
Bachelor’s thesis

Garbage collection for TakaTuka

Albert-Ludwigs-University of Freiburg
Faculty of Applied Sciences

Department of Computer Science
Chair of Computer Networks and Telematics

Prof. Dr. Christian Schindelhauer

Author: Luminous Fennell
matriculation number: 2111591

Supervising tutor: M. Sc. Faisal Aslam
1stExaminer: Prof. Dr. Christian Schindelhauer
2nd Examiner: Prof. Dr. Peter Thieman

submission date: 11. May 2009

Abstract:

The TakaTuka project currently is developing at the Albert-Ludwigs Uni-
versity of Freiburg a Java virtual machine for different micro-controller ar-
chitectures. It aims to enable programming of sensor motes, the nodes of a
wireless ad-hoc network, by means of a high level language.

An important part of the Java programming language is its automatic
memory management: dynamically allocated objects that are freed by the
virtual machine when they are not used any more by the program it executes.
This procedure is called Garbage-Collection. It is the only possibility in Java
to free dynamic memory and therefore mandatory to reasonably execute
applications.

The goal of this bachelor’s thesis is the implementation of a function-
ing Garbage-Collection and an underlying, hardware independent memory
management system for TakaTuka. This makes it possible for the first time
to develop Java applications for TakaTuka that take advantage of the high
level features of the Java programming language.

During the thesis several variants of memory management and Garbage-
Collection were implemented. They are compared by means of test programs

Zusammenfassung:

Das TakaTuka Projekt entwickelt zur Zeit an der Albert-Ludwigs Univer-
sität Freiburg eine Virtuelle Maschine für Java, die es erlaubt Java Pro-
gramme auf verschiedenen Microcontroller Architekturen auszuführen. Damit
soll die Programmierung von Knoten drahtloser ad-hoc Netzwerke, sog. Sen-
sor Motes, mit einer Hochsprache ermöglicht werden.

Ein wichtiger Bestandteil der Programmiersprache Java ist das automa-
tische Speichermanagement: dynamisch allokierte Objekte werden selbständig
von der Virtuellen Maschine freigegeben, wenn diese im Programm nicht
mehr verwendet werden. Diesen Vorgang bezeichnet man als Garbage-
Collection. In Java ist dies die einzige Möglichkeit dynamischen Speicher
freizugeben und deshalb notwendig um sinnvoll Anwendungen auszuführen
zu können.

Ziel dieser Bachelor Arbeit ist die Implementierung einer funktionsfähige
Garbage-Collection für TakaTuka zusammen mit einem zu Grunde liegen-
dem hardware-unabhängigen Speichermanagementsystems. Dadurch wird
es erstmals möglich komplexere Java Anwendungen unter TakaTuka für die
Sensor Motes zu entwickeln, die die Vorteile der Programmiersprache aus-
nutzen.

Im Laufe der Arbeit wurden verschiedene Varianten für Speichermanag-
ment und Garbage-Collection implementiert, die anhand von Testprogram-
men verglichen werden.

i

Acknowledgement:

I like to thank Faisal Aslam, Prof. Christian Schindelhauer and Prof. Peter
Thiemann for their support and for giving me the opportunity to work
on such an interesting project. I also would like to thank my family and
especially my girlfriend for their patience and support during the time I
spent on this thesis. I will make it up to you.

Declaration
I hereby declare that this thesis has been composed by me without any

assistance and I have not used any sources or tools other than those cited.
Furthermore I declare that this thesis has not been accepted in any other
previous application for a degree.

Place, Date Signature

CONTENTS i

Contents

1 Introduction 1
1.1 Background . 1
1.2 The TakaTuka Project and the TakaTuka Java-VM 1
1.3 Motivation for this Thesis . 2
1.4 Related Work . 2
1.5 Structure of the Thesis . 3

2 The Java Programming Language 3
2.1 The Benefits of the Java Programming Language 3
2.2 Java Bytecode and Java Virtual Machines 4
2.3 Execution of a Java Program 5

2.3.1 Call Graph and Call Chain 6
2.4 Memory Usage in Java . 7

2.4.1 Stack Memory . 7
2.4.2 Heap Memory . 8

3 Garbage-Collection for a Java-VM for Sensor Motes 9
3.1 Constraints for the Garbage-Collector 10
3.2 The Mark-Sweep Garbage-Collector 10
3.3 Escape Analysis . 12
3.4 Other Approaches for Garbage-Collection 13

3.4.1 Reference Counting 13
3.4.2 Copying Garbage-Collector 14

4 Heap Memory Management for TakaTuka 14
4.1 Memory available to the Java-VM 15
4.2 Allocating and Freeing Memory Blocks 15

4.2.1 Definitions . 16
4.2.2 Example . 16
4.2.3 Properties of Allocating and Freeing 17

4.3 Fragmentation . 18
4.3.1 Definition . 18
4.3.2 Combining Adjacent Free Blocks 19
4.3.3 Heap Compaction . 20

4.4 Indirect References and Reference Table 20
4.4.1 Sizing of Reference Table 21

4.5 Mark-Sweep Garbage-Collector for TakaTuka 22
4.5.1 Depth-First Marking of Objects 22
4.5.2 Memory Overhead and Optimization Possibilities of

Depth-First Marking 24
4.5.3 In-Place Marking of Objects 25

4.6 Integration of Garbage-Collector in Memory Management . . 26

ii CONTENTS

5 Stack Memory Management 26
5.1 Fixed Sized Stack Chunks . 27

5.1.1 Allocation of Stack Chunks 28
5.1.2 Collision with Heap Memory 28
5.1.3 Push and Pop of Stack Frames 29
5.1.4 Drawbacks . 29

5.2 Variable Sized Stack Chunks 30

6 Benchmarks and Results 31
6.1 Stack Implementation . 32

6.1.1 Memory Usage . 32
6.1.2 Speed . 34

6.2 Garbage-Collector Implementation 35
6.2.1 Results: Number of Garbage-Collections 36
6.2.2 Results: Run-time . 37

7 Conclusion and Future Work 37
7.1 Improving Efficiency of Heap Memory Management 38
7.2 Integration of Escape Analysis 38
7.3 Variation of Garbage-Collector Integration 38

A Appendix: Compaction Algortihm 39

B Appendix: Depth-First Marking Algorithm 40

C Appendix: In-Place Marking Algorithm 41

D Appendix: Individual Stack Size Results 42

1

1 Introduction

1.1 Background

Wireless Sensor Networks (WSN) are a very active research field that evolved
recently. Their purpose is to monitor and control processes in an remote en-
vironment that is too vast or inaccessible to monitor with traditional central-
ized (wired) computer systems. WSNs consist of numerous tiny computer
devices, so called sensor motes, which are connected via a wireless ad-hoc
network. These sensor motes are placed inside the environment and should
operate autonomously, ideally without the need of maintenance. They run
on batteries for a long time and therefore have to operate very energy effi-
cient. Because of this sensor motes typically have very limited computational
power and memory resources compared to a standard PC.

Sensor motes are usually programmed using low level languages like C
and nesC [6]. This inhibits development of new software for sensor motes as
working with these languages is error prone and inconvenient: They are very
hardware specific and don’t support modern software engineering techniques
and design patterns teached at universities. Therefore there exists a need
for an implementation of standard compliant high level languages for sensor
motes.

Java is a good example of such a language as it is hardware independent,
very popular and has a vast standardized run-time library support. There
exist even a dedicated library standard for devices with limited resources,
the CLDC standard [16].

1.2 The TakaTuka Project and the TakaTuka Java-VM

The TakaTuka [2] project aims to provide Java for support several pop-
ular sensor motes, like the Crossbow Mica2 [18] mote. One part of the
project is the development of a static class-file-loader that creates a opti-
mized, statically linked binary file (called tukfile) from the class-files created
by a standard compliant Java compiler.

The other part of the project is the development of a CLDC compliant
Java-VM written in C. It runs as a TinyOS component. TinyOS is a pro-
gramming framework built on nesC which supports multiple sensor motes.
As the Java-VM can use the TinyOS drivers it can be easily adapted to sup-
port these different targets. The design goals for the TakaTuka Java-VM
are

• low memory requirement to leave as much of the limited memory avail-
able to the Java program it executes,

• fast execution to save energy,

2 1 INTRODUCTION

• hardware and library independence, so that TakaTuka can be main-
tained for multiple targets.

There are numerous efficient Java-VM implementations available but
most of them target architectures with much more resources available than
the typical sensor mote. Therefore a lot of existing optimization techniques
[17] and strategies cannot be easily transferred to the TakaTuka Java-VM.
For instance, the use of a just-in-time compiler (JIT) considerably speeds
up the execution of bytecode compared to interpreting it. This approach
requires the dynamic creation of machine code at run-time. Most sensor
motes, however, have separated data and program memory (as defined by
the Havard Architecture) and the latter is not reasonably accessible at run
time. Other techniques as the use of caches or hash-tables are memory
consuming (i.e. they enhance speed by using more memory) and too wasteful
for a Java-VM for sensor motes.

1.3 Motivation for this Thesis

An important feature of the Java language is automatic memory manage-
ment. The Java-VM has to provide a Garbage-Collection mechanism that
reclaims dynamically allocated memory.

Prior to this thesis the TakaTuka Java-VM supported the execution of
nearly all instructions of the hardware independent Java bytecode produced
by a standard Java compiler. It also supported the Java multithreading facil-
ities. However there was no automatic memory management implemented,
which made development of realistic software for TakaTuka impossible.

