
MADPastry: A DHT Substrate for Practicably
Sized MANETs

Thomas Zahn Jochen Schiller

Institute of Computer Science
Freie Universität Berlin, Germany
{zahn, schiller}@inf.fu-berlin.de

Abstract–As mobile ad hoc networks (MANETs) become ever
more popular, it also becomes more and more interesting to build
distributed network applications that one is accustomed to from
the Internet on top of MANETs. In the Internet, Distributed Hash
Tables (DHTs) have recently proven themselves an efficient
building block for such distributed applications. However, DHTs
are ill-suited for direct deployment in MANETs as they are
largely oblivious of the physical routing.

Therefore, we propose MADPastry, a DHT substrate explicitly
designed for the use in MANETs. MADPastry considers physical
locality and integrates the functionality of a DHT and an ad hoc
routing protocol at the network layer to provide an efficient
indirect routing primitive in MANETs.

To answer the fundamental question whether the extra
overhead of maintaining a DHT in MANETs is really worth the
effort or, instead, one would be better off broadcasting the actual
lookups in the first place, we compare MADPastry's performance
against an unstructured Gnutella-style broadcast agent and a
DHT substrate without locality awareness.

I. INTRODUCTION

When building distributed network applications, it is crucial
to have an efficient mechanism by which to locate a node
currently responsible for a certain object or service since there
exists no authoritative central server that could map objects to
specifics nodes. For that purpose, Distributed Hash Tables
(DHTs) [12, 15, 18, 21] have recently been proposed. At the
core of each DHT lies the ability to route a data packet to a
node currently responsible for a certain key – usually some
hash identifier – within a bounded number of hops. This
routing process is also referred to as Indirect Routing. Unlike
regular network-level routing, where a packet is routed from a
source to a specific destination node, indirect routing delivers a
packet from the source to a previously unknown destination
solely based on the given key. Aside from efficiently locating
nodes currently responsible for given keys, DHTs are also self-
organizing and fault-tolerant and, thus, provide an elegant,
scalable, and robust means for building distributed network
applications. Lately, DHTs have been successfully used for
building distributed data storage systems [3, 14], distributed
email systems [8], and distributed event notification systems
[16] to name but a few.

It is important to bear in mind, though, that DHTs have been
designed for the Internet. They are application-level overlay
networks that run on top of and are largely oblivious of the
underlying physical network. Therefore, one overlay routing
hop usually consists of multiple physical routing hops. Since

reliable network routing is practically taken for granted in the
Internet today, DHTs do not primarily concern themselves with
the physical aspects of an overlay routing step and rather focus
on the optimization of the application-level routing.

On the other hand, another field that has attracted great
amounts of research are mobile ad hoc networks (MANETs).
MANETs consist of wireless mobile devices that dynamically
form a network between them. With wireless mobile devices
being ever more present and powerful, it is becoming more and
more interesting to build the distributed network applications
that one is accustomed to from the Internet on top of MANETs.
However, while numerous direct (i.e. from a source to a
specific given target node) ad hoc routing protocols have been
proposed over the last years, be they reactive [6, 10] or
proactive [2, 9] approaches, indirect routing remains largely
unsolved in MANETs.

It is clear to see that MANETs and P2P networks share a
good number of key characteristics, such as the lack of a
central infrastructure, a highly dynamic network topology, and
the need for self-organization. Hence, when designing
distributed network applications for MANETs, it would be
intuitive to consider the building blocks that have proven
themselves appropriate in P2P systems. However, conventional
DHTs are ill-suited for a simple deployment on top of
MANETs for the following three reasons:

1. First of all, it is important to realize that overlay traffic as
such does not exist physically. What does exist, though, is the
physical traffic incurred by the overlay network. Furthermore,
as previously mentioned, DHTs were designed as application-
level overlay networks for the (wired) Internet. By abstracting
away the underlying physical network, standard DHTs
generally do not consider the physical topology in the
construction of their overlay topology. In other words, by no
means do two overlay neighbor nodes also have to be physical
neighbors. This usually leads to the situation that overlay hops
can incur unnecessarily long physical routes. Fig. 1 shows an
example where four overlay hops actually traverse the physical
network twice. Although a number of approaches have been
proposed recently [13, 19, 20] to alleviate this problem,
standard DHTs are not primarily concerned with physical
locality. While this might be tolerable on the wired Internet
with its high bandwidth, it is obviously not feasible for
MANETs. Here, the delivery probability of a packet quickly
decreases with each physical hop due to factors such as low
bandwidth, low computation power (of a node), packet

collisions, or transmission errors.
2. As nodes move around incessantly, routes in MANETs

are usually quite volatile and break quickly. For this reason, ad
hoc routing protocols have to (re-) establish routes frequently.
Due to the lack of a central infrastructure, the majority of ad
hoc routing protocols, both proactive [2, 9] and reactive [6, 10],
have to at one point or another resort to flooding the network –
or regions thereof. This, of course, renders the overlay routing
superfluous. There is no point in maintaining an application-
level DHT when the physical route to carry out an overlay hop
has to be (frequently re-) established through broadcasting. In
that case, one would have been better off broadcasting the key
lookup itself in the first place. In fact, it is easy to imagine a
situation where a key lookup requires two overlay hops, both
of which have to have their physical routes discovered through
broadcasting. In that case, the key lookup would cause the
network to be flooded twice, which is clearly suboptimal.

