
ALBERT-LUDWIGS-UNIVERSITÄT

FREIBURG

INSTITUT FÜR INFORMATIK

Department of Computer Networks and

Telematics

Master’s Thesis

Implementation of a Massively Parallel

Wireless Sensor Network

Atef Abdel-Rahman

Faisal Aslam

Prof. Dr. Schindelhauer

June 30, 2007

Acknowledgment

First, I would like to thank Professor Christian Schindelhauer for giving me the
opportunity to work on this interesting project and for the help and guidance
that he has extended to me during this work. Further acknowledgement go
to my supervisor Faisal Islam for helping me with my questions. In addition I
would like to thank all my colleagues in institute für Informatik at the university
Freiburg. Thanks to all the people who supported me while to finishing this
thesis.

I

Abstract

In this work wireless sensor networks consisting of a very large number of sensor
nodes are considered. Furthermore, it is assumed that the network is to be
deployed at a remote region and works for a long duration without any human
intervention. During the experiments carried out useful experimental (log) data
is collected. This log data has to be communicated to a central computer or base
station so that it could be analyzed and used by humans. The collecting data
during the experiment saves power and network bandwidth. It is desirable to
store data temporarily in the memory of the sensor nodes during the experiment
and collect it after the end of experiment or after a fixed time period. Our
objective is to show such an offline strategy to get the log data from the sensor
nodes perserves energy. This strategy requires little memory, computation and
human intervention. Furthermore, it is independent from the type, the number
of sensor nodes used as well as the kind of sensing data gathered. The logging
application has no dependency on data collected. It should be dynamic and
change the provided display depending upon data available. Since a sensor has
only small memory, memory reserved for logging. The logging application uses
priority based log overwriting when the amount of log data collected exceeds
memory reserved for data logging. The time complexity of the used strategy is
O(log(n)), where n is the number of fixed sized log blocks called entry in the
memory. A priority based linked list is used to store the log data. Each element
of this linked list contains a FIFO queue having log entries corresponding to
priority of linked list elements. A new log element is added at the end of the
corresponding FIFO queue with right priority. To dynamically displayed data,
the Extensible Markup Language (XML) and Extensible Stylesheet Language
(XSL) are used. With XML and XSL dynamic HTML is generated. The XML
format definded is independent from the log data collected. XSL makes sure
to display the data without consideration its size. In summary, the logging
application collects log data independent of the developed sensor hardware and
the type of experiments carried out using sensor memory and computational
resources efficiently.

II

Erklärung

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe,
keine anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle
Stellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen
wurden, als solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass
diese Abschlussarbeit nicht, auch nicht auszugsweise, bereits für eine andere
Prüfung angefertigt wurde.