Furthermore the memory needed by the Java program that the Java-VM
executes was managed using standard library functions like the well known
malloc. The implementation of the underlying memory management is
was specific to the corresponding library and architecture. A reasonable
Garbage-Collection implementation tightly integrates into memory manage-
ment and therefore it cannot be library dependent considering the numerous
target architectures that TakaTuka aims to support.

This thesis focuses on implementing a library independent memory man-
agement for the TakaTuka Java-VM including an automatic Garbage-Collector.
The goals are to provide a stable and controlled way of organizing the lim-
ited memory of typical sensor motes while trying to keep computational and
memory overhead small.

1.4 Related Work

There exists already a bachelor’s thesis on Garbage-Collection for sensor
motes and the TakaTuka project [14]. It was implemented mainly in Java
code using an interface of native methods to access the memory. Although
promising, this approach turned out to be to inefficient for a reasonable

1.5 Structure of the Thesis 3

use in the TakaTuka Java-VM. Also the Java-VM, and therefore the also
Garbage-Collection implementation did not support threading at the time.
The implementation discussed in this thesis is written in C and integrated
into the TakaTuka Java-VM.

There exists also another Java-VM that aims to support the same types
of architectures as TakaTuka [4]. At the time of writing it has Garbage-
Collection already implemented but only supports a subset of the Java lan-
guage.

1.5 Structure of the Thesis

The rest of the thesis is structured as follows: The second section gives an
overview of the general run-time memory usage of a Java-VM. The third
section will give a general overview over different Garbage-Collector types
and a justification of the choice made for TakaTuka. Details about the
implementation of dynamic memory management in TakaTuka are given in
the fourth and fifth section. Also the actual Garbage-Collection scheme is
described. The sixth section covers results of the comparison of different
memory management schemes in terms of computational effort and memory
overhead. Finally a summary and motivation for future work is given in the
seventh section.

2 The Java Programming Language

In this section technical aspects of the Java programming language and Java-
VMs are reviewed as far as relevant for memory management. For further
details on the Java language see [1].

2.1 The Benefits of the Java Programming Language

Java is a modern, object oriented, high level language. It is statically typed
and based on the C syntax but provides language support for classes and
class hierarchies. Java is designed to be highly portable, hardware indepen-
dent and safe. It therefore, in contrast to C++, prohibits direct memory
access and pointers and features automatic memory management and refer-
ence semantics for class instances.

Java programs are compiled into portable standardized bytecode instruc-
tions that are execute by a by a virtual machine (Java-VM). The function-
ality of a Java-VM is defined by the Java Virtual Machine Specification [12]
which ensures a unified behavior of Java programs across all platforms.

Because of its portability and simple design, Java is easy to learn and
widely used. It therefore is an ideal candidate for a high level language for
sensor motes as users new to the field are not forced to learn an unfamiliar
and error prone low level language like C or nesC. The development of

4 2 THE JAVA PROGRAMMING LANGUAGE

prototypes and test programs can be accelerated if the programmer can
focus on the algorithms and is not forced to deal with low level concepts as
manual memory management.

2.2 Java Bytecode and Java Virtual Machines

The Java compiler translates Java source code into so called class-files. The
format of the class-files is standardized in the Java Virtual Machine Speci-
fication and contains mainly:

• class definitions: type and name of instance variables, class hierarchy,
etc. . .

• method definitions: types of arguments and local variables, operand
stack size (see below), and a sequence of virtual machine instructions
called bytecode

A Java-VM is a program which reads class-files and executes the contained
Java program. The Java-VM essentially translates the semantics of the
bytecode instructions to the target architecture on which it is run. This
can be done by interpretation of the bytecode instructions at run-time or
compilation into native machine code or a combination of both.

The bytecode operates on values of numeric types (corresponding to
numeric types in the Java language; boolean, byte, short, int,
float, double) and of a special type called reference. The values
of type reference identify object instances and array instances which are
stored on the heap (see below). Furthermore the Java bytecode is stack
based. Instead of manipulating the content of registers as most machine
code instruction do, the Java bytecode instructions uses a so called operand
stack for its operations. A commented example is shown in Figure 1.

For the
invocation of each method such an operand stack is created. The values

that are obtained by method calls as the result of calculations are pushed
onto the operand stack of the currently executing method. They then can
be either stored in variables (static or local) or instance variables of class
instances and fields of arrays respectively. Also the arguments for method
calls and the operands of logical and arithmetic operations and control flow
instructions (i.e. conditional jumps) are taken from the operand stack.

As the types of return values of methods, the types of local variables
and of instance variables are known from the class-file, it’s possible to re-
construct the types of the values on the operand stack during execution of
the bytecode. It’s even possible to reconstruct the types of the values on
the operand stack at every instruction at compile time which is used for
bytecode verification (see [12] for details).

The size of the operand stack of a method has an upper bound which is
calculated at compile time and stored in the class-file.

2.3 Execution of a Java Program 5

/* simply adds 3 to its argument */
public static int add3(int i){

return i+3;
}
public static int m1(int a, int b){

int c = add3(a);
return c-b;

}

bytecode pseudo code op v
#start execution [3] [3,2,-]

iload 0 op.push(v[0]) [3] [3,2,-]
invocestatic #2 tmp = op.pop() [] [3,2,-]

tmp = add3(tmp) [] [3,2,-]
op.push(tmp) [6] [3,2,-]

istore 2 v[2] = op.pop() [] [3,2,6]
iload 2 op.push(v[2]) [6] [3,2,6]
iload 1 op.push(v[1]) [6,2] [3,2,-]
isub tmp1 = op.pop() [6] [3,2,-]

tmp2 = op.pop() [] [3,2,-]
op.push(tmp2 - tmp1)) [4] [3,2,-]

ireturn return_method(op.pop()) - -

Figure 1: Java bytecode of method m1 is shown in the table. The explaining
pseudo code uses an operand stack op and an array of local variables v.
The example values of operand stack and variables are for the method call
m1(3,2).

2.3 Execution of a Java Program

Execution of a Java program starts with the main-method from which
other methods are called. As in any procedural programming language, if
a method is called the execution of the current method is stopped until the
called method returns. This ensures that all code is executed sequentially:
the main method starts a single thread of execution or thread.

It’s possible to introduce additional threads in Java by creating an in-
stance of a subclass of the Thread class and calling it’s inherited start
method on the class instance. Then the thread becomes active and the
code specified in the run method of this class is run in parallel to the other
threads. The instance of the Thread class will be called thread object in
the following. It will be important in Section 2.4.2. If the run method of a
thread object returns the thread will become inactive.

6 2 THE JAVA PROGRAMMING LANGUAGE

2.3.1 Call Graph and Call Chain

Figure 2: Example of cyclic call graph

The structure of method calls in a thread is given by the call graph

Definition 2.1 (Call Grap).
A call graph is a directed graph

CG = (M,C)

with nodes
M ⊆ {compiled Java methods}

and edges
C = {(m1, m2)|m1, m2 ∈M ∧ m1 calls m2 }

An example of a call graph is given in Figure 2. A path in the call graph,
a sequence of method calls, is called a call chain:

Definition 2.2 (Call chain).
A call chain of a call graph CG = (M,C) is a finite sequence of methods

CC = (m1, . . . ,mn)

with
mn, mi ∈M and (mi, mi+1) ∈ C, 1 ≤ i < n

A call chain has a length defined as

length(CC) = n

2.4 Memory Usage in Java 7

Definition 2.3 (Recursive Thread).
A thread is recursive iff its call graph CG = (M, C) is cyclic, i.e. a call
chain CC = (m1, . . . ,mn) exists with

mi = mj and i 6= j, i, j ∈ {1, . . . , n}

The call graph of a thread that is not recursive is a tree. The root of this
tree is either the main method or the run method of the thread. Special
call chains can be defined for this call graph:

Definition 2.4 (Maximal Call Chain). A maximal call chain CCmax =
(m1, . . . ,mn) of a acyclic call graph CG is a call chain for which m1 is the
root of the tree and mn is a leaf:

¬∃mi ∈M : (mi, m1) ∈ C and ¬∃mi ∈M : (mn, mi)

2.4 Memory Usage in Java

A Java-VM has to provide and manage the memory needed by the Java
program it is executing. This task can be divided in management of stack
memory and heap memory.

2.4.1 Stack Memory

For each methods that is called data like local variables and the current
state of the operand stack has to be stored until the method returns. For
this a data record called stack frame is used:

Definition 2.5 (Stack Frame). A stack frame is a data record associated
with a method. It contains:

• method-id: a value identifying the method associated with the frame,

• program-counter: a pointer to the next instruction to be executed in
the bytecode of the associated method,

• local-variable-buffer: a fixed sized array holding the local variables of
the associated method,

• operand-stack-buffer: a fixed sized array designated to hold the values
of the operand stack. The operand stack itself grows and shrinks inside
this array. The operand-stack-buffer is sized to contain the maximum
size of the operand stack. This size can be determined at compile time
(see above)

• frame-pointer: an indicator to the current top value of the operand
stack

8 2 THE JAVA PROGRAMMING LANGUAGE

Definition 2.6 (Method Stack). A method stack is a dynamically sized
data-structure which implements a stack of (differently sized) stack frames.