3. In order to guarantee routing convergence and
consistency, DHTs have to periodically maintain their routing
tables. Depending on the size and structure of a DHT's routing
table and the lookup traffic pattern, the maintenance traffic can
constitute a significant portion of the overall traffic. Given the
limited bandwidth in MANETs, conventional DHT
maintenance can be prohibitively heavy-weight and overwhelm
the network.

In this paper, we present MADPastry (Mobile Ad Hoc
Pastry), a DHT substrate explicitly designed for the use in
MANETs. MADPastry combines Pastry [15] and AODV [10]
at the network routing level to provide an indirect routing
primitive for MANETs. Our experimental results show that
MADPastry achieves better packet delivery ratios at
significantly lower overhead than a reference broadcast system.
Thus, it is ideally suited as a building block for distributed
network applications in practicably sized MANETs.

The remainder of this paper is organized as follows. Section
II presents MADPastry's system design in detail. In Section III,
we evaluate and analyze MADPastry's performance with
experimental results. Section IV discusses related work.

Finally, Section V concludes this paper and provides a brief
outlook on our future work.

II. MADPASTRY – SYSTEM DESIGN

Due to node mobility and the lack of a central infrastructure,
conventional routing protocols in MANETs have to resort to
flooding packets during their route discovery process at one
time or another. However, these route discovery / maintenance
broadcasts create an immense overhead and, thus, constitute a
key scalability bottleneck. For this reason, MADPastry was
explicitly designed to avoid broadcasts whenever and wherever
possible. MADPastry integrates the reactive ad hoc routing
protocol AODV [10] and the application layer DHT Pastry [15]
to provide light-weight and scalable indirect routing
functionality at the network layer.

A. Clusters

In standard DHTs, two overlay neighbors can be located
arbitrarily far from each other in terms of the underlying
physical network. As discussed previously, this can lead to a
large overlay stretch (i.e. the ratio between the physical route
length traveled during an overlay key lookup compared to the
direct physical path from the source to the eventual target
node) as subsequent overlay hops can literally crisscross the
physical network. Therefore, we believe that it is essential for
any DHT substrate in the context of a MANET to consider
physical locality ([7]).

MADPastry utilizes the concept of Random Landmarking
[20] to create physical clusters where nodes share a common
overlay id prefix. Thus, two nodes that are physically close to
each other are also likely to be "close" to each other in the
overlay. Since there are generally no stationary nodes available
in MANETs, MADPastry works without any fixed landmark
nodes. Instead, it uses a set of landmark keys. A landmark key
is simply an overlay id. Rather than having dedicated landmark
nodes, in MADPastry those nodes become temporary landmark
nodes that are currently responsible for one of the landmark
keys (i.e. whose own overlay identifiers are currently closest to
one of the landmark keys). Therefore, when one of the current
landmark nodes fails or resigns, another node (that whose
overlay id is now closest to the landmark key) will
automatically assume its role.

Landmark keys should be chosen so that they divide the
overlay id space into equal-sized segments. For example, in a
hexadecimal-based id space, an appropriate set of landmark
keys could be: 0800…000, 1800…000, 2800…000, . . . ,
E800…000, F800…000.

To form clusters of common overlay id prefixes, nodes
associate themselves with the temporary landmark node that is
currently closest to them (e.g. as determined by the hop count)
by adopting its overlay id prefix. For that purpose, temporary
landmark nodes send out beacons periodically. These beacons
are broadcast and whenever a node overhears a landmark
beacon, it stores the current landmark node's id and the
distance to it as given by the hop count of the beacon. Nodes
periodically examine their landmark list to determine whether
they have moved closer to a new landmark, i.e. whether they

node S

node B

node C

node D

node T

overlay hop

physical hop shortest path

Fig. 1. Overlay vs. physical routing

have moved – with high probability - into a new overlay
cluster. If so, a node will assign itself a new random overlay id
with its new cluster's overlay id prefix, resign from the overlay
network with its old id, and rejoin the overlay network with its
new id.

Since broadcast messages impose a serious burden on
wireless networks, temporary landmark nodes do not broadcast
their beacons throughout the entire network. Instead, landmark
beacons are only propagated within the landmark's own cluster,
i.e. beacons are only forwarded by nodes belonging to that
cluster. Nodes outside the landmark's cluster will store the
beacon information and then drop the packet. The reasoning
behind this is that nodes will not be interested in beacons
originating halfway across the network since they would not –
and in fact should not – join that cluster anyway. In fact, a
beacon is only of value to its own cluster members and to
nodes bordering the cluster (note that bordering nodes will
receive the beacon but not forward it) as those are the regions
where cluster crossovers (should) occur.

