A MAC protocol for full exploitation of Directional Antennas in Ad-hoc Wireless Networks

Ad hoc Network Seminar

Referent: Dominik Erb

basierend auf einer Arbeit von Thanasis Korakis, Gentian Jakillari und Leandros Tassiulas

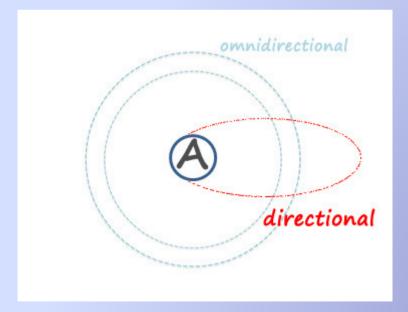
Inhalt

1. Einleitung

- 1. Motivation
- 2. MAC
- 3. CSMA/CA mit RTS/CTS
- 4. NAV

2. Direktionale Übertragungen in Ad-Hoc Netzwerken

- 1. Vorteile
- 2. Probleme
 - 1. Das Hidden Terminal Problem
 - 2. Taubheit (Deafness)
 - 3. Positionsbestimmung von Nachbarn
- 3. Andere direktionale Protokolle


3. Das im Paper vorgestellte Protokoll

- 1. Zyklisches Direktionales RTS / CTS
- 2. Die Position der Nachbarn
 - 1. Die Location Table
 - 2. Direktionales NAV
- 3. Beispiele
- 4. Simulationsergebnisse

1.1 Motivation

Direktionale und omnidirektionale Übertragungen im Vergleich:

- Wenige MAC Protokolle speziell für direktionale Übertragungen
- Daten werden lediglich in die gewünschte Richtung übermittelt
- Erheblich vergrößerte Reichweite in diese Richtung

1.2 MAC (Medium Access Control)

 Eine Erweiterung der 2. Schicht des Osi Modells (Data Link Layer)

OSI Model			
7	Application		
6	Presentation		
5	Session		
4	Transport		
3	Network		
2	Data LinkLogical Link ControlMAC		
1	Physical		

1.2 MAC (Medium Access Control)

 Verwaltet den Zugriff mehrerer Nodes auf ein Übertragungsmedium

Zugriff:

- kontrolliert
- konkurrierend (CSMA / CA)
- Bietet zusätzliche Erweiterungen wie RTS/CTS

1.3 CSMA / CA und RTS /CTS

- Carrier Sense Multiple Access / Collision Avoidance
 - Prinzip zur Kollisionsvermeidung
 - Überwacht den Übertragungskanal vor Übertragung

Sender

- Überprüft den Übertragungskanal (für Zeit DFTS)
- Übermittelt Daten (Data)

Empfänger

- Empfängt Daten
- Übermittelt Bestätigungspaket (Ack)

1.3 CSMA / CA und RTS /CTS

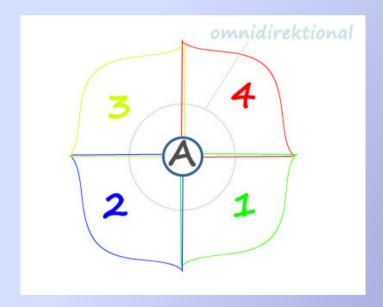
- Ready to Send / Clear to Send
 - Optionaler Mechanismus f
 ür CSMA / CA
 - Informiert Nachbarn über anstehende Übertragung

Sender

• Übermittelt vor jeder Übertragung ein RTS Paket

Empfänger

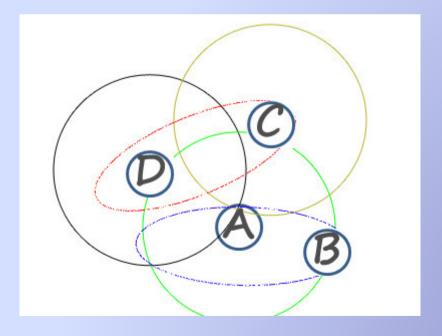
- Übermittelt CTS Paket falls Kanal frei
- Zusammen mit Data / Ack entsteht ein 4 teiliger
 Handschlag (RTS / CTS / DATA / ACK)


1.4 NAV (Network Allocation Vektor)

 Vektor der die Dauer von anstehenden Übertragungen speichert

- Datenübertragung nur bei NAV-Wert von 0
 - Aktualisiert Dauer bei jedem empfangenen Paket
 - Startet Countdown bis NAV-Wert 0 erreicht