A method stack represents the state of a single thread. When a method
is called (through a bytecode instruction) a new stack frame for the called
method is created and pushed on top of the method stack. When the meth-
ods returns the stack frame is popped from the method stack.

2.4.2 Heap Memory

One of the main differences of Java compared to low-level languages like
C/C++ is that the programmer doesn’t have direct access to the physi-
cal memory used by the Java program. Instead dynamic memory is ac-
cessed through references (values of type reference) which identify class
instances and array instances. In the following all instances (of a class or
an array) will be referred to as object. Unlike pointers (e.g. in the C pro-
gramming language [10]) references don’t (necessarily) indicate an address
in memory. There is no equivalent of pointer arithmetic in Java and no
possibility to manipulate the memory associated with the reference value
other than through access of instance variables of the corresponding class
instance or of array fields. Therefore it’s not possible for the programmer
to move, delete or overwrite arbitrary memory regions.

New references are created by the new instruction. This instruction
specifies either a class to be instantiated or a type for an array and its
length. The Java-VM is responsible to provide the memory needed by the
corresponding object and to associate a reference with it. In the case of class
instances the size of the region is known at compile time (defined by the class
definition). The length of array instances can be run-time dependent. The
memory region where the memory of all instances is located is called the
heap.

Objects that were instantiated can only be accessed through their refer-
ence. At any time during the execution of the Java program, a special set
of objects can be defined.

Definition 2.7 (Root Set). The root set at a certain time during the exe-
cution of a Java program is the set of objects that can be referenced without
accessing other objects. An object o with reference r is part of the root set
iff it satisfies at least one of the following conditions:

• any static variable of type reference has the value r,

• any instance variable of type reference of a thread-object that is
active has the value r,

• r is the value of at least one local variable in any of the stack frames
of the method stacks

9

• r is at leads once on the operand stack of any of the stack frames of
the method stacks

Objects that are not in the root set can only be accessed through refer-
ences that are stored in other objects. The root set is the “starting point”
to access these objects.

Definition 2.8 (Referencing Objects). An object o1 references an object
o2 iff o1 has an instance variable or array field of type reference that has
the value of the reference of o2.

Definition 2.9 (Reachable Objects). An object o is reachable iff

• it is part of the root set

• or it is referenced by a reachable object.

It is obvious from the above definition that the data contained by un-
reachable objects can never be accessed by the program in the future. The
Java-VM can now re-associate the memory region to a different object and
also can reuse the reference.

The reachable objects form a reference graph.

Definition 2.10 (Reference Graph). A reference graph is a directed graph

RG = (Or, R)

with nodes

Or := {reachable objects}

and edges

R := {(o1, o2)|o1, o2 ∈ Or ∧ o1 refers o2}

3 Garbage-Collection for a Java-VM for Sensor
Motes

In the present context Garbage-Collection means that the Java-VM has to
identify the memory occupied unreachable objects can be identified and freed
(meaning returning it to a state where it can be reassigned to other objects).
The Java language doesn’t provide the possibility to free objects manually so
a Java-VM needs to provide automatic Garbage-Collection. The part of the
Java-VM which is responsible for this task is called the Garbage-Collector.

103 GARBAGE-COLLECTION FOR A JAVA-VM FOR SENSOR MOTES

3.1 Constraints for the Garbage-Collector

There exist different approaches for Garbage-Collection (see [9] for an overview).
When implementing a Garbage-Collector for a Java-VM for sensor motes one
should consider certain constraints.

• Typically Garbage-Collection techniques introduce a memory and run-
time overhead to the memory management. This gets important when
dealing with motes that have very little memory and computational
power. This overhead should be kept as low as possible.

• The programs run by individual sensor motes are not usually critical
applications, as sensor motes are designed to be placed in an non con-
trolled environment and therefore are expendable. Enforcing real time
constraints on the Garbage-Collector therefore could be unnecessary.

• The typical run-time behavior of a sensor mote consists of rather long
periods of inactivity interrupted by shorter periods, when an event
triggered a sensor, where information has to be processed and data
transmitted. The active periods should be interrupted as little as
possible.

• The properties of the Java language and the typical Java programming
style imply a heavy use on temporary objects. For example the string
literal in Java is implicitly an instance of class String and therefore
placed on the heap. It is also a common practice for Java programmers
to create iterators which are small objects only used for the execution
of a loop and never used again afterwards. It would be advantageous if
the Garbage-Collector could detect and free those temporary objects
efficiently.

3.2 The Mark-Sweep Garbage-Collector

The Garbage-Collector approach chosen as the base of Garbage-Collection
for TakaTuka is the so called mark-sweep Garbage-Collector [13]. First the
basic functionality of this approach will be briefly described. The actual
implementation is described in more detail in Section 4.5. Reasons why
the two other classical approaches (reference counting, copying Garbage-
Collector were not chosen are given afterwards.

The basic algorithm is given in Algorithm 1. In a first phase (called the
mark-phase), all reachable objects are identified. This is done analogous to
Definition 2.9 by marking all objects in the root set. During the marking
of an objects all objects refered by it (through instance variables or array
fields of type reference) are also marked recursively. In the second phase
(sweep-phase) the heap is scanned for unmarked objects (by definition not
reachable) which can be freed.

3.2 The Mark-Sweep Garbage-Collector 11

Algorithm 1 Mark-sweep Garbage-Collector

1 #this function frees an object
2 function free(o)
3
4 #this function returns the object
5 #belonging to reference ’ref’
6 function lookup_object(ref)
7
8 function mark_object(o):
9 if o.marked == true:

10 return
11 o.marked = true
12 for f in instance variables resp. array fields of o:
13 if f is a reference:
14 mark_object(lookup_object(f))
15
16 function mark():
17 for v in static variables:
18 if v is a reference:
19 mark_object(lookup_object(v))
20 for t in active threads:
21 mark_object(t)
22 for v in method stack of t:
23 if v is a reference:
24 mark_object(lookup_object(v))
25
26 function sweep():
27 for o in all objects:
28 if o.marked == false:
29 free(o)
30
31 function gc():
32 mark()
33 sweep()

123 GARBAGE-COLLECTION FOR A JAVA-VM FOR SENSOR MOTES

In this form the Mark-Sweep Garbage-Collector follows a stop-the-world
approach: the interpretation of bytecode is stopped during the invocation
of the Garbage-Collector. In the mark-phase all reachable objects have
to be searched and in the sweep-phase all objects have to be checked for
marks. Therefore it could take a considerable amount of time until the
interpretation of bytecode can continue. This drawback could be acceptable
for typical sensor mote applications as the Garbage-Collector could be run
at the beginning of a phase of inactivity. However this would require that
there is enough memory available to complete a phase of activity. This is less
likely as Java programs tend to create many temporary objects which will
fill up the heap very quickly. In the next section an approach which could
act as support to the mark-sweep Garbage-Collector is discussed which can
deal with these objects.

3.3 Escape Analysis

To avoid that a stop-the-world Garbage-Collection would be triggered very
often because of temporary objects, it could be beneficial to try to identify
these objects at compile time by statically analyzing the bytecode.

1 class SomeClass{
2 private Vector warnings;
3
4 public int someMethod(int loopEnd, int check){
5 int result;
6 for(int i = 0; i < loopEnd; i++){
7 result += new Processor(i).process();
8 }
9 /* from here on, no processor object

10 * is used anymore. All objects created
11 * by the new-instuction in line 7 could be
12 * free’d */
13 if(result > check){
14 this.warnings.add(new Warning(result)

);
15 }
16 return result;
17 }
18 }

Figure 3: Escape analysis example

Consider the Java code in Figure 3. The objects created in the loop in
line 7 obviously are never used outside of this loop. Their references are even

3.4 Other Approaches for Garbage-Collection 13

never stored in a variable. These objects are local to the method and there
is no reason to keep their memory after the method returns. In contrast,
the reference of the object created in line 10 is stored inside a heap allocated
vector. This reference escapes the method and the lifetime of the object can
not be determined by examining the code.

The procedure of determining if references of objects escape the local
scope of a method or not is called escape analysis. It was first used to
support Garbage-Collection in functional languages and then also in object
oriented languages and Java [5]. In most approaches, the objects that do
not escape the method are stored in the method’s stack frame, e.g. [7] and
therefore automatically freed when the method returns.

Escape analysis as it is planed for TakaTuka does not take this approach
in order to keep the stack frame small. Reasons for this are given in Section
5. Instead objects are explicitly freed by a special bytecode instruction:
objects that do not escape a method can be grouped by the specific new-
instruction that is used for their creation. A new bytecode instruction, gc,
is introduced which instructs the Java-VM to free a group of objects. These
gc instructions are placed inside the bytecode by the class-file-loader (see
Section 1.2). In the example in Figure 3 such an instruction could be placed
after line 8.

Escape analysis functionality was not yet integrated into the TakaTuka
Java-VM during this thesis as the basic facilities for memory management
needed to be established first. However it is mainly orthogonal to the mark-
sweep Garbage-Collector and could compensate for its above mentioned
drawbacks when dealing with temporary objects.

3.4 Other Approaches for Garbage-Collection

There are other approaches and variants of Garbage-Collection than the
Mark-Sweep Garbage-Collector. They will be described very briefly here as
well as the reason they weren’t chosen for the Garbage-Collector implemen-
tation in this thesis. For more detailed description see [9].