MADPastry's Random Landmarking has the following
effects. First of all, it leads to physically close nodes forming
overlay regions, or clusters, with common id prefixes. This is
demonstrated by Fig. 2 which shows the spatial distribution of
overlay id prefixes in a 250 node MADPastry network. Equal
symbols of equal colors represent equal overlay id prefixes.
Furthermore, since the last overlay routing step in DHT
systems is the numerically closest, with MADPastry the last
overlay routing step also tends to be physically close, whereas
with Pastry the opposite is often the case [1, 15].

B. Routing Tables

MADPastry maintains three different routing tables: a

standard AODV routing table for physical routes from a node
to specific target nodes, as well as a stripped down Pastry
routing table and a standard leaf set for indirect routing.

Pastry Routing Table. The standard Pastry routing table
consists of ⎡log2b N⎤ rows with (2b-1) entries each. The
conventional Pastry protocol stipulates that each node would
periodically choose one random entry from each routing table
row for maintenance. It would then contact each selected node
and receive its corresponding routing table row. Then, it would
ping the entry candidate pair (i.e. the local entry and the remote
entry) to determine the most appropriate entry (e.g. the closer
one, the one with the lower latency, etc.) for each slot in the
row. Obviously, the traffic induced by this maintenance
process constitutes a large portion of the overall traffic and can
easily overwhelm a wireless network.

To avoid this prohibitive maintenance overhead, a
MADPastry node only stores a degenerate Pastry routing table.
A MADPastry routing table only needs to contain ⎡log2b K⎤
rows, with K being the number of landmark keys. In other
words, it only needs to have as many rows as are necessary to
fit a "pointer" entry into each overlay cluster. For example,
with b=4 (hexadecimal overlay identifiers) and K=16, a
MADPastry node only needs to have the first row of a standard
Pastry routing table. Each slot would then contain an arbitrary
reference node in the corresponding overlay cluster.

At this point it is important to realize that with these
strapped down routing tables we are deliberately sacrificing the
O(log N) bound on the number of overlay hops during a key
lookup for the sake of a drastically reduced maintenance
overhead. In standard Pastry that bound stems from the idea
that in each overlay routing step the current (intermediate)
node determines the matching prefix length between the key
and its own overlay id. It would then consult the corresponding
row in its routing table to find the next hop that would, ideally,
increase the prefix match by one ([15]). Clearly, this process is
interrupted in MADPastry after the first (few) overlay hop(s).

However, we believe that the benefits of abandoning
complete Pastry routing tables far outweigh its penalties in
practicably sized MANETs. First of all, we consider network
sizes in the order of up to 1,000 nodes far more realistic than
100,000 nodes in "pure" MANETs ([5]) without any wired
infrastructural gateway nodes (in such wireless-cum-wired
topologies, e.g., one could again have the wired gateway nodes
maintain complete Pastry routing tables). Let's consider a large
MANET of 1,000 nodes and let us assume 16 landmark keys
and the Pastry id base b=4 (hexadecimal overlay identifiers). In
that case, a MADPastry cluster would consist of slightly more
than 60 nodes on average. Here, the first overlay hop would be
decided by the first (and only) routing table row and would
deliver a request to its target cluster. Once there, leaf set based
intra-cluster routing would deliver the request to its eventual
target node (see B for details on MADPastry's routing). Given
a standard leaf set size L=16, intra-cluster routing would
require about 8 hops in the worst case (62.5 / L/2). However,
since nodes in a MADPastry cluster are very likely to be
physically close to each other, there is a high chance that a) the
eventual target node will overhear the request sooner, or b) the

Fig. 2. Spatial distribution of id prefixes.

current node has overheard a packet from the eventual target in
the past and thus knows about it (and a route to it) already.
Therefore, intra-cluster routing can be expected to be
performed efficiently with only a few overlay hops.

Pastry Leaf Set. The standard Pastry leaf set contains L
entries: the L/2 numerically closest (in terms of their overlay
id) smaller nodes and the L/2 numerically closest larger nodes.
Of course, the leaf set also needs to be maintained. For that
purpose, a Pastry node periodically pings its leafs to determine
whether a are still alive. The leafs respond with their respective
leaf sets so the source node could learn about new close
members of the overlay that it did not known about yet.