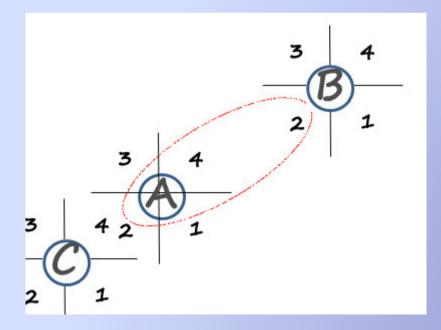
2 Direktionale Übertragungen


- Benötigen direktionale Antennen bestehend aus einem Array von Antennen
 - Typischerweise 1,2,4,8,16 Elemente

2.1 Direktionale Übertragungen

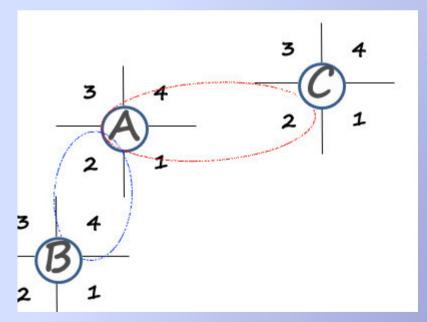
Vorteile:

- Erheblich vergrößerte Reichweite in eine Richtung
- Mehrere gleichzeitige Störungsfreie Übertragungen
- → Steigerung der Netzwerkkapazität allgemein

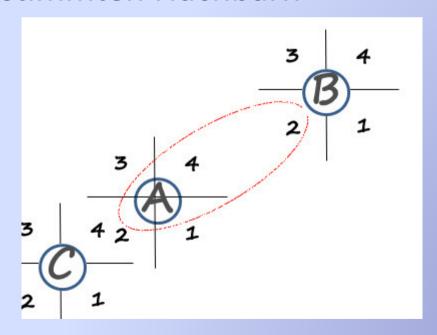

2.2 Direktionale Übertragungen

• Probleme:

- Das Hidden Terminal Problem
- Taubheit (Deafness)
- Bestimmung der Position von Nachbarn


2.2.1 Das Hidden Terminal Problem

- Node liegt außerhalb der Reichweite des Senders
 - -> erfährt nichts von einer anstehenden Übertragung


2.2.1 Taubheit (Deafness)

- Empfänger überhört Nachricht, da er nicht auf der entsprechenden Antenne hört
 - → Sender übermittelt immer wieder das gleiche Paket ohne Erfolg

2.2.3 Bestimmung der Position von Nachbarn

- Signal wird nur in eine bestimmte Richtung übermittelt
 - Welche Antenne übermittelt Signal in Richtung eines bestimmten Nachbarn

2.3 Andere direktionale Protokolle

- Nicht immer speziell für direktionale Übertragungen entwickelt
- Verwenden teilweise omnidirektionale Übertragungen von RTS / CTS

3 Das vorgestellte Protokoll

- Verwendet lediglich direktionale Übertragungen
- Informiert Nachbarn über anstehende Übertragungen
- Verwaltet die Position aller Nachbarn
- Versucht keine Nachrichten zu überhören
- Verwendet abgewandelte Form des 4 teiligen Handschlags (RTS/CTS/DATA/ACK) und NAV

3.1 Zyklisches direktionales RTS / CTS

- Versucht das Hidden Terminal Problem zu lösen
- Zyklische Übermittlung von RTS in alle Richtungen
- Empfänger antwortet mit direktionalem CTS
- Erst danach direktionale Übertragung von Data / Ack

 Andere Nodes verschieben Übertragungen in entsprechende Richtung

3.1 Zyklisches direktionales RTS / CTS

Inhalt aller übermittelten Pakete:

- Dauer der Übertragung
- Sender
- Empfänger
- Zusatzinformationen zur Positionsbestimmung

• ...

3.2 Positionsbestimmung von Nachbarn

Benötigte Informationen:

- Welcher Nachbar
- Antenne mit welcher dieser Daten empfängt
- Antenne mit welcher ich Daten übermittle

3.2 Positionsbestimmung von Nachbarn

Durch zyklisches RTS erhalten alle Nodes:

- Antenne mit welcher Daten vom Sender empfangen wurden -> Position des Senders
- Dauer der Übertragung