3.4.1 Reference Counting

A very intuitive approach for Garbage-Collector is reference counting : Every
object gets a reference count initialized to 1 on creation. When the reference
of the object is copied then the reference count is incremented, when a refer-
ence of the object is overwritten then the reference count is decremented. If
the reference count reaches zero, the object is freed and the reference count
of objects refered by the freed object is decremented. In this way objects
are freed as soon as the last reference to them is overwritten. Although this
would be favorable to the many temporary objects created in a typical Java
program, this approach wasn’t chosen because of the following reasons:

14 4 HEAP MEMORY MANAGEMENT FOR TAKATUKA

• Cyclic data-structures (like e.g doubly linked lists) never get deleted
by reference counting because they always refer each other. As the
usage of such data structures cannot be excluded (especially given
Java’s extensive standard library) supporting techniques would have
to be introduced additionally to reference counting.

• Copying and assigning references has to be treated specially with this
approach and introduces a computational overhead to these opera-
tions. As the Java-VM has a stack based execution model these oper-
ations are very common (e.g. method calls and instance variable access
use each multiple assignments of references) and would probably slow
down the execution of the bytecode considerably (even if only little
dynamic memory is needed).

3.4.2 Copying Garbage-Collector

With this approach the heap is divided in two equally sized partitions. One
of them is the active partition, the other the free partition. Memory is
allocated consecutively in the active partition until Garbage-Collection is
invoked (e.g. when there is no more memory available). Then the reachable
memory is copied to the free partition. It can be marked similarly as for
the mark-sweep Garbage-Collector. After this the free partition becomes
the active one and vice-versa. The advantage of the Copying Garbage-
Collector is that heap memory does not get fragmented (see below Section
4.3) when freeing objects but for sensor motes its not affordable to constantly
waste half of the available memory. Also this approach implies movement
of objects in the heap which entails updating their references (see Section
4.3.3).

4 Heap Memory Management for TakaTuka

Management of dynamic memory was reimplemented from scratch for the
Java-VM of the TakaTuka project during this thesis. It was done in a archi-
tecture and library independent way to ensure reliable operation throughout
the various target architectures TakaTuka aims to support.

This section deals with the issues emerging with such a task and the
solution chosen for TakaTuka. First the memory layout used by the Java-VM
is described. Afterwards the notion of allocating and freeing memory blocks
of variable size is explained. Then measures to deal with fragmentation are
described and finally the implementation of the Garbage-Collector and its
integration into the allocation process is examined.

4.1 Memory available to the Java-VM 15

4.1 Memory available to the Java-VM

A C program uses three kinds of data memory. They typically all reside in
the same physical memory (e.g. SRAM in the case of some sensor motes):

• Global variables map to static memory. These variables are mapped
to memory by the C compiler at compile time and never change their
address

• The local variables used during the execution of Java-VM code are
mapped to C-stack memory. They exist only for the execution of
a function and their memory is assigned by the C compiler. If no
recursion is used for implementing the Java-VM, the amount of C-stack
memory used during execution can be calculated at compile time.

• The rest of the memory is called dynamic memory and is accessed
through local or global pointer variables which hold memory addresses.
The run-time-library typically provides facilities to register memory
for different data records so that they don’t overlap with each other,
the C-stack memory and static memory respectively. This is done for
instance by calling special library functions like the malloc function
of the C standard library.

The management of dynamic memory is dependent on the implementation
of the standard library for the target architecture. The TakaTuka Java-VM
therefore uses a large, fixed sized memory region in static memory for its
run-time dependent memory requirements instead. It manages the usage of
this region independently from any library functions and no further dynamic
memory is used. Therefore dynamic memory denotes this fixed region in the
following.

No recursion is used in the Java-VM implementation. The maximum
amount of C-stack memory can be estimated at compile time and the size
of the self-managed dynamic memory can be chosen accordingly.

4.2 Allocating and Freeing Memory Blocks

As mentioned above, the Java-VM has to manage the heap memory and
has to provide contiguous memory regions of arbitrary size requested by the
Java program. It has to transparently keep track of the requested regions.
The approach chosen is straight-forward and resembles typical malloc im-
plementations for micro-controllers, e.g. [3]. However it provides means
for iterating through the allocated blocks which is necessary for Garbage-
Collection.

16 4 HEAP MEMORY MANAGEMENT FOR TAKATUKA

4.2.1 Definitions

A continuous region of the dynamic memory is used to hold the objects (as
defined in Section 2.4.2) of a Java program. It is called heap memory. It
starts at the highest address of the dynamic memory and its end is stored
in the pointer heap-end.

Definition 4.1 (allocating objects). When a java program instantiates an
object (using the new-instruction) the Java-VM has to return a reference
which identifies a continuous memory region in heap memory. After this
process the object is allocated. The Java-VM also has to ensure that the
memory region of an allocated object is only modified through the corre-
sponding reference.

Definition 4.2 (freeing objects). Freeing an object denotes the process of
invalidating its reference and preparing its memory region to be reused by
the Java-VM. Typically an object is freed by the Garbage-Collector as the
programmer has no means to free an object explicitly in Java.

In order to identify the memory regions of allocated objects each region
is contained in a memory block.

Definition 4.3 (Memory Block). A memory block is a variable sized data
record in heap memory which consists of three parts:

• the block-header which stores an identification of the memory
block (called its id) and its size,

• the block-data which is the memory region used by the Java pro-
gram, and

• the block-footer which also stores the size of the memory block

It is to be noted that block-header and block-footer have fixed size
while block-data is of variable size, depending on the size of the object
requested by the Java program.

4.2.2 Example

The basic process of allocating and freeing blocks of memory of a certain
size is now described by following the example given in Figure 4.

1. In Figure 4A the state of the heap after initialization is shown. It is
empty so heap-end points to the start of heap memory.

2. In Figure 4B the Java program has requested several allocations of
objects (through the new-instruction). The heap memory is increased
to hold the allocated memory blocks by moving the heap-end pointer
upward. The allocated objects are identified by the id of their memory
block. This is also the reference returned to the Java program.

4.2 Allocating and Freeing Memory Blocks 17

Figure 4: Allocating and freeing memory blocks

3. In Figure 4C objects have been freed by automatic Garbage-Collection.
If a freed block is at the end of the heap memory, heap-end is moved
down and the heap memory shrinks. Otherwise the block is marked
as free by setting its id to a reserved value null. The block is then
inserted into the so-called free list. This is a doubly-linked list of free
memory blocks. The pointers which link the free list items are stored
inside block-data, previously used by the object, to avoid adding
to the overhead of a memory block.

4. For further allocations of objects (Figure 4D), the free list is searched
for a free block of the requested or greater size. Currently a first-fit
policy is implemented, where the list is searched linearly from the start
until a matching free block is found. If this free block is of greater size
the new block is allocated inside the free block and a new free list item
for rest of the memory is created.

4.2.3 Properties of Allocating and Freeing

The management of heap memory has several properties:

18 4 HEAP MEMORY MANAGEMENT FOR TAKATUKA

• If the address of a memory block is known it’s possible to jump to ad-
jacent blocks. The next block (further up in heap memory) can be ac-
cessed because the size of memory-data is stored in the block-header.
The previous block can be accessed because the size of the previous
block is stored directly beneath the block-header of the current
block.

• All memory blocks that are free have an id value of null and can
thus be identified as free but not differentiated from each other. They
only can be accessed by the free-list

• Allocation of objects generally implies searching the free list for match-
ing free blocks. This is a computational overhead to allocation. Freeing
an object on the other hand can be done quickly by inserting it into
the free list.

• When a new object is allocated inside of a free block which is larger,
another free block is created for the memory unused by the new object.
This however is only possible if the unused memory can contain a new
memory block and the pointers to insert it into the free list. If this is
not the case then the size of the allocated memory region is increased
and no free block is created.

• As can be seen in Figure 4D the heap memory becomes fragmented
with time. The next section will deal with this issue.

4.3 Fragmentation

4.3.1 Definition

Fragmentation denotes the amount of separation of a memory region into
used blocks and free blocks. With the previously introduced memory man-
agement strategy this separation occurs when inserting a memory block into
the free list (see Figure 4C-D). A measurement for fragmentation could be

Frag :=
number of free blocks

amount of free memory in free list

A high fragmentation therefore means that the memory available in the free
list is split up into many free blocks. This can be disadvantageous for further
allocations. A moderately large object could not fit in any of the free blocks,
even if the overall memory available in the free list would easily allow this.
The heap memory would have to be increased in this case. Assume for
instance that an object of size 6 is allocated in the situation of Figure 4D.
This would lead to the described scenario.

Fragmentation is an intrinsic property of dynamic memory management
of variable sized memory blocks. The allocation strategy described above

4.3 Fragmentation 19

increases fragmentation over time because the free blocks are split up during
allocation leading to the same amount of free blocks for less free memory
in the free list. As memory is very limited in sensor motes there should be
taken measures to avoid fragmentation and increasing of the heap memory.

4.3.2 Combining Adjacent Free Blocks

Figure 5: Combining adjacent block on allocation

When adjacent free blocks are combined fragmentation is reduced. This
is because the number of blocks decreases. The amount of available memory
in the free list even increases because every block-header except for one
can be omitted and made available for block-data. As it is possible to
identify adjacent blocks and if they are free (see Section 4.2.3) this can be
done during insertion of a memory block in the free list (i.e. while freeing
an object). See Figure 5 for an example. This strategy ensures that there
are never two adjacent free blocks.