Again for the sake of a reduced traffic overhead, we sacrifice
the 100% accuracy of the leaf sets. It is important here to bear
in mind that for a correct routing process it is actually not
necessary that nodes always have 100% accurate leaf sets. To
guarantee routing convergence, it is only essential for a node to
always know its correct "left" and "right" overlay neighbor, i.e.
the node that has the numerically closest smaller overlay id and
the node that has the numerically closest larger overlay id.
Otherwise, the routing process might not always end up at the
right node. Therefore, a MADPastry node proactively only
pings its "left" leaf and its "right" leaf who will respond with
the id of the node that they think is the originator's left or right
leaf (i.e. ideally themselves). Furthermore, each node
periodically sends out a beacon with its current overlay id that
is propagated throughout its cluster. Since nodes in a
MADPastry cluster share a common overlay id prefix, the
majority of a node's leafs will likely be from its own cluster.
Thus, given MADPastry's leaf set maintenance scheme, one
can expect the leaf set of a MADPastry node to have the
correct "left" and "right" leaf and to include a close
approximation of the accurate L/2 entries in each half.

AODV Routing Table. To carry out a concrete overlay hop,
a MADPastry node also maintains a standard AODV routing
table. It includes for specific physical destinations the next
(physical) hop address as well as for each such route a
sequence number.

C. Routing

MADPastry provides an indirect routing primitive in
MANETs. I. e., MADPastry routes packets based on an overlay
id but the final (physical) target node is usually unknown. It
does so by integrating overlay and physical routing. Therefore,
when a MADPastry node receives a request packet, it can
principally be due to the following two situations:

1) The node could be the target (i.e. the physical destination)
of an overlay hop. In this case, the node needs to determine the
next overlay hop. For this purpose, it will consult its Pastry
routing table to find a node that would increase the matching
key prefix by one or its leaf set to find a node that is
numerically closer to the key than the current node is. This
corresponds to standard Pastry routing.

2) The node could be an intermediate node on the physical
path of an overlay hop that is being carried out. Now, the node
would behave like a regular AODV node. It would consult its
AODV routing table to determine the next physical hop on the

route toward the destination of this overlay hop and then
forward the packet on.

To minimize the routing traffic, any such intermediate node
on the physical path of an overlay hop inspects the destination
of the overlay hop. If the intermediate node's own overlay id
already happens to be numerically closer to the packet's key
than that of the overlay hop's actual destination, it will
"intercept" the packet. In other words, it will consider the
current overlay hop completed and select from its Pastry
routing table or leaf set the next overlay hop.

An interesting question arises when the physical route to
carry out an overlay hop is unknown. Again, this can happen in
two situations:

1) A node selects the next overlay destination from its Pastry
routing table or leaf set, but there is no (valid) route
information in its AODV routing table for that destination.

2) An intermediate node on the physical path of a current
overlay hop might not have a (valid) next hop entry in its
AODV routing table to forward the packet.

To avoid network-wide broadcasts whenever possible,
MADPastry tries to leverage its cluster locality in such cases. If
the node that has no (valid) information on how to continue the
path of an overlay hop is already in the target cluster (i.e.
shares a common prefix with the packet's destination), it will
not issue an AODV-style route discovery for the destination.
Instead, it will broadcast the overlay packet itself within the
confines of its cluster. Due to the physical locality in
MADPastry clusters, that broadcast is very likely to stay in a
limited region of the network. Otherwise, if the node is not in
the target cluster, it will queue the packet and start a regular
AODV expanding ring broadcast to discover a route to the
packet's destination.

At this point, it is worth mentioning that MADPastry
provides indirect routing in MANETs. However, it is not a
stand-alone network application as such. That means that it is
up to the actual application running on top of MADPastry to
determine the action a node should take when it receives a
packet. MADPastry merely delivers a packet to the node
currently responsible for the packet's key.

D. Routing Table Maintenance

As described in Section II.B, the only proactive routing table
maintenance that a MADPastry node performs is the periodic
pinging of its "left" and "right" leaf. This is necessary to
guarantee overlay routing convergence.

All other routing entries are gained by overhearing data
packets. For that reason, a MADPastry packet always contains
the following information:

- the AODV sequence number of the packet's source (i.e.
the destination node of the previous overlay hop)

- the AODV sequence number of the packet's previous
physical hop (i.e. the immediate predecessor on the
current physical path)

- the overlay id of the packet's
- the overlay id of the packet's previous physical hop
Whenever a MADPastry node now receives or overhears a

packet, it extracts the AODV sequence numbers to update its

AODV routing table to contain a fresh route to the packet's
source and, trivially, to the previous physical hop. MADPastry
uses the heuristic that existing routes to those two nodes are
overwritten in the favor of the fresh route. Analogously, it
exploits their overlay identifiers included in the packet to insert
the nodes into the corresponding slots in the Pastry routing
table and leaf set. Again, any existing entries are overwritten in
the favor of fresh physical routes.