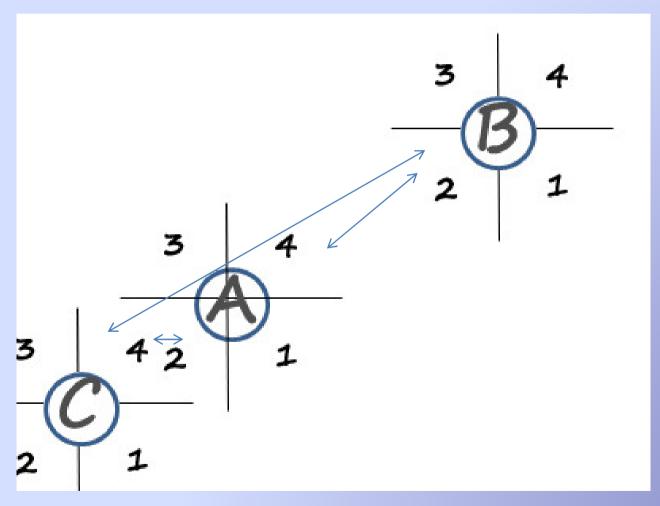
Zusätzlich erhält der Sender durch CTS:

 Antenne mit welcher der Empfänger Daten versendet

3.2.1 Die Location Table

- Tabelle mit Zeile für jeden Nachbarn
- Speichert durch Übertragungen erhaltene Informationen über die Position von Nachbarn
- Aktualisiert sich bei jeder Übertragung

Ich selbst	Nachbar	Meine Antenne	Antenne des Nachbarn


3.2.2 D-NAV

- Verwendet die Location Table zur Positionsbestimmung
- Erweitert alle versendeten Pakete um:
 - Antenne mit welcher der Sender den Empfänger erreicht
 - Antenne mit welcher der Empfänger Daten vom Sender empfängt

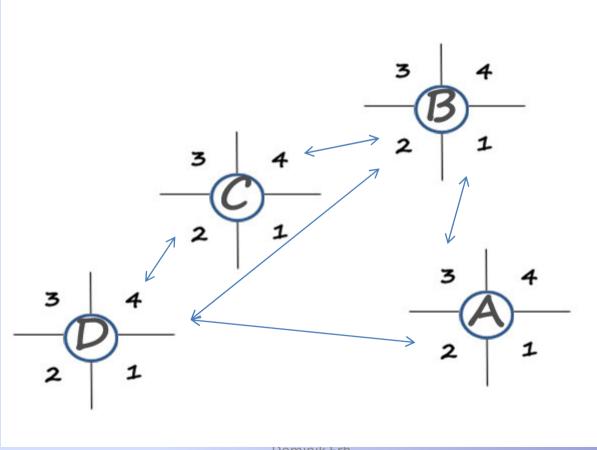
• Überprüft / verschiebt alle Übertragungen, die zu Kollisionen führen würden

3.3.1 Beispiel für eine Übertragung

Node A möchte Daten an B senden

3.3.1 Beispiel für eine Übertragung

Location Table von C


Ich selbst	Nachbar	Meine Antenne	Antenne des Nachbarn
С	А	4	2
СВ		4	2

- → Übermittelte Informationen: A,B,4,2
- → C verschiebt alle Übertragungen mit Antenne 4

3.3.2 Beispiel 2

Node D möchte Daten an B senden

$$\rightarrow$$
 D,B,4,2

3.3.2 Beispiel 2

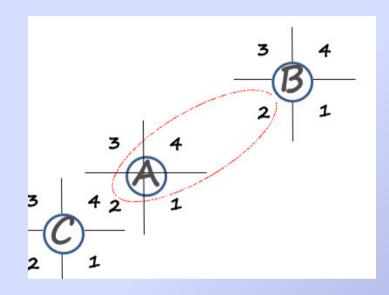
 \rightarrow D,B,4,2

Location Table von C

Ich selbst	Nachbar	Meine Antenne	Antenne des Nachbarn
С	В	4	2
C D		2	4

→ C wird alle Übertragungen mit Antenne 4 und 2 verschieben

3.3.2 Beispiel 2


 \rightarrow D,B,4,2

Location Table von A

Ich selbst	Nachbar	Meine Antenne	Antenne des Nachbarn
Α	В	3	1
А	D	2	4

→ A wird nur Übertragungen mit Antenne 2 verschieben

3.4 Simulationsergebnisse

Durchsatz (%) bei hoher Last	D-MAC	Vorgestelltes Protokoll
Node A	33,34	40,21
Node C	15,57	39,89
Gesamt	48,91	80,1

3.4 Simulationsergebnisse

Durchsatz (%) bei hoher Last	D-MAC	Vorgestelltes Protokoll
Node A	33,34	40,21
Node C	15,57	39,89
Gesamt	48,91	80,1

- Vorgestelltes Protokoll besitzt fast doppelt so hohen Durchsatz
- D-MAC bevorzugt Node A gegenüber C

Danke für ihre Aufmerksamkeit