20 4 HEAP MEMORY MANAGEMENT FOR TAKATUKA

4.3.3 Heap Compaction

The fragmentation of a memory region can be reversed by relocating the
used memory blocks so that there are no more free blocks between them.
This process is called heap compaction. See Figure 5 for an illustration of
this process and Appendix A for the corresponding algorithm.

However, if the references used to identify a memory block are dependent
on the location of the block (as it’s the case when using memory addresses
as references for instance) then all references to the block become invalid
when it’s moved. This would mean that all of those references have to
be updated according to the new location. This is a considerable effort
because the instance variables of all reachable objects and all method stacks
have to be searched for references to a moved block. Without the use of
special data structures which could provide efficient identification of invalid
references (by means of a balanced search tree for instance), this procedure
has to repeated for every moved block. The use of those data structures
would require additional dynamic memory which would have to be taken
into account by the memory management.

4.4 Indirect References and Reference Table

The invalidation of reference at heap compaction can be avoided by using
indirect references for accessing objects. With this approach the references
of an object are independent from the position of its memory block. In the
implementation for TakaTuka a reference table is maintained which maps
the references to the corresponding addresses of their respective memory
blocks. The references are simply the index to the position of this address
in the table.

Figure 6 shows the difference between direct and indirect references when
blocks are moved. In case of direct references, many references become
invalid. They would have to be searched for and updated. If a reference table
is used than only one direct reference, the one contained in the reference
table, becomes invalid. The block-header as defined in Section 4.2.1
contains an id entry which is an indirect reference to the object itself.
Through this reference the procedure performing the move of the block can
update the single invalid direct reference in the reference table.

If a memory block is freed the unused reference table entry is inserted
into the reference table free list by changing its value to the index of the
next free table entry as shown in Figure 7. In contrast to the heap free list
a unused reference table entry can be found by just taking the first item out
of the free list as all entries are of equal size.

4.4 Indirect References and Reference Table 21

Figure 6: Direct and indirect references

4.4.1 Sizing of Reference Table

If the reference table is given a fixed size it limits the number of objects that
can be used by the Java program simultaneously.An object that does not fit
inside the table could not be refered. In other words the reference table has
to be big enough to contain the references of all reachable objects at any
time of the execution of the program. The maximum number of reachable
objects would have to be predicted to determine the minimum size of the
reference table. Also it is likely that the program uses less objects most of
the time. In this case the reference table would waste memory in addition
to the overhead it already introduces.

In order to counteract an over estimation of reference table size it is
possible to allow the reference table to grow if more objects are needed than
estimated. Therefore it has to reside in dynamic memory. It is initially
placed at a fixed distance of the heap memory (e.g. the other end of the
dynamic memory) and grows in opposite direction. It is to be noted, that
the table can only shrink if its last entry is freed. In the example in Figure
7, for instance, the table cannot be shrinked because the indirect references

22 4 HEAP MEMORY MANAGEMENT FOR TAKATUKA

Figure 7: Reference table free list

pointing to object 6 rely on finding its direct reference (i.e. its memory
address) at offset 6 in the table.

The reference table can also be moved if necessarily, as the references
are relative to the start of the table. This is needed if heap memory has
to share dynamic memory with other management processes, e.g. the stack
memory management, see Section 5.

4.5 Mark-Sweep Garbage-Collector for TakaTuka

As the basic facilities for allocating and freeing memory blocks are now pro-
vided a Garbage-Collector has to be integrated into the allocation process.
If the Java-VM detects that the Java Program runs out of memory the
Garbage-Collector has to be invoked.

In Section 4.1 it was explained that the Java-VM should avoid recursive
function calls. As the mark_object function introduced in Algorithm 1
is defined recursively, it has to be modified. One possibility is to explicitly
manage the C-stack memory used by the recursive procedure. Another is
to use a marking algorithm that uses a constant amount of space but has
a worse computational complexity. Both solutions will be described in the
following.

4.5.1 Depth-First Marking of Objects

The mark_object function in Algorithm 1 is performing a depth-first
search [11] through the current reference graph RG = (Or, R). This al-
gorithm runs asymptotically in time of

O(|Or|+ |R|)

and space of
O(length of longest simple path in RG)

The required space is used to track the state of the search. In an implemen-
tation resembling Algorithm 1 it is implicitly used in the C-stack memory
through the recursive function calls.

4.5 Mark-Sweep Garbage-Collector for TakaTuka 23

The worst case of space usage is when the longest simple path in RG
contains all objects in Or, i.e. the objects refer each other in a linked list as
illustrated in Figure 9.

If a depth-first search algorithm for marking objects is used, the Java-
VM has to deal with all possible reference graphs, including the worst case.
This means that for each allocated object there has to be additional memory
reserved to perform the marking procedure.

Each object in Java, besides holding the values of its instance variables
resp. array fields, stores also some meta-information ,identifying for instance
its class, used for look-up of virtual methods. It is stored in the so called
object header. This object header is increased to hold the mark bit and the
information necessarily to track the state of the search.

Figure 8: Depth first search for reachable objects

In Figure 8 an example of a search state is shown. The additional infor-
mation to track the search is inside the colored boxes. A red box indicates
that the object has been already marked, a green box means it hasn’t. Cur-
rently the procedure is checking the first variable of object 3. There remains
to check object 4 and its variables. The tracking information for each object
consists of three parts:

1. var: the current variable

2. super-class: the current super-class of the current variable

3. parent: the previous object which is referring the object

When the procedure is finished checking the variables of object 3 it will
return to its parent, object 1. There it will check the next variable, var 3
of subclass A. As this variable is a reference the procedure will descend

24 4 HEAP MEMORY MANAGEMENT FOR TAKATUKA

into object 4, mark it, and initialize the tracking information (subclass C,
var 1, parent 3). After object 4 has been processed the procedure returns
to object 1 and can terminate because object 1 is directly reachable from a
method stack.

An Algorithm describing this procedure of marking an object in more
detail is given in Appendix B

4.5.2 Memory Overhead and Optimization Possibilities of Depth-
First Marking

Figure 9: Worst case for depth first search

This above described procedure for marking objects introduces a consid-
erable memory overhead to each object. It is in fact reserving the memory
inside the objects for the worst case of a depth first search. This situation
however is not typical.

Figure 10: Pointer reversal

To reduce the memory overhead, it’s possible to omit the explicit storage
space for the parent object. This is a technique called pointer reversal [15]
and is illustrated in Figure 10. While the procedure descends into an object
through a variable of type reference, its possible to use this variable to
store the reference to the parent of the object from which is being descended.
The original value of the variable is restored when the procedure returns from
the object to which it was descending.

4.5 Mark-Sweep Garbage-Collector for TakaTuka 25

Figure 11: In-place marking principle

4.5.3 In-Place Marking of Objects

The memory overhead introduced by depth-first search can be avoided by
using an alternative marking algorithm which runs in constant space. It is
described in detail in Appendix C. Instead of doing a depth-first search to
find all the objects transitively referenced by root set objects, each “depth-
level” is checked separately by iterating through regions of the heap multiple
times.

The principle is shown in Figure 11: at the beginning all the objects of
the root set are marked as visited. During this process two pointers, start
and end are updated to contain all objects that are visited. Then the
procedure iterates through the region of heap memory defined by start
and end. As it encounters the previously marked objects of the root set
all the objects refered directly by them are now marked as visited. These
are the level 1 references in Figure 11. The level 2 or further references are
not followed, in contrast to depth-first search. Again the pointers start
and end are updated to contain all the new visited objects. The previously
visited objects are now marked as processed and are not considered further.

26 5 STACK MEMORY MANAGEMENT

The process continues by iterating through the updated region until no more
new objects are visited.

This algorithm only uses two kinds of marks in the objects header. No
further dynamic memory, like an additional reference, is required. However
it has a worse run-time complexity than the depth-first search as the heap,
i.e. also the unreachable objects, has to be iterated for every reachable
object in the worst case.

4.6 Integration of Garbage-Collector in Memory Manage-
ment

When invoking the Garbage-Collector it has to search all reachable objects
in the mark phase and then additionally iterate through all objects in the
heap to check weather they are marked. This is a considerable effort which
suggests to run the Garbage-Collector as little as possible. In the current im-
plementation the Garbage-Collector is invoked automatically when no more
memory is left for an allocation. As this could take quite some time where
the Java program cannot be executed it is possible to invoke the Garbage-
Collector through the library method Runtim.gc() from the program.
This should be used by the programmer before calling code which should
not be interrupted.

When Garbage-Collector finished freeing all unreachable objects the
heap is left fragmented (i.e. there are free blocks inside the heap). This could
lead to the situation that some new objects cannot be allocated because no
free block is large enough to hold them. Then the Garbage-Collector would
be invoked again even though there is free memory left inside heap memory.
In order to try to postpone the next Garbage-Collector invocation the heap
memory is compacted after freeing the unreachable objects as described in
Section 4.3.3.

5 Stack Memory Management

As already described in Section 2.4 the other type of dynamically used mem-
ory of Java programs are the stacks of variable sized stack frames for each
thread.

In a stack based instruction set like the Java bytecode instructions, stack
operations a very frequently used. They should be executed with low com-
putational overhead. Therefore the stack implementation should not split
up the stack frames and specifically their operand stack as this would slow
down those operations: popping a value from a separated operand stack for
instance has to include additional checks to determine the actual segment
of the opened stack which is currently used.