It is clear to see that the fill degree and accuracy of the
Pastry routing tables and leaf sets largely depend on the
number of packets that a MADPastry node receives or
overhears. When network traffic is low and nodes receive only
few packets, their routing tables and leaf sets might be scarcely
filled so that the routing performance is likely to suffer. We
believe, however, that when there are relatively few lookups –
i.e. the network traffic is low – there really is no point in
maintaining much routing structure in the first place. One
would be better off broadcasting the occasional lookups
instead. As the lookup frequency increases, so does the
network traffic and thus the fill degree and accuracy of the
MADPastry routing tables and leaf sets. Therefore,
MADPastry is especially geared toward MANETs with high
lookup rates – as otherwise we believe DHT substrates are of
little practical use to begin with. Our experimental results
support these assumptions.

III. EXPERIMENTAL RESULTS

To evaluate the performance of MADPastry, we
implemented MADPastry as a routing agent in ns2. All
simulations the we carried out modeled wireless networks over
the course of one (simulated) hour. Nodes are always moving
around according to the random way point model with 0s pause
time and at a steady speed. For data transmission, nodes are
using the 802.11 communication standard with a transmission
range of 250m.

The following metrics are analyzed:

Success Rate – the percentage of random lookups that are

eventually delivered to the correct responsible node.
Packet Overhead – the number of packets that all routing

agents forward during a simulation. This count is increased
whenever a node forwards a packet to the next physical hop. In
the case of MADPastry, this figure comprises all router-level
packets that are created by a MADPastry node: lookups, leaf
pings/pongs, join requests, join replies, leave messages and
node beacons. In the case of the Gnutella-style broadcast
router, this figure only consists of lookups as there simply are
no maintenance messages.

Overall Traffic – the total network traffic in Kbytes that is
created during the simulated hour. Whenever a node forwards a
packet, this figure is increased by the packet size. Again, this
figure includes all router-level packet types for MADPastry.
Here, it is important to mention that MADPastry packets on
average are about 4 times larger (excluding the IP header) than
the corresponding broadcast agent's packets as they carry
additional information such as the last hop's overlay id and so
forth.

A. Reference Applications

The ns2 routing agent implements the MADPastry protocol
as described in section II. Nodes send out cluster beacons every
30s and ping their left and right leafs every 60s. 16 landmark
keys are used in the simulations. Additionally, to further
increase the success rate, a lookup initiator always also issues a
secondary lookup. That backup lookup is sent to the second
best candidate for the first overlay hop. If both lookups arrive
at the eventual target, the second one is dropped.

As discussed before, the fundamental question to be
answered when deploying a DHT substrate in MANETs is
whether the extra overhead of maintaining the DHT structure is
really worth the effort. Or, is the benefit gained from using a
DHT so miniscule that we would have, indeed, been better off
just broadcasting the lookups in the first place. Therefore, as a
reference application to compare MADPastry's results against,
we implemented a Gnutella-style broadcast routing agent. The
broadcast agent maintains no overhead structure and, thus, has
no extra maintenance overhead. It broadcasts a packet to all its
one-hop neighbors who, then, forward the packet to all their
one-hop neighbors and so forth. Nodes keep track of the packet
sequence number so that already forwarded packets will not be
sent a second time.

To verify whether MADPastry's extra overhead stemming
from cluster roaming (leaving, rejoining, coping with invalid
overlay identifiers, etc.) is justified, we also implemented a
routing agent that integrates regular Pastry and AODV as a
second reference application. It works very similar to
MADPastry except that it does not employ Random
Landmarking. Thus, there are no physical clusters of nodes
sharing a common overlay id prefix and no overlay id
reassignment – i.e. leaving and rejoining the network – either.
Since Pastry's standard routing table and leaf set maintenance
is prohibitive in MANETs, the integrated Pastry routing agent,
too, fills its routing table by forwarding and overhearing live
packets and also only pings its left and right leaf proactively.
Furthermore, beacons as well as lookups for which no physical
route is known are broadcast throughout the entire network – as
there are no clusters. Also, the integrated Pastry routing agent
does not issue any secondary lookups (as the MADPastry
routing agent does) since its overhead is already drastically
higher than MADPastry's – as the simulation results will show.

B. Basic Results

We compare the performances of MADPastry, the Pastry
routing agent without clusters and the Gnutella-style broadcast
agent in networks of 100 and 250 nodes. In all simulations, we
use square planes with a node density of 100 nodes/km². In a
first set of simulations, nodes are moving around at a regular
speed of 1.4 m/s, which corresponds to a fast walking speed.
As a traffic source, we implemented an application sitting on
top of either MADPastry, the Pastry router without clusters or
the broadcast agent that issues lookups for random keys
periodically. For this first set of simulations, each node sends
out a random key lookup every 10s.

Fig. 3 shows the success rate of the three routing agents for
the random lookups. As can be seen, MADPastry achieves

better success rates in both 100 and 250 node networks
compared to the broadcast agent. Furthermore, MADPastry
retains success rates of well above 90% for both network sizes,
whereas the broadcast agent's rate drops below 90% in a 250
node network. The success rate of the Pastry router without
clusters is practically the same as MADPastry's (approx. 1-2%
higher).