Ort, Datum Unterschrift

III

Contents

1 Introduction 1

1.1 Tools Used in this Thesis . 1

1.2 Goal of this Thesis . 2

2 Related Work 3

2.1 Sensor Network Applications 3

2.2 Constraints and Challenges 4

2.2.1 Characteristic Requirements 5

2.2.2 Required Mechanisms 7

2.3 Hardware of Sensor Nodes 7

2.4 Sensor Network Scenarios . 10

2.5 Single-Hop versus Multi-Hop Networks 11

2.6 Mobility in Wireless Sensor Networks 12

2.7 Protocol Stack . 13

Physical Layer: . 14

Data Link Layer: . 15

Network Layer: . 15

Transport Layer: . 17

Application Layer: . 17

2.8 Medium Access Control (MAC) 18

2.8.1 Sensor Node’s Wakeup and Duty Cycle 21

2.9 Sensor-MAC(S-MAC) Protocol 22

2.10 Routing Protocols . 23

2.10.1 Characteristics of Routing in WSN 24

2.10.2 Sensor Protocol for Information
via Negotiation(SPIN) 25

IV

2.11 Time Synchronization . 26

2.11.1 Error Source in
Network Time Synchronization 27

2.11.2 Lightweight Time Synchronization Protocol (LTS) 28

Pair-Wise Synchronization 28

Multi-Hop Synchronization 31

3 Sensor Platform 32

3.1 Embedded Sensor Board (ESB) 32

3.2 Microcontroller Unit (MCU) 35

3.2.1 MSP430F149 Memory Map 36

3.2.2 Interrupts . 37

3.2.3 Watchdog Timer . 39

3.3 Embedded Chip Radio (ECR) 41

3.4 eGate/USB Platform . 42

4 Data Logging 43

4.1 Types of Logging . 43

4.1.1 Wired Logging . 45

4.1.2 Wireless Logging . 46

4.2 Publish/Subscribe Model . 47

4.2.1 Content-based Naming and Addressing 48

5 Displaying and Processing Log Data 49

5.1 How to Write a Command to the Sensor 51

5.2 Sending and Receiving Information in
a Simple Alarm Application 52

5.3 Getting Data from the Sensors
with Java Serialization . 55

5.4 XML Representation . 58

5.5 Creating Dynamic HTML . 60

5.6 Remote Log Display . 65

V

6 Memory Management
in the Application 66

6.1 Block Reservation . 66

6.2 FIFO Log Overwriting . 66

6.3 Priority Based Log Overwriting 68

6.3.1 Implementation of Priority Based Log Overwriting 70

Queue Based Implementation 70

6.4 Binary Tree and Linked list based implementation 76

6.4.1 Binary Search Trees 77

Search in Binary Search Trees 78

Insertion in Binary Search Trees 79

Deletion from Binary Search Trees 80

7 Conclusion 87

VI

List of Figures

2.1 Simple QoS Model. 6

2.2 Sensor Node Hardware. 8

2.3 Sink as Sensor Node. 11

2.4 Sink as PDA. 11

2.5 Sink as Gateway. 11

2.6 Multi-Hop Network with one Source and one Sink. 12

2.7 Multi-Hop Network with three Sources and one Sink. 12

2.8 Multi-Hop Network with one Source and three Sinks. 12

2.9 Multi-Hop Network with three Sources and three Sinks. 12

2.10 The Power Efficiency of the Routes. 16

2.11 Hidden-Terminal Problem. 18

2.12 Exposed-Terminal Problem. 19

2.13 RTS/CTS. 20

2.14 Periodic Wakeup and Sleep. 21

2.15 Two Groups in WSN with Deferent Synchronizer, Follower and
Border Sensor Nodes. 22

2.16 The Implosion Problem. 25

2.17 Sensor Node A starts its Transmation by Sending an Advertising
Message. 26

2.18 Sensor Nodes B, C, D answer to Sensor Node A by Sending the
Request Messages. 26

2.19 Sensor Node A sends the DATA Message after Receiving the REQ
Message. 26

2.20 Pair-Wise Synchronization. 30

3.1 ESB Platform. 32

3.2 JTAG. 34

VII

3.3 MSP430F149 Block Diagram. 35

3.4 Memory Map. 36

3.5 Interrupts. 37

3.6 ECR Platform. 41

3.7 eGate/USB Platform. 42

4.1 Online Data Logging. 44

4.2 Offline Data Logging. 45

4.3 Wired Logging. 46

4.4 Publish/Subscribe System. 48

5.1 Log Data from Sensor Node 4 50

5.2 Log Data from Sensor Node 16 50

5.3 Creating HTML. 61

5.4 Presenting XML Log Data in Table 62

5.5 Creating HTML from Log Data 63

6.1 Memory Block with n-2 Log Entries 67

6.2 Memory Block with N Log Entries 67

6.3 Memory Block with N+1 Log Entries 68

6.4 Memory Block with N Log Entries. 69

6.5 Memory Block after Overwriting wit log entry 4. 69

6.6 Memory Block in the Worst Case. 70

6.7 A Binary Tree and its Array Implementation. 72

6.8 Initial Heap before Insertion . 73

6.9 Finding Place e=6 . 73

6.10 Inserting e=6 . 73

6.11 Finding Place for e=2 . 74

6.12 Finding Place for e=2 . 74

6.13 Inserting e=2 . 74

6.14 Finding Place for e=1 . 74

6.15 Swapping Keys . 74

6.16 Inserting e=1 . 75

6.17 Heap before Deletion . 75

6.18 Deletion in the Heap . 76

VIII

6.19 First Swapping Keys . 76

6.20 Second Swapping Keys . 76

6.21 Final Heap . 76

6.22 Linked List Example . 77

6.23 Binary Tree Example . 78

6.24 Inserting Key 1 into the Binary Tree shown in figure 6.23. 80