Method calls are also a very common operation in Java programs. Us-
ing numerous methods is considered good programming style. Therefore

5.1 Fixed Sized Stack Chunks 27

allocation should also be quick without much computational overhead.

Fast access and allocation of variable sized memory regions typically
comes with a waste of memory. Two alternatives for stack management
where implemented. The first uses linked fixed sized memory chunks that
form the stack for a thread. It introduces a certain waste of memory. The
second allocates chunks as special objects on the heap. They can have
variable size. This will reduce the memory waste. The allocation of new
chunks in this case however is only as fast as allocation of objects.

5.1 Fixed Sized Stack Chunks

Figure 12: Layout of stack and heap when separated

With this approach a separate memory region, called stack memory, is
used for the method stacks. This stack memory is placed at the opposite
side of dynamic memory as the heap memory and is growing in opposite
direction as illustrated in Figure 12A.

28 5 STACK MEMORY MANAGEMENT

5.1.1 Allocation of Stack Chunks

When a thread becomes active (i.e. its start-method gets called) a memory
region of fixed sized is assigned to the thread which should contain its stack.
It is called a stack chunk. If the stack for this thread exceeds the amount
of memory provided by the stack chunk then a new stack chunk has to be
placed inside stack memory and linked to the previous stack chunk. Thus
the stack of a thread is a linked list of stack chunks.

As the stack chunks are of equal size, they can be organized similarly
to the entries of the reference table (which also are of fixed size) in Section
4.4.1:

• a free list for unused stack chunks is maintained

• new stack chunks are either taken from the free list (note that there is
no need to search it as all chunks are of equal size) or stack memory
is increased and the new chunk is placed at its end.

• when a stack chunk is freed it’s either put into the free list or, if it’s
the top most chunks, stack memory is decreased.

This ensures rather fast allocation of stack chunks. Figure 12B shows a
possible situation for the stack memory. There are two threads and each of
their respective stacks occupies three stack chunks. Also there are two free
stack chunks in the free list.

5.1.2 Collision with Heap Memory

If stack memory has to be increased but would reach into the heap memory
then the Garbage-Collector is invoked. If after this there still isn’t enough
memory left to allocate the stack chunk, the Java-VM has to abort the
method invocation and as a consequence the Java program.

When using a reference table the situation is slightly more complex: If
stack memory has to be increased but would reach into the reference table
then an attempt is made to move the reference table away from the stack
memory in dynamic memory by the missing amount. If this is not possible
because heap memory would then collide with the reference table even after
Garbage-Collector invocation the method invocation is aborted.

As can be seen in Figure 12B the stack memory can be fragmented and
it occupies a bigger region in the dynamic memory than necessary. The
memory in the free list can always be used for stack chunks but not for
objects.

Obviously the above described methods are opposed to the demand of a
fast stack chunk allocation and should be considered a fail-safe mechanism.

5.1 Fixed Sized Stack Chunks 29

Figure 13: Push of stack frame inside a stack chunk

5.1.3 Push and Pop of Stack Frames

When a method is invoked during the execution of a thread than a memory
region has to be provided to contain its stack frame. If there is enough
space left in the stack chunk of the thread than the new frame is pushed on
top of the current frame. The current frame will not be changed before the
invoked method returns so the new frame can safely be placed on top of the
current operand stack (Figure 13). This avoids wasting the unused part of
the operand-stack-buffer. In the case that there is not enough space
left in the stack chunk to hold the next frame a new stack chunk is allocated
to hold the frame.

When a method returns and its stack frame is the only frame left in the
stack chunk then this chunk is freed. A possible return value is put on top
of the operand stack of the stack frame of the previous method (the one that
has called the returning method).

5.1.4 Drawbacks

The major drawback of this approach is the waste of memory that occurs
when a new stack frame doesn’t fit inside of a chunk. In Algorithm 2,
a procedure is described to calculate the memory wasted inside the stack
chunks. It takes the size of a stack chunk “size_chunk” and a call chain
“call_chain” as input. The maximum waste for a non recursive thread
can then be calculated, for the chunk size s and all maximal call chains

30 5 STACK MEMORY MANAGEMENT

{CC 1, . . . , CC m} as

wastemax = max i(waste(s, CCi))

The maximum waste of the whole program cannot be decided at compile
time as starting of new threads is run-time defendant.

Finding an optimal value for a given call graph is not trivial. One could
assume that a large chunk size would reduce waste as waste increases with
the number of chunks used to contain the whole call chain (see line 6-9
of Algorithm 2). However the waste that is added in line 13 is added for
every thread and could cancel the benefit of large chunks for programs with
numerous threads.

Algorithm 2 Calculating waste when using fixed sized stack chunks

1 function waste(size_chunk, call_chain):
2 waste = 0
3 chunk_count = 1
4 current_size = 0
5 for m in call_chain:
6 if current_size + size(m) > size_chunk:
7 #use a new chunk as method cannot fit current chunk
8 waste = waste + (chunk_size - current_size)
9 current_size = 0

10 else:
11 #use old chunk
12 current_size = waste + size(m)
13 waste = waste + (chunk_size - current_size)
14 return waste

5.2 Variable Sized Stack Chunks

In order to avoid the memory related drawbacks of fixed stack chunks an
alternative implementation of stack chunk allocation can be used. If the
chunks are allowed to have variable size, the chunk can be truncated to the
size that is currently occupied by stack frames. If a new chunk has to be
allocated only the waste of the unused operand stack would be introduced
for each chunk.

In Figure 14 an example is shown to illustrate the difference between
fixed and variable sized stack chunks. In both cases the same four stack
frames are on the stack of a thread. When using fixed sized chunks, the
gray parts of the stack chunks are wasted as they are part of the chunk and
cannot be used otherwise. The implementation using variable sized chunks

31

Figure 14: Fixed sized stack chunks compared to variable sized stack chunks

would truncate chunk 1 to avoid this waste. It is to be noted that also the
top chunk could be truncated if the need occurs.

As management of variable sized chunks is in principle the same as the
management of variable sized object the stack chunks are treated as special
objects and allocated on the heap. This however would make allocation
also as slow as allocating an object (searching the free list, interruption by
Garbage-Collector) which is potentially in conflict with the design goal of
having a fast method invocation.

6 Benchmarks and Results

The following section explains some test programs that were used to evaluate
the performance and properties of the different memory management and
Garbage-Collection approaches that were implemented during this thesis
and discusses the results. At the time of writing nearly no real Java programs
implementing typical sensor mote applications exist for TakaTuka. This is

32 6 BENCHMARKS AND RESULTS

due to stability issues of the TakaTuka Java-VM, also arising from unstable
memory management. This should change in the future as the foundation for
stable memory management and Garbage-Collection is now implemented.
The results given here should therefore be treated as preliminary. They
probably cannot show the suitability of one or the other approach for real
sensor mote applications.

First the to stack implementations, fixed size stack chunks and vari-
able sized stack chunks, are compared. Then the two Garbage-Collection
marking implementations, recursive and in-place marking, and the effect of
compaction is examined.

All tests are performed by Java programs under the TakaTuka Java-VM
either on a PC (Pentium 4, 3GHz, 1GB RAM running Linux) or a mica2
sensor mote. All speed related test where performed on the sensor mote as
advanced hardware features of modern PCs and operating systems would
distort the results.

For random number generation the pseudo random numbers from the
Random class of the CLDC library were used.

6.1 Stack Implementation

As described in Section 5 there are two alternative implementations for
managing the stack frames: Either fixed size stack chunks are allocated sep-
arately of the heap memory, abbreviated as fixed-chunk implementation in
the following, or the stack chunks are allocated on the heap as objects and
are truncated if there is potential memory waste (variable-chunk implemen-
tation).

Two types of tests were performed: A memory test performed on a PC
that measures the memory usage of the stack and a speed test performed
on a mica2 sensor mote.

6.1.1 Memory Usage

To get an impression of the memory usage of the stack management three
different Java programs were run on the PC as there the internal state
of the memory is easier accessible during the test. Because the memory
management does not rely on library implementation, results obtained on a
sensor mote should be comparable.

Two sizes of stack chunks were tested for each program and each stack
implementation. In the case of the variable-chunk variant this is the amount
allocated initially for each chunk, for the fixed-chunk variant this is the
size of every chunk. All programs use the depth-first Garbage-Collector
implementation. The specific sizes as well as the other memory related
parameters are given in the description of the programs below.

6.1 Stack Implementation 33

The test measures the amount of memory that the stack would at least
use for each method call or method return. Call and return of methods
were chosen because these are the situations where the stack changes. “At
least” means that for each method call/return the value is shown to which
the stack could be reduced if necessary, i.e. if all of the remaining memory is
needed by the program. The fixed-chunk variant cannot reduce its memory
usage but for the variable-chunk it would mean that the most current chunk
of each thread is truncated to the size of the stack frames it contains.

The programs used are

jvmTestCases: this is a Java program developed for testing the TakaTuka
Java-VM functionality during development on the PC. It contains most
instructions of the bytecode instruction set at least once. It features
relatively large methods (stack frames with sizes exceeding 110 Bytes)
and a lot of output. The program is single threaded.

The dynamic memory was set to 4096 Bytes. The stack sizes tested
were 168 Bytes and 320 Bytes.

neighbourDiscoveryPc: this program was derived from a the Java pro-
gram neighbourDiscovery which recognizes the surrounding sensor motes.
It the first realistic application for TakaTuka on a mote. It was modi-
fied for the PC so that the messages normally received over the radio
are now internally generated in regular intervals. There two threads
running, one “receiving” the messages and the processing them.