Fig. 4 shows the number of messages that the routing agents
send and forward during the simulated hour in order to achieve
their respective success rates. It becomes clear that MADPastry
produces drastically less network traffic than the Gnutella-style
broadcast agent does. In a 100 node network, the broadcast
router needs about 5 times and in a 250 node network even
about 7 times the number of messages that MADPastry needs.
The Pastry router without clusters incurs roughly 1/3 of the
message traffic of the broadcast agent in a 100 node network
and roughly 1/2 in a 250 node network, which is well above
MADPastry's message traffic.

 However, it is important to bear in mind that MADPastry /
Pastry packet headers are longer than those of the broadcast
router due to the extra information included in them (see
above). To make sure we are not comparing apples and
oranges, Fig. 5 shows the traffic in forwarded Kbytes instead.
Even with that metric, MADPastry still produces several times

less traffic than the broadcast router does. An interesting
observation can be made here for the Pastry router without
clusters. While still below the broadcast agent's overhead in a
100 node network, its overall traffic becomes larger than the
broadcaster's in a 250 node network. This can easily be
explained by the fact that Pastry's overlay routing usually
requires several overlay hops per lookup. Since there are no
clusters, successive overlay hops can crisscross the physical
network. Thus, when the Pastry router has to resort to
broadcasting a lookup (because the physical route to carry out
the next overlay hop is unknown), the lookup could already
have crossed the network several times. Obviously, one would
have been better off if one had broadcast the lookup right away
– which is exactly what the broadcast agent does. Furthermore,
even if the lookup could be delivered without being broadcast
(i.e. the routes for all overlay hops involved were known), the
accumulated physical path lengths of the overlay hops might
only be slightly more light-weight than a broadcast.
Additionally, the required periodic beacon broadcasts are
added on top. Since both physical and overlay paths are much
shorter in a 100 node network, this effect is less pronounced
there.

This clearly demonstrates how important it is for a DHT
substrate in MANETs to consider physical locality – as
MADPastry does.

C. Node Velocity

So far, we have only considered networks with node velocity
of 1.4 m/s. In the next set of simulations, we will examine 250
node networks with various node velocities: 0.1 m/s, 0.6 m/s
(slow walking speed), 1.4m/s (fast walking speed), 2.5 m/s and
5.0 m/s. We continue to use a request frequency of one random
lookup every 10s per node.

Fig. 6 shows the success rates of the three routing agents in
reference to the different node velocities. One can see that both
MADPastry and Pastry without clusters achieve better success
rates than the Gnutella-style router does for speeds up to a fast
walking speed (1.4 m/s). At a speed of 2.5 m/s, the success
rates of MADPastry and Pastry without clusters start falling
below the broadcast router's. With fast speeds, routes break so
frequently that Pastry without clusters can no longer keep its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 250

network size

Su
cc

es
s

R
at

e

MADPastry
Pastry
Broadcast

Fig. 3. Lookup success rate - 1.4m/s.

0

5,000,000

10,000,000

15,000,000

20,000,000

100 250

network size

m

sg

MADPastry
Pastry
Broadcast

Fig. 4. Total number of messages - 1.4m/s.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

100 250

network size

tra
ffi

c
[K

B
]

MADPastry
Pastry
Broadcast

Fig. 5. Overall traffic in Kbytes - 1.4m/s.

routing table and leaf set sufficiently valid – hence its success
rate drops below the broadcast agent's success rate. With
MADPastry this problem is further aggravated by the fact that
nodes move from cluster to cluster so rapidly that a) they spend
a significant amount of their time leaving and rejoining the
network, and thus b) their overlay routing tables frequently
contain stale entries.

Fig. 7 shows the overall traffic produced by the routing
agents during an average simulation run. As can be expected,
the overhead of the broadcast agent is practically independent
of the node velocity. Since broadcasts in MADPastry are
restricted to their respective cluster, MADPastry's overall
traffic stays significantly below that of the other two routing
agents. For Pastry without clusters, the overall traffic quickly
surpasses even that of the broadcast agent as route failures
occur more and more frequently and the effects described in
Section III.B become ever more pronounced.

D. Request Rates

The scenarios considered thus far all assumed a node lookup
rate of one lookup per 10s. Next, we take a look at the impact
of the lookup rate on the overall performance. We will evaluate
lookup intervals of 1s, 10s, and 60s in a 250 node network with
a node velocity of 1.4 m/s.

Fig. 8 shows the success rates of the three routing agents in

reference to the lookup rate. As already seen in Section III.B,
MADPastry and Pastry without clusters achieve comparable
success rates well above 90% for a per-node lookup interval of
10s. The Gnutella-style router's success rate here drops below
90%.

