighted
delay. In fact, the increase in both buffer requirement and delay
results from the longer routes when traffic load is high. This
is because the ferries need to spend more time communicating
with nodes. When ferry routes become longer, waiting delay
for data in nodes is larger. So the node buffer requirements
increase. In addition, ferries need to receive more data from
nodes in each visit when traffic load is high, requiring more
buffers to hold the data.

C. Impact of Number of Ferries

In this section, we study the data delivery performance
with different number of ferries. Fig. 12 shows the results
for networks with 40 nodes and uniform ad hoc traffic. Fig.
12(a) shows that for given traffic load, the delay decreases as
the number of ferries increases. This is as expected because
with more ferries, each ferry needs to carry less amount of
traffic and/or visit smaller number of nodes, leading to shorter
routes and smaller delays.

When the traffic load is low, e.g., at a rate of 10kbps per
node, the improvement in delay due to the increased number
of ferries is modest. This is because the delay is dominated by
the distance between nodes. However, when the traffic load is
high, an increase in the number of ferries can significantly
reduce the delay. For example, for a per node throughput
of 56kbps, the delay is 1.57 hours when 2 ferries are used
while the delay is 11.12 hours when only one ferry is used.
This can be explained by the behavior of the tradeoff between
throughput and delay shown in Fig. 11. In this case, 56kbps
is close to the capacity of a single ferry. Thus the addition of
another ferry will reduce the load by half, resulting in modest
delay.

Fig. 12(b) and Fig. 12(c) show the buffer requirements in
nodes and ferries with different number of ferries. As expected,
the buffer requirements decreases as the number of ferries
increases. This is consistent with the results shown in Fig.
11.

D. Impact of Traffic Patterns

In this section, we investigate how traffic patterns impact the
performance of an MF network. Fig. 13(a) compares the delay
under different types of traffic. The traffic load in the figures is
defined as �@ºe0;��� where º is the per node throughput. We can
see that for the same traffic load, networks with non-uniform
traffic can achieve lower delay than networks with uniform
traffic. This is because for non-uniform traffic, the algorithms
can optimize the delay for traffic with larger weights, which
improves the total weighted delay. We also note that when

the traffic load is low, the delay for both sensor traffic and ad
hoc traffic is similar. However, when the traffic load is high,
the delay with sensor traffic is larger than that with ad hoc
traffic. This is because of the traffic aggregation at the sink in
networks with sensor traffic.

Fig. 13(b) shows the ferry buffer requirements. We can see
that the buffer requirement with sensor traffic is higher than
that with ad hoc traffic. This is because with sensor traffic, a
ferry needs to buffer data from all nodes in the route before
the ferry meets with the sink and transmits data to the sink.
So ferries require more buffers as compared to the case with
ad hoc traffic.

Fig. 13(c) depicts the node buffer requirements under dif-
ferent traffic models. Contrast to ferry buffer requirements,
nodes require more buffers in the case with ad hoc traffic.
With sensor traffic, data from all nodes are sent to the sink. As
compared to ad hoc traffic, this concentration of traffic leads
to fewer routes with more ferries in each route. So ferries visit
nodes more often which reduces the node buffer requirements.

IX. RELATED WORK

In this section, we review some related work on delay-
tolerant networks (DTNs) and mobility-assisted schemes.
DTNs are an emerging class of networks where end-to-end
paths may not exist between some or all nodes [11], [15].
This is in contrast to the traditional network model which
assumes networks are connected. In [15], Jain et al. study
routing in DTNs and develop routing algorithms based on
different knowledge about network topology.

While DTNs may lack end-to-end paths at any instant
in time, researcher are observing that node mobility can be
leveraged to provide paths over time. The main idea is that
a mobile node carries a packet for a period of time as part
of realizing a path from source to destination. For example,
Vahdat and Becker [26] propose Epidemic Routing in which
mobile nodes carry data and exchange data when they meet,
essentially flooding data throughout the network. In the Data
Mules project, Shah et al. [24] propose to exploit mobile
entities in the environment to collect and transport data from
sensors to access points, thus conserving energy in resource-
limited sensors. In a theoretical paper [13], Grossglauser and
Tse prove that mobility can significantly improve the capacity
of the network. There is also other work in exploiting node
mobility for data transport [6], [9], [14], [17], [25]. The above
approaches exploit existing node mobility for communication
purposes. Our work differs in the use of controlled mobility
which enables the network to adapt to applications.