The dynamic memory was set to 2500 Bytes and the stack sizes tested
were 84 bytes and 168 Bytes.

Qs: this is an artificial test program that creates arrays and sorts them.
It does this with 3 threads running in parallel. Each creates an int
array of a length randomly chosen from 1 to 20 and fills it with numbers
from randomly chosen from 0 to 256. Then the array is sorted using
a recursive form of the quick-sort algorithm.

The dynamic memory was set to 2500 Bytes and the stack sizes tested
were 84 bytes and 168 Bytes.

Figure 15 shows the result of a test for two stack sizes with the Qs
program. The results of the other programs can be seen in Appendix D. To
summarize the behavior of the programs, Figure 16 shows bars-and-whiskers
plots of these curves for all programs and conditions. In this representation
the black bar denotes the median of the memory usage, the colored boxes
indicate the lower and upper quartile and the lines mark minimum and
maximum.

From these results it can be seen that the variable-chunk implementation
occupies less memory than the fixed-chunk implementation. The difference

34 6 BENCHMARKS AND RESULTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

si
ze

[B
yt

es
]

method calls/return

benchmarks_Qs chunk size 84 Bytes

fixed
variable

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

si
ze

[B
yt

es
]

method calls/return

benchmarks_Qs chunk size 168 Bytes

fixed
variable

Figure 15: Memory usage over method call/return of Qs

gets considerably stronger when stack chunk size is increased. This is not
surprising as big stack chunks reduce the memory waste in the lower stack
chunks of the stacks for both implementations but increase the waste of the
top stack chunks for the fixed size condition (see Section 5 and line 13 of
Algorithm 2). For the chunk size of 84 Bytes the difference is moderate at
least for program Qs.

6.1.2 Speed

A different set of programs were used to test the speed of the stack imple-
mentations. This is because jvmTestCases uses too much memory for the
sensor mote and neighbourDiscovery is not adequate for speed tests as it
contains arbitrary phases of inactivity. The following programs where used
instead:

QsMote: a variation of the Qs program from the previous test. It differs in
that the arrays are of length 1 to 10 and the test is repeated 30 times
with varying seeds for the random numbers for each repetition.

6.2 Garbage-Collector Implementation 35

 0

 200

 400

 600

 800

 1000

 1200

 1400

size: 168 size: 332

jvmTestCases

fixed
variable

 0

 200

 400

 600

 800

 1000

 1200

 1400

size: 84 size: 168

si
ze

[B
yt

es
]

Qs

fixed
variable

 0

 200

 400

 600

 800

 1000

 1200

 1400

size: 84 size: 168
si

ze
[B

yt
es

]

neighbourDiscoveryPc

fixed
variable

Figure 16: Bars-and-whiskers plots of stack memory usage

ChunkTest: this is another artificial program. It runs 3 threads which pro-
duce random numbers in the range of 0 to 16 which are then searched
in an array of size 17 with a recursively implemented binary search.
The main difference to QsMote is that no new objects are created
during the process.

The results are shown in Figure 17. The speed gain achieved by the
fixed-chunk implementation is very modest: only 7-10%. Probably the dis-
advantages of the variable-chunk approach, fragmentation of the heap and
therefore slow allocation and higher number of Garbage-Collection invoca-
tions, do not kick in running the simple programs used for the test.

6.2 Garbage-Collector Implementation

The second set of tests concern the performance of Garbage-Collector im-
plementation and the use of compaction. There are the depth-first imple-
mentation of the mark phase, denoted mark-df in the following, and the
in-place implementation (mark-in-place). In addition there is the choice to
use heap compaction with indirect references and a reference table or direct
references.

The test performed was performed on the sensor mote with the dynamic
memory size is set to 2500 Bytes. The variable-chunk stack implementation
is used with an initial chunk size of 84 Bytes.

The test program, GcTest, creates small objects of a randomized size

36 6 BENCHMARKS AND RESULTS

 0

 1000

 2000

 3000

 4000

 5000

 6000

QsMote

variable-chunk
fixed-chunk

 0

 1000

 2000

 3000

 4000

 5000

 6000

ChunkTest

tim
e[

m
s]

variable-chunk
fixed-chunk

Figure 17: Speed measurements for the stack implementations

between 10 and 50 Bytes in a loop. Ten of those objects are always kept
refered by an array in the root set. With a probability of 10% a newly
created object is put into the array replacing the object which is already
there. The test was performed with 500 and 2000 iterations and the number
of Garbage-Collector invocations as well as the run-time were measured.
The results are shown in Figure 18.

6.2.1 Results: Number of Garbage-Collections

In both tests (500 and 2000 iterations), the number of Garbage-Collections
is greater when using direct references without compaction. Obviously the
memory overhead introduced by the reference table does not outweigh the
benefit of a compacted heap memory. In the case of 2000 iterations the
difference is even more distinct which indicates an increase of fragmentation
over time when not compacting the heap.

When considering the different Garbage-Collector implementations the
results show that the memory overhead introduced by the depth-first im-
plementation clearly leads to more Garbage-Collector invocations. As the
objects in the test where relatively small, the overhead becomes more sig-
nificant for more iterations if fragmentation is involved.

37

 0
 5

 10
 15
 20
 25

mark-df mark-in-place

GcTest500 GC count

indirect
direct

 0
 20
 40
 60
 80

 100
 120
 140

mark-df mark-in-place

GcTest2000 GC count

indirect
direct

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

mark-df mark-in-place

GcTest500 GC time

indirect
direct

 0
 5000

 10000
 15000
 20000
 25000
 30000

mark-df mark-in-place

GcTest20000 GC time

indirect
direct

Figure 18: Results of the Garbage-Collector performance test

6.2.2 Results: Run-time

The run-time is not significantly affected by the choice of Garbage-Collector
or whether direct or indirect references are used or not. The fact that there
are only about 25 Garbage-Collector invocations and the program needs 6
seconds to terminate also indicates that the computational overhead of the
Garbage-Collector is not critical for the run-time efficiency of the TakaTuka
Java-VM. Probably the computational overhead of the memory management
plays the dominant role for this test program.

7 Conclusion and Future Work

The main achievement of this bachelor’s thesis is the implementation of
functioning memory management and Garbage-Collection facilities for the
TakaTuka Java-VM. From now on it is possible to develop realistic applica-
tions for sensor motes using object oriented programming style and design
patterns. Prior to this thesis the use of dynamic memory, i.e. objects,
in Java programs for TakaTuka had to be mostly avoided as the allocated
memory couldn’t be reclaimed.

The implementation exclusively uses C language constructs to access
memory, i.e. no library functions or assembler code, and therefore should
be portable to other sensor motes than the mica2.

The benchmark programs, that heavily use object allocation, could be

38 7 CONCLUSION AND FUTURE WORK

run on the mica2 mote using 2500 Bytes of dynamic memory. However
the performance results were not quite as expected and there is clearly the
need to extend and/or modify the existing facilities and to test them with
realistic WSN applications. Some propositions for future work are given in
the following.

7.1 Improving Efficiency of Heap Memory Management

The results of Section 6.2.2 propose that the critical processes in the TakaTuka
Java-VM aren’t the Garbage-Collector but the allocation of objects and
the execution of the bytecode. Before focusing on more advanced Garbage-
Collector implementations for the Java-VM, these performance issues should
be resolved.

A start for optimization could be the usage of a more elaborate type
of data structure to search for free blocks. This would accelerate object
allocation. An example would be a segregated free list [8] which allows direct
access to blocks of different size. Also the ordering of free blocks could be
varied.

7.2 Integration of Escape Analysis

The necessary extensions to the memory management to interpret the new
gc bytecode instruction are straight forward. Especially for sensor motes
the compile time identification of temporary objects could be very beneficial
as it introduces very little computational overhead and the stop-the-world
Garbage-Collection would only need to be run occasionally. Of course this
depends on the ability to identify enough temporary objects at compile
time which would have to be examined for typical sensor mote applications
written in Java.

7.3 Variation of Garbage-Collector Integration

For real sensor mote applications it is probably suboptimal to run the
Garbage-Collector only when the memory is exhausted. Its invocation should
consider if the mote is in a phase of activity. For instance the Garbage-
Collection could be triggered every time such a phase ends instead. Also
compaction must not necessarily be coupled with Garbage-Collection.

39

A Appendix: Compaction Algortihm

This is the pseudo code for the compaction algorithm implemented. It com-
pacts all used blocks after first_free_block.
#this function returns the next free block after memory_block
and null if there is no more free block
function next_free_block(memory_block):

#this function returns the next used block after memory_block
and null if there is no more used block
function next_free_block(memory_block):

this function moves all blocks from src_start to one block before src_end
to the position dest. It returns the next address after the moved blocks
function move(dest, src_start, src_end)

function compact(first_free_block):

move_start = next_used_block(first_free_block)
while move_start != null:

move_end = next_free_block(move_start)
first_free_block = move(first_free_block, move_start, move_end)
move_start = next_used_block(move_end)

40 B APPENDIX: DEPTH-FIRST MARKING ALGORITHM

B Appendix: Depth-First Marking Algorithm

This is the speudo code explaining the depth first marking algorithm. Each
objects has an additional search_info field which contains

• the current superclass that is searched for fields search_info.class

• the fields not not searched yet for the current superclass fields_left

• the refernce to the parent objects parent

Objects belonging to the root set have parent null

function has_next_field(o):
while o.search_info.fields_left == 0:

if o.search_info.class has a superclass:
o.search_info.class = superclass(o.search_info.class)
o.search_info.fields_left = field_count(o.search_info.class)

else:
#all classes have been searched.. no more fields left
return false

return true

function mark_object(ref):

while(true):
if ref == null:

return
o = lookup_object(ref)
if o is numeric array:

if o.marked == false:
o.marked = true

ref = o.search_info.parent
elif o is reference array:

#special treatment for refernce arrays:
#set each entry as parent of the previous entry
#the last entry gets ref as parent
#...

else:
while true:

if has_next_field(o):
if next field is a reference:

next_ref = next_field(o)
next_o = lookup_object(next_ref)
next_o.search_info.parent = ref
ref = next_ref

else:
continue

else:
ref = o.search_info.parent

41

C Appendix: In-Place Marking Algorithm

This is the marking algorithm iterating through the heap instead of doing a
depth first search. Each object has the additional fields marked and visited

#global variables indicating heap positions
start
end
objects_visited

function adjust(o):
if start > o:

start = o
elif end < 0:

end = o

function visit(o):
if o.processed == true or o.visited == true:

return
o.visited = true
objects_visited = true
adjust(o)

function mark():
for all objects o in the root set:

visit(o)

while objects_visited = true:
for o between start,end:

if o.visited = true:
for c in objects refered by o:

visit(c)
c.marked = true

42 D APPENDIX: INDIVIDUAL STACK SIZE RESULTS

D Appendix: Individual Stack Size Results

These are the stack size results on which the bars-and-whiskers plots are
based. A stack size of zero is a measurement artefact, stemming from slightly
different implementation of thread context switch in the variable-sized vari-
ant. They should be considered as outlayers and are not included in the
bars-and-whiskers plots.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

si
ze

[B
yt

es
]

method calls/return

benchmarks_Qs chunk size 84 Bytes

fixed
variable

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

si
ze

[B
yt

es
]

method calls/return

benchmarks_Qs chunk size 168 Bytes

fixed
variable

Figure 19: Qs

43

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450

si
ze

[B
yt

es
]

method calls/return

neighbourDiscoveryPc_Main chunk size 84 Bytes

fixed
variable

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450

si
ze

[B
yt

es
]

method calls/return

neighbourDiscoveryPc_Main chunk size 168 Bytes

fixed
variable

Figure 20: neighbourDiscoveryPc

44 D APPENDIX: INDIVIDUAL STACK SIZE RESULTS

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

si
ze

[B
yt

es
]

method calls/return

jvmTestCases_Main chunk size 168 Bytes

fixed
variable

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200 1400 1600 1800

si
ze

[B
yt

es
]

method calls/return

jvmTestCases_Main chunk size 320 Bytes

fixed
variable

Figure 21: jvmTestCases

REFERENCES 45

References

[1] Technical Advisor, Ken Arnold, Tim Lindholm, Frank Yellin, Frank
Yellin, The Java Team, Mary Campione, Kathy Walrath, Patrick Chan,
Rosanna Lee, Jonni Kanerva, James Gosling, James Gosling, James
Gosling, James Gosling, Bill Joy, Bill Joy, Bill Joy, Guy Steele, Guy
Steele, Gilad Bracha, and Gilad Bracha. The java language specification
- second edition, 2000.

[2] Faisal Aslam, Christian Schindelhauer, Gidon Ernst, Damian Spyra,
Jan Meyer, and Mohannad Zalloom. Introducing takatuka: a java vir-
tualmachine for motes. In SenSys ’08: Proceedings of the 6th ACM
conference on Embedded network sensor systems, pages 399–400, New
York, NY, USA, 2008. ACM.

[3] Avr-libc manual; memory areas and using malloc(). http://www.
nongnu.org/avr-libc/user-manual/malloc.html.

[4] N. Brouwers, P. Corke, and K. Langendoen. Darjeeling, a java compat-
ible virtual machine for microcontrollers. In ACM/IFIP/USENIX 9th
Int. Middleware Conference, Leuven, Belgium, December 2008.

[5] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreed-
har, and Sam Midkiff. Escape analysis for java. In OOPSLA ’99:
Proceedings of the 14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 1–19, New
York, NY, USA, 1999. ACM Press.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: A holistic approach to networked embedded sys-
tems. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation, pages 1–11, New
York, NY, USA, 2003. ACM.

[7] David Gay and Bjarne Steensgaard. Stack allocating objects in java
(extended abstract).

[8] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation
problem: Solved? In In International Symposium on Memory Manage-
ment, pages 26–36. ACM Press, 1997.

[9] Richard Jones and Rafael D. Lins. Garbage Collection : Algorithms
for Automatic Dynamic Memory Management. John Wiley & Sons,
September 1996.

[10] Brian W. Kernighan and Dennis M. Ritchie. The C programming lan-
guage / Brian W. Kernighan, Dennis M. Ritchie. Prentice-Hall, En-
glewood Cliffs, N.J. :, 1978.

http://www.nongnu.org/avr-libc/user-manual/malloc.html
http://www.nongnu.org/avr-libc/user-manual/malloc.html

46 REFERENCES

[11] Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting
and Searching (2nd Edition). Addison-Wesley Professional, April 1998.

[12] Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Spec-
ification (2nd Edition). Prentice Hall PTR, April 1999.

[13] John L. Mccarthy. Recursive functions of symbolic expressions and
their computation by machine, part i. Communications of the ACM,
3(4):184–195, 1960.

[14] Jan Meyer. Garbage collection for sensor motes. Bachelor’s thesis,
Albert-Ludwigs University of Freiburg, 2008.

[15] H. Schorr and W. M. Waite. An efficient machine-independent proce-
dure for garbage collection in various list structures. Commun. ACM,
10(8):501–506, 1967.

[16] Sun Microsystems, Inc. Connected limited device configuration (cldc);
jsr 139. http://java.sun.com/products/cldc/.

[17] Sun Microsystems, Inc. The java hotspot performance en-
gine architecture. http://java.sun.com/products/hotspot/
whitepaper.html.

[18] Crossbow Technology. Mica2 wirelessm measurement system. Daten-
blatt Document Part Number: 6020-0042-08 Rev A, Crossbow Tech-
nology.

http://java.sun.com/products/cldc/
http://java.sun.com/products/hotspot/whitepaper.html
http://java.sun.com/products/hotspot/whitepaper.html

LIST OF FIGURES 47

List of Figures

1 Java bytecode example . 5
2 Example of cyclic call graph 6
3 Escape analysis example . 12
4 Allocating and freeing memory blocks 17
5 Combining adjacent block on allocation 19
6 Direct and indirect references 21
7 Reference table free list . 22
8 Depth first search for reachable objects 23
9 Worst case for depth first search 24
10 Pointer reversal . 24
11 In-place marking principle . 25
12 Layout of stack and heap when separated 27
13 Push of stack frame inside a stack chunk 29
14 Fixed sized stack chunks compared to variable sized stack

chunks . 31
15 Memory usage over method call/return of Qs 34
16 Bars-and-whiskers plots of stack memory usage 35
17 Speed measurements for the stack implementations 36
18 Results of the Garbage-Collector performance test 37
19 Qs . 42
20 neighbourDiscoveryPc . 43
21 jvmTestCases . 44

	Introduction
	Background
	The TakaTuka Project and the TakaTuka Java-VM
	Motivation for this Thesis
	Related Work
	Structure of the Thesis

	The Java Programming Language
	The Benefits of the Java Programming Language
	Java Bytecode and Java Virtual Machines
	Execution of a Java Program
	Call Graph and Call Chain

	Memory Usage in Java
	Stack Memory
	Heap Memory

	Garbage-Collection for a Java-VM for Sensor Motes
	Constraints for the Garbage-Collector
	The Mark-Sweep Garbage-Collector
	Escape Analysis
	Other Approaches for Garbage-Collection
	Reference Counting
	Copying Garbage-Collector

	Heap Memory Management for TakaTuka
	Memory available to the Java-VM
	Allocating and Freeing Memory Blocks
	Definitions
	Example
	Properties of Allocating and Freeing

	Fragmentation
	Definition
	Combining Adjacent Free Blocks
	Heap Compaction

	Indirect References and Reference Table
	Sizing of Reference Table

	Mark-Sweep Garbage-Collector for TakaTuka
	Depth-First Marking of Objects
	Memory Overhead and Optimization Possibilities of Depth-First Marking
	In-Place Marking of Objects

	Integration of Garbage-Collector in Memory Management

	Stack Memory Management
	Fixed Sized Stack Chunks
	Allocation of Stack Chunks
	Collision with Heap Memory
	Push and Pop of Stack Frames
	Drawbacks

	Variable Sized Stack Chunks

	Benchmarks and Results
	Stack Implementation
	Memory Usage
	Speed

	Garbage-Collector Implementation
	Results: Number of Garbage-Collections
	Results: Run-time

	Conclusion and Future Work
	Improving Efficiency of Heap Memory Management
	Integration of Escape Analysis
	Variation of Garbage-Collector Integration

	Appendix: Compaction Algortihm
	Appendix: Depth-First Marking Algorithm
	Appendix: In-Place Marking Algorithm
	Appendix: Individual Stack Size Results