A very interesting observation can be made in networks with
high lookup rates of 1 lookup per second per node. At such
high lookup rates, both the broadcast agent and Pastry without
clusters can no longer keep up with MADPastry. Their
(frequent) network-wide broadcasts of the lookup requests
clearly overwhelm the wireless physical network, resulting in
so many packet collisions that the majority of lookups fail to be
delivered. Thus, their success rates drop to 20%. On the other
hand, MADPastry's physically shorter overlay hops (compared
to Pastry without clusters) and its local cluster broadcasts allow
it to still maintain a success rate of 92% in the presence of such
high lookup rates. Again, MADPastry's overall traffic remains
significantly below that of both the broadcaster and Pastry
without clusters, as Fig. 9 shows.

If there is only one lookup per minute, MADPastry's lookup
rate falls below 90% (87%). This is due to fact that the nodes
overhear much less packets to update their routing tables with.
Therefore, nodes often do not detect other nodes' cluster
changes, which can result in packets being routed to stale
overlay addresses. However, we believe that a request rate of

0.5

0.6

0.7

0.8

0.9

1

0.1 0.6 1.4 2.5 5.0

node velocity [m/s]

Su
cc

es
s

R
at

e

MADPastry
Pastry
Broadcast

Fig. 6. Success rates vs. node velocity.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0.1 0.6 1.4 2.5 5.0

node velocity [m/s]

tra
ffi

c
[K

by
te

]

MADPastry
Pastry
Broadcast

Fig. 7. Overall traffic vs. node velocity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1s 10s 60s

lookup interval

Su
cc

es
s

R
at

e

MADPastry
Pastry
Broadcast

Fig. 8. Success rates vs. lookup intervals.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1s 10s 60s

lookup interval

tra
ffi

c
[K

by
te

]

MADPastry
Pastry
Broadcast

Fig. 9. Overall traffic vs. lookup intervals.

one lookup per minute is probably too low to justify the effort
of maintaining a DHT in the first place.

E. Handovers

Our experimental results have shown that MADPastry
produces drastically less overhead than the broadcast agent and
Pastry without clusters do. It is important to realize, though,
that our experimental results present the gross overhead
savings of MADPastry. When MADPastry nodes change their
cluster membership, they effectively change their overlay id.
Therefore, when a MADPastry node changes its overlay id, it
would have to pass the objects (or, more likely, references to
them) that it was responsible for under its old overlay id to its
old left and right leaf before leaving the network and acquire
the new objects (or, more likely, references to them) that it is
now responsible for from its new left and right leaf. However,
the nature of that additional handover traffic clearly depends on
the actual application running on top of MADPastry, as well as
the amount and distribution of the objects in the network.

To evaluate the principal performance impact of handovers,
we next extended the test application from the previous
sections. Aside from periodically issuing random lookups, we
also distribute objects randomly among the nodes. Since it can
be prohibitive to transfer large objects in MANETs, the DHT
actually stores references to the objects. A reference contains
the object's id (i.e. hash key) and the physical address of the
node where the object resides. When a MADPastry node
changes its overlay id, it hands over and acquires the
corresponding references.

Again, we employ a 250 node network and examine the
effect that a total of 1,000, 10,000, 100,000, and 1,000,000
randomly distributed objects have on the overall performance.
We consider a lookup rate of one lookup per second. Fig. 10
shows that for up to 100,000 objects, MADPastry can sustain
success rates of above 90% as the additional handover packets
help spread node information through the network, thereby
mitigating the negative effects of an increased number of
packet collisions. MADPastry's overall traffic (now also
including handover packets) remains well below 50% of the
broadcast agent's overhead (see Fig. 11). With 1,000,000
objects in the network, however, the handover packets start

massively interfering with lookup packets, as they now
dominate the overall traffic, so that the success rate starts
falling.

IV. RELATED WORK

To the best of our knowledge, the first approach that
proposes the integration of a conventional DHT with an ad hoc
routing protocol to provide indirect routing in MANETs is Ekta
[11]. Ekta, like MADPastry, is based on Pastry [15], but it uses
DSR [6] for its route discoveries. The main difference to
MADPastry is that Ekta does not explicitly consider physical
proximity in its DHT routing table. Instead, it merely tries to
optimize its DHT entries by overhearing packets and replacing
physically remote entries by nearer ones. Ekta has no notion of
overlay clusters of physically close nodes. Thus, the routes
traveled during its overlay routing process may be expected to
be less efficient than those in the cluster-based MADPastry.
This should become even more pronounced as the network size
increases.

In [4], cross-layering is used to combine Pastry with the
proactive ad hoc routing protocol OLSR [2]. Again, physical
proximity is not explicitly taken into consideration in the DHT
so that routes may also be expected to be less efficient than in
MADPastry. Furthermore, experimental results are only
provided for an 8-node network, which we believe shows only
little of the characteristics that we consider (such as multi-hop
overlay routes and physical routes).