Controlled mobility is an active research area in the robotics
community; see [10] and its references. However, there has
been little effort in exploiting this capability for communica-
tion purposes. Li and Rus [20] consider proactive movement of
nodes to deliver messages in a disconnected environment and
present an algorithm to compute optimal node trajectories. In
[12], Goldenberg et al. present a distributed mobility control
scheme to adjust node positions such that energy consumption
in communication is minimized. They focus on connected
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Fig. 11. Performance under different traffic loads.
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Fig. 13. Performance under different traffic models.

networks and do not consider the use of mobility to trans-
port data, which are different from our work. In the NIMS
project [18], Kaiser et al. propose the use of infrastructure-
supported mobility in sensor networks. They propose an
infrastructure to support physical reconfiguration via node
mobility and describe the use of mobility to transport data and
optimize wireless links. While the MF approach uses special
nodes as ferries, it does not require an infrastructure to support
mobility as in the NIMS project which aims to reduce sensing
uncertainty. In [27], Wang et al. use controlled mobility to
improve the coverage of sensor networks. However, they do
not aim to improve communication performance.

In prior work [29], [30], we introduce the Message Ferrying
concept and study networks with a single ferry. In [29], we

consider networks with stationary nodes and develop algo-
rithms to compute a ferry’s route in order to achieve certain
performance objectives. In [30], we develop two variations of
the MF schemes for networks with mobile nodes. However, we
do not consider the ferry route design problem. In this paper,
we study stationary networks with multiple ferries. The use
of multiple ferries brings significant challenges to the route
design problem.

In recent work by Burns et al. [8], the authors study the
problem of augmenting the capacity of a DTN through au-
tonomous agents which move in the network with the purpose
of increasing network performance. The idea of “autonomous
agents” is similar to message ferries in our scheme. The
authors present a control-based approach and develop multi-



objective controllers to control the mobility of autonomous
agents. The work in [8] focuses on the dynamic control of
node movement which differs from our work that addresses
the design of ferry routes in a more static environment. In
addition, we consider various types of ferry interaction such
as ferry relaying and node relaying.

There is some research on topology control [22], [28] which
focuses on adjusting node transmit powers to create a desired
topology. While this approach adapts network configuration as
MF, the MF scheme differs in the use of mobility, instead of
transmission power, to control connectivity between nodes.

X. CONCLUSION

In this paper, we considered the Message Ferrying scheme
in delay-tolerant networks and studied the use of multiple
ferries. We focused on the ferry route design problem and
developed four algorithms to generate ferry routes that meet
the traffic demand and minimize the weighted delay. These
algorithms represent different strategies in designing ferry
routes. We considered algorithms that assume no interaction
between ferries, either using a single route (SIRA) or multiple
routes (MURA). We also considered algorithms that allow data
relaying between ferries directly (FRA) or indirectly (NRA).

We evaluated these algorithms under a variety of network
conditions using simulations. We showed that MURA achieves
the best delay among the four algorithms while FRA performs
the worst. In addition, SIRA has been shown to perform
reasonably well when the number of ferries is small or the
traffic load is high, regardless of its simplicity. SIRA also
requires the least amount of buffers in nodes and does not
use nodes to relay data, which is desirable for networks with
resource-limited nodes. Based on these algorithms, we study
the performance of MF networks. We showed that the MF
scheme scales well with the number of ferries in terms of
throughput, delay and resource requirements in both ferries
and nodes. So for MF networks, scalability can be achieved
by adding more ferries.

In this paper, we considered networks with stationary nodes
and known traffic demand. In the future, we would like to
study message ferrying in mobile networks and networks with
dynamic traffic. Moreover, we plan to investigate other types
of ferry routes. For example, ferries may visit nodes with
different frequencies to provide different services to nodes.
Finally, we would like to study the integration of message
ferrying with other methods of communication, e.g., direct
communication between ferries.
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