6.25 Deleting Key 2 from the Binary Tree shown in figure 6.23. 82

6.26 Deleting Key 6 from the Binary Tree shown in figure 6.23. 82

6.27 Deleting the Root Key 4 from the Binary Tree shown in figure
6.23. 82

6.28 Using Linked Lists and Queues to store Log Data 83

6.29 Inserting new Log Data with Priority in the Structure shown in
Figure 6.28. 84

6.30 Inserting new Log Data in free Space in the Queue. 85

6.31 Using Linked Lists and Binary Search Trees to Store the Log Data. 86

IX

List of Tables

2.1 6 Possible Routes to Communicate with the Sink. 16

3.1 Features of ESB. 35

3.2 Interrupts and their Priorities . 39

3.3 Watchdog Timer Programming 40

6.1 Events and their Properties. 71

6.2 Operations and their Effects in a Priority Queue. 71

6.3 Inorder Tree Walk Algorithm. 78

6.4 Search Algorithm in Binary Trees 79

6.5 Insert Algorithm in Binary Trees 79

6.6 Delete Algorithm in Binary Trees 81

6.7 Successor Algorithm in Binary Trees 81

X

Chapter 1

Introduction

Wireless sensor networks(WSNs) have become the most recent exciting and
pervasive technology in telecommunications. Rapid improvement and recent
advances in wireless communications, digital electronic technologies like ASIC
design, micro-electro-mechanical system(MEMS) and mobile computing enabled
sensor nodes to be deployed with the target to access information and measure-
ments of physical phenomena anywhere and anytime. WSNs are capable to
revolutionize many areas of our information technology and by this— even our
information society. Joining sensors together into wireless sensor networks opens
up the door for new branches of research and applications. In general a sensor
is a device that responds to a physical stimulus, such as heat, light or pressure.
It generates a signal that can be measured or interpreted. A WSN is defined as
a network, which consists of individual nodes that are able to interact with the
environment by sensing or controlling physical parameters. These nodes have
to collaborate to fulfill their task using wireless communication to enable this
collaboration. Wired networks need to be maintained, which is accompained by
higher costs of ownership. Wiring prevents entities from being mobile and is not
suitable for a range of environmental, health, home, commercial and military
applications. WSNs suffer from some limitations such as energy consumption,
its optimization, the accuracy of the delivered measured data, size and cost of a
node as well as the capacity of its onboard energy supply. Many applications do
not suffer from these limitations and will become an integral part of our lives.

1.1 Tools Used in this Thesis

The tools used in this work are as follows:

• Hardware:
The ScatterWeb sensor nodes have been developed by the computer sys-

1

CHAPTER 1. INTRODUCTION 2

tem and telematics group at Freie Universität Berlin(FU-Berlin) [23].
Chapter 3 shows the components of this sensor nodes in details.

• Software:
The ScatterWeb software of sensor nodes allows to initiate, track and
schedule experiments. It allows the reprogramming of the sensor nodes
and reading of sensor data which is generated during the experiment.

• Java Technology

• XML Technology

The software of sensor nodes is separated into two parts: firmware and applica-
tion [25] [26].

• The Firmware provides abstract functions to interface and use the hard-
ware. It contains the main execution loop, interrupts and provides some
OS-like concepts. The programm System.c contains main function and the
main OS loop. It contains some very fundamental functions which interact
with hardware. Data.c consists mostly of the functions that constitute the
sensors architecture. It allows building components that efficiently man-
age data from multiple data sources. Time.c represents an instant in time,
typically expressed as a date and a time of day. It contains methods to
read, write and convert current time. Net.c implements a network func-
tions which allows to develop applications using network resources. In
String.c the usual text manipulation functions can be found.

• Application is built on top of the firmware. Function in Process.c al-
lows to initialize and start the application. Event.c contains event related
function to different sensors in a sensor node. For example: vibration,
movement, button-press, temperature and battery usage. These functions
are used to decide what should be done with the events: e.g.: broadcast,
log or print.

1.2 Goal of this Thesis

The goal of this work is to develop a system to gather log data from the sensor
nodes, process and represent it. First, the system should save file for log data.
The log file contains sensor’s ID, time, date, name. Second, the system should
allows to overwrite older information with new information. Third, the system
allows to attach priorities to the log data. Fourth, information is collected after
the experiment and saved in well-defined XML foramt. Finally, the system
enable to generate dynamically HTML from XML.

Chapter 2

Related Work

2.1 Sensor Network Applications

Application areas of WSN according to [2], [22] and [43] are:

• Disaster relief applications (e.g. forest fire monitioring),

• environmental monitoring (e.g.: high temperature, wind or waterlevel),

• machine surveillance and preventive maintenance (e.g.: to detect vibration
patterns indicating need for maintenance),

• precision agriculture (e.g.: for percise irrigation and fertilizing),

• intelligent building (e.g. buildings consuming less energy),

• telematics (e.g. embedded sensors in the streets to gather information
about traffic conditions),

• medicine and health care (e.g. for integrated patient monitoring),

• military defense network (e.g. WSNs can be used for detection of biologi-
cal, nuclear or chemical attacks or to track a passing vehicle in a region.),

• safety (e.g. for workers and engineers working in secure area),

• inventory and logistics management (e.g. attaching a sensor node to items
in warehouses to view the exact number and location of the items),

• process control (e.g. controlling product conditions) and

• civilian (e.g. highway traffic monitoring).

3

CHAPTER 2. RELATED WORK 4

Many of the listed applications above need to distinguish between:

• Source: A sensor node that collects the data.

• Sink: A sensor node, where the data and the information is received.

• Intermediate node: A sensor node, which adds additional data process-
ing or simply forwards the data.

The interaction between these types of sensor nodes has to fulfill some purpose
such as:

• Event detection: A sensor node, which is deployed as a source should
report to the sink when required data is detected.

• Periodic measurements: A sensor nodes can be tasked to report mea-
sured values periodically in a defined interval.

• Function approximation and edge detection: Physical value like
temperature can be mapped to a region, where every region has a different
temperature. These values within WSN can be approximated according
to the different regions.

• Tracking: When the source of the event is mobile, a WSN can be used to
get information like temperature or velocity and report the event source,
location or behavior.

2.2 Constraints and Challenges

A sensor is a device that measures or detects a real-world condition, such as
vibration, heat or light and converts its measurements from an analog to a
digital representation. It can be connected by a wire to a power supply or
it has to rely on its on-board batteries. A sensor node is defined as a basic
unit in a sensor network, with on-board sensors, processor, memory, wireless
modem, and power supply. When it has one sensor on board, it is often simply
referred to as sensor, but when it has more than one sensor on board, it is
referred to as a sensor node [15]. A sensor network consists of a large number of
cooperating small-scale sensor nodes, which are densely deployed either inside
their environment or very close to it. Information gathered by a sensor network
describes measurements of physical parameters like temperature, humidity and
vibration. The most important constraints on sensor nodes are the finite on-
board battery power and its limited bandwidth for communication. Each system
has its special characteristics and required mechanisms. The major challenges
for WSNs are the realization of such characteristics and mechanisms.

CHAPTER 2. RELATED WORK 5

2.2.1 Characteristic Requirements

The following characteristics are typical for many applications [19][22][43][59].

• Type of service: The WSN is amenable to support a lot of various
applications and there is no single set of requirements that can obviously
classify all WSNs. A WSN should offer the user meaningful information
about the object of interest and therefor the type of the service handeled
by a WSN is dependent on the supported application.

• Fault tolerance: Since the nodes may be damaged or blocked due to the
lack of power, the failure of sensor nodes should not influence the whole
task of a WSN. Fault tolerance is the ability to validate sensor networks
functionalities without any interruption due to sensor node failures. Re-
ferring to [43], the fault tolerance of a sensor node according to [19] is
defined using the Poisson distribution to get the probability of not having
a failure within the time interval (0; t):

Rk(t) = e−λkt

where λk is the failure rate of sensor node k and t is the time period.

• Scalability: Scalability is refered to as the skill to hold required perfor-
mance regardless of the size of the network. Depending on the application,
the number of sensor nodes in a WSN may be hundreds or thousands. The
density can range from a few nodes to hundred nodes in a region, which
can be less than 10m in diameter. Referring to [43], the density can be
calculated according to [52] as

µ(R) = (nπR2)/A

where µ(R) is the number of nodes within the transmission radius of each
node in region A, n is the number of scattered sensor nodes in region A
and R is the radio transmission range.

• Quality of service(QoS): In the application communities, QoS usually
refers to the quality as perceived by the user or application while in the
networking community, QoS is accepted as a measure of the service quality
that the network offers to the applications or to the user [11]. Figure 2.1
shows the interaction between the WSN and the application. The level of
QoS may be definied by a set of elements such as: delay, bandwidth and
packet loss.

• Wide range of densities: The node density can be defined as the num-
ber of nodes in a unit region. The node density depends on the application
in which the sensor nodes are deployed.

CHAPTER 2. RELATED WORK 6

Figure 2.1: Simple QoS Model.

• Lifetime: A critical aspect of applications with wireless sensor networks
is the lifetime of the network. Battery-powered sensors are usable as long
as they can communicate captured data to a processing node. Sensing
and communication consumes energy. A good power management and
scheduling can effectively extend operational time [50]. To reduce the
energy consumption and improve the lifetime of a WSN there are various
kinds of methods, which have been developed. Mostly these methods can
be categorized into:

– Scheduling operations, to allow a node to enter low energy sleep
states.

– Choosing routes that consume the lowest amount of energy.

– Selective use of wireless nodes based on their energy status.

– Reducing the amount of data.

• Programmability: The nodes should process information and also be
able to react flexible on changes in their given tasks. Therefor the nodes
should be programmable to serve the desired application.

• Maintainability: The changes in the environment and in the network
require a flexible solution that can adapt itself and maintain the services
of a WSN.

• Production costs: The cost of a single node is critical to justify the
overall cost of the networks. If the cost of the network is more expensive
than deploying traditional sensors, the sensor network is not cost-justified.

CHAPTER 2. RELATED WORK 7

2.2.2 Required Mechanisms

In order to realize the characteristic requirements of an application new mech-
anisms for communication in the network, architectures and protocol concepts
have to be defined. Typical mechanisms for WSN are:

• Multi-Hop wireless communication avoids long distance limitation in
the direct communication between a source and a sink, other sensor node
can be used. The intermediate nodes are used as relays and can reduce
the total power required.

• Energy-efficient operation is a key mechanism to support a long life-
time of the network. This can be achieved for example by energy-efficient
data transportation between two nodes or by energy-efficient determina-
tion of requested information.

• Auto-configuration WSN should be able to configure some of its oper-
ational parameters autonomously, independent of external configuration.
For example, nodes have to determine their geographical positions only
using other nodes in the WSN.

• Collaboration and in-network processing The sensor nodes have to
interact in order to decide, whether an event has happened or to complete
the information processing.

• Data-centric: In traditional communication networks, the data are trans-
fered between two specific devices and each device is equiped with one or
more network address. This approach is named address-centric. It is not
suitable for a WSN. In a WSN the answer to a request from an application
and the value of the sensor nodes are dominant not the addresses of the
sensor nodes that are incorporated to fulfill this task. This approach is
called data-centric.

• Locality: The need to estimate the position (the spatial coordinates of
nodes) is important due to the limited resources of a sensor node. Applica-
tions in WSNs (e.g. disaster relief application) might require information
about its neighbors to achieve the whole task.

2.3 Hardware of Sensor Nodes

A WSN is a deployment of sensor nodes. There are many factors according to
the application, which should be considered in the design of the hardware.

• Low-cost,

• small in size,

CHAPTER 2. RELATED WORK 8

Figure 2.2: Sensor Node Hardware.

• low power consumption,

• communication and computation facilities and

• size of memory.

The trade-off between these factors is an important prerequirement in the im-
plementation and developement of a WSN [29][41]. The five basic components
of sensor node are shown in figure 2.2 [22]. Each component from this figure is
explained in more details below.

1. Microcontroller: A microcontroller is highly integrated chip that con-
tains all components comprising a controller. This includes a CPU, RAM,
some form of ROM, I/O ports and timers. Unlike general-purpose com-
puters, which also include all of these components, a microcontroller is
designed for a very specific task – to control a particular system. As a re-
sult, the parts can be simplified and reduced, which cuts down production
costs. Microcontrollers are sometimes called embedded microcontrollers,
which just means that they are part of an embedded system. They col-
lect data from the sensors, enable to process the data, decide when and
where to send the data, receive data from other sensor nodes and execute
programs [22][34].

2. Memory: Memory is where data and program code are stored. There
are various types of memory:

CHAPTER 2. RELATED WORK 9

• Random access memory(RAM): It is usually used to store im-
mediate sensor readings from this and other sensor nodes. It loses
its content when it loses power. RAM is read and write memory
and stores data that continually changes during microcontroller op-
erations. Random access means that each location can be accessed
in the same amount of time, independent of its address and without
a physical movement of the storage medium or a physical reading
head. The most types of RAM are volatile, which mean they lose
their contents when power is lost.

• Read only memory(ROM): It is used for permanent program
information that can never be erased. The semiconductor manufac-
turer fabricates the memory with the data, which can not be altered
later.

• Erasable Programmable Read-Only Memory(EPROM):
It don not lose data when it loses the power. In other words, it is
non-volatile, but program can not write data to it. However, it is
possible to put data on it by using a special programming procedure.
One can erase it by exposing it to ultraviolet(UV) light for a period
of time, then it can be reprogrammed. The UV light has usually a
wavelength of 235nm.
• Electrically Erasable Programmable Read-Only Memory

(EEPROM):
It is like EPROM, but has the adventage that it can be erased elec-
trically instead of using UV light.
• Flash memory: It is like EEPROM, but it is possible to change a

sector of multiple bytes at a time. Programing can be done a bit at
time, but erasing is done in a large blocks-flash erase process, from
which memory gets its name [35]. Thus individual bits can be read
randomly, but writing must be done in a block.

3. Sensors: A sensor is a device that detects and converts a natural physical
quantity into output that a human can interpret [34]. One classification
of sensor is into:

• Passive, omnidirectional sensors: They can measure a physi-
cal quantity at the point of the sensor node without actually ma-
nipulating the environment. Typical examples for those sensors are
thermometer, light, vibration, microphones.
• Passive, narrow-beam sensors: They have a well-defined notion

of direction of measurement. Examples of this type are cameras.
• Active sensors: They probe the environment, for example radar.

4. Communication device: It is used to exchange data between individ-
ual nodes. Usual options for transmission medium involve radio frequen-
cies(RF), optical communication and ultrasound. The RF-based commu-
nication is mostly used. It provides long range high bandwidth data at

CHAPTER 2. RELATED WORK 10

acceptable error rates. Required energy is reasonable and further a line of
sight between transmitter and receiver is not neccessary. A transceiver is
a device that combines transmitter and a receiver. The most important
tasks of transceivers are:

• Offering the approperiate sevices to MAC layer.

• Providing several channels for MAC protocol.

• Switching to deferent states like active, sleeping or idle to support
energy efficiency.

• Matching the application requirements and restrictions.

• Controling the transmission power.

• Allowing various coding scheme to be selected.

The transceiver can distinguish between four states:

(a) Transmit state (the transmit part of transceiver is active).

(b) Receive state (the receive part of transceiver is active).

(c) Idle state (the transceiver is ready to receive but it is not currently
receiving anything).

(d) Sleep state (a significant parts of the transceiver are switched off).

5. Power supply: There are mainly two sources of power supply:

• Storing energy using batteries.

• Scavening energy from the environment with solar cells.

2.4 Sensor Network Scenarios

While the sources in a WSN are sensor nodes, the sinks can be a sensor node
or an entity outside the WSN as personal digital assistant (PDA) or a gateway
as illustrated in figure 2.3, figure 2.4 and figure 2.5.

CHAPTER 2. RELATED WORK 11

Figure 2.3: Sink as Sensor
Node. Figure 2.4: Sink as PDA.

Figure 2.5: Sink as Gateway.

2.5 Single-Hop versus Multi-Hop Networks

Single-Hop networks use a direct communication between the source and the
sink. Due to the limited distance using radio transmission, a simple direct
communication between the sources and the sinks is not always possible. Hence,
communication relays in Multihop networks. A hop represents one portion of
the path between source and its destination. In networks data passes from the
source to the sink through a number of intermediate devices like routers. Each
such device causes data to hop between one point-to-point network connection.

CHAPTER 2. RELATED WORK 12

Figure 2.6: Multi-Hop Network
with one Source and one Sink.

Figure 2.7: Multi-Hop Net-
work with three Sources and one
Sink.

Figure 2.8: Multi-Hop Net-
work with one Source and three
Sinks.

Figure 2.9: Multi-Hop Network
with three Sources and three
Sinks.

The main benefits of a Multihop networks are increased wireless coverage areas,
enhanced performance, reduced energy consumption and enabled automated re-
organization of access point distribution [22][62]. In Multi-Hop WSNs the sensor
nodes can act like relay nodes without need of intermediate devices. Commonly
WSN applications have multiple sources and sinks. Examples of various WSN
Multi-Hop networks are shown in the figures 2.6, 2.7, 2.8 and 2.9.

2.6 Mobility in Wireless Sensor Networks

Flexibility and ease of deployment of wireless sensor networks enable WSNs to
be used in various locations (e.g. Inventory, tracking, military). WSNs increase
their usefullness through the ability to support mobility. The mobility in WSNs
provides several new challenges in techniques, protocols and energy support.
The mobility in WSNs can be categorized in three types:

CHAPTER 2. RELATED WORK 13

• Node mobility: The wireless sensor node can change its position during
operation time. Specifically when the network is used to monitor a moving
object (e.g. a sensor node attached to cattle). Requirements in such
networks are auto configurablility and an acceptable energy consumption
to maintain a good level of functionality.

• Sink mobility: Here the sink is considered as an external part of the net-
work. Having a mobile sink in WSNs offers many adventages as [22][27][4]:

– Energy consumption is reduced and lifetime of the WSN is increased.
When a mobile sink moves near to a node, the data is transmitted
over fewer hops and the number of transmitted packets is reduced.

– WSNs with sink mobility can be better handeled due to the flexibility
of the sink’s location.

– A mobile sink enables to monitor an area through fewer sensor nodes
and reduces the cost of the network.

– Sensor nodes can decrease their data transmission range to the lowest
range required to reach the mobile infrastructure.

– A mobile sink can navigate through problematic regions where sensor
nodes can not operate or are defect.

– Decreasing the number of hops, lowers the probability of transmission
errors and collisions.

– Since, the data does not traverse multiple hops, sink mobility im-
proves WSNs security.

• Event mobility: In a typical application the source of the event is mobile
(e.g. in tracking applications). This type of WSN’s mobility needs a
sufficient number of sensor nodes. Sensor nodes that are currently not
used to detect any approprate event, can be sent to sleep state.

2.7 Protocol Stack

All sensor nodes in the WSN should have capabilities to collect and route data
to the sink or to another sensor node. The WSN protocol has to fulfill the
following management plans:

• The power management plan: To minimize power consumption.

• The mobility management plan: To detect and register the movement
of nodes. To determine the sensor node’s current neighbors and always
maintain a data route to the sink.

• The task management plan: To plan and schedule the sensing task for
a given region.

CHAPTER 2. RELATED WORK 14

Layers in a sensor network protocol stack are structured similar to an ISO
protocol stack [22][43]. The stack has the following layers:

• Physical layer,

• Data Link layer,

• Network layer,

• Transport layer and

• Application layer.

Physical Layer:

In WSN the layers of the protocol stack can be described further by their func-
tion. The physical layer underlies all other communication-related technologies
in WSNs and offers sevices, which are needed by the data link layer. The phys-
ical layer defines how to encode and modulate a single raw bit for transmission.
No packet headers or trailers are handled. The main functions of the physical
layer are:

• Bit by Bit transmission .

• Digital modulation(A digital data is mapped to one or a finite number of
waveforms of the same finite length).

• Line coding(A digital bit stream is transferred over an analog lowpass
channel using a discrete number of signal levels, by modulating a pulse
train).

• Signal processing and encryption.

• Start and stop of