A different approach to providing indirect routing in
MANETs is taken by the Safari Project [17]. The Safari
architecture is based on a hierarchical ad-hoc routing protocol
and ultimately aims at providing network services such as
name resolution, storage, email, instant messaging, etc. in very
large-scale mobile networks. Safari's routing is based on
hierarchical cells of increasing diameter. Each node is assigned
an overlay address based on its position in the hierarchy.
Objects are then hashed into the Safari address space to map
objects to nodes. Due to its many hierarchy levels, overlay ids
change frequently in Safari, which leads to a significant
maintenance overhead. We believe that this overhead will
outweigh MADPastry's overhead in practically sized MANETs
in the order of up to 1,000 nodes that we consider.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,000 10,000 100,000 1,000,000

of objects

Su
cc

es
s

R
at

e

MADPastry
Pastry
Broadcast

Fig. 10. Success rate vs. # of objects.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,000 10,000 100,000 1,000,000

of objects

Tr
af

fic
 [K

by
te

]

MADPastry
Pastry
Broadcast

Fig. 11. Overall traffic vs. # of objects.

V. CONCLUSION

As MANETs become ever more popular, it also becomes
interesting to build distributed network applications that one is
accustomed to from the Internet on top of MANETs. We have
presented MADPastry as an efficient building block for such
applications in MANETs. MADPastry provides reliable
indirect routing in MANETs by a) considering physical locality
in the construction of its DHT and b) by integrating the
functionality of a DHT and an ad hoc routing protocol at the
network layer. Our simulation results have shown that
MADPastry achieves comparable or better lookup success rates
at significantly less overall traffic compared to a reference
broadcast application and a reference DHT substrate without
locality awareness for most practicable scenarios considered.
We, therefore, conclude that it is essential for any DHT
substrate in MANETs to explicitly consider physical locality.
Then, it is well worth the effort to maintain a DHT in
MANETS with node velocities up to at least fast walking
speeds.

As future work, we plan to implement real network
applications, such as an event notification system, on top of
MADPastry. Furthermore, it would be interesting to investigate
how other DHTs such as CAN or Chord would fare in
MANETs when integrated with ad hoc routing protocols.

REFERENCES

[1] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. "Exploiting
Network Proximity in Peer-to-Peer Overlay Networks". In Proc. of
FuDiCo, June 2002.

[2] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and L.
Viennot. "Optimized Link State Routing Protocol for Ad Hoc
Networks". In Proc. of IEEE INMIC, December 2001.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. "Wide-
area cooperative storage with CFS". In Proc. of ACM SOSP, October
2001.

[4] F. Delmastro. "From Pastry to CrossROAD: CROSS-layer Ring Overlay
for AD hoc networks". In Proc. of PerCom, March 2005.

[5] P. Gupta and P. R. Kumar. "The Capacity of Wireless Networks". In
IEEE Transactions on Information Theory, Vol. 46, No. 2, March 2000

[6] D. B. Johnson and D. A. Maltz. "Dynamic Source Routing in Ad Hoc
Wireless Networks". Kluwer Academic, 1996.

[7] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris. "Capacity of
Ad Hoc Wireless Networks". In Proc. of ACM SIGMOBILE, July 2001.

[8] A. Mislove. "POST: A Decentralized Platform for Reliable Collaborative
Applications". Master of Science Thesis, Rice University, December
2004.

[9] C. E. Perkins and P. Bhagwat. "Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers". In Proc. of
ACM SIGCOMM , August 1994.

[10] C. E. Perkins and E. M. Royer. "Ad hoc on-demand distance vector
routing". In Proc. of IEEE WMCSA, February 1999.

[11] H. Pucha, S. M. Das, and Y. C. Hu. "Ekta: An Efficient DHT Substrate
for Distributed Applications in Mobile Ad Hoc Networks". In Proc. of
IEEE WMCSA. December 2004.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. "A
Scalable Content-Addressable Network". In Proc. of ACM SIGCOMM,
August 2001.

[13] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. "Topologically-
Aware Overlay Construction and Server Selection". In Proc. of IEEE
Infocom, June 2002.

[14] A. Rowstron and P. Druschel. "PAST: A large-scale, persistent peer-to-
peer storage utility". In Proc. of HotOS VIII, May 2001.

[15] A. Rowstron and P. Druschel. "Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems". In Proc. of
Middleware, November 2001.

[16] A. Rowstron, A-M. Kermarrec, M. Castro and P. Druschel. "SCRIBE:
The design of a large-scale event notification infrastructure". In Proc. of
NGC2001, November 2001

[17] Safari Project. http://safari.rice.edu/
[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

"Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications". In Proc. of ACM SIGCOMM, August 2001.

[19] M. Waldvogel and R. Rinaldi. "Efficient Topology-Aware Overlay
Network". In Proc. of HotNets-I, October 2002.

[20] R. Winter, T. Zahn, and J. Schiller. "Random Landmarking in Mobile,
Topology-Aware Peer-to-Peer Networks". In Proc. of FTDCS, May
2004.

[21] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. "Tapestry: An
Infrastructure for Fault-Resilient Wide-area Location and Routing". UCB
Tech. Report UCB/CSD-01-1141, April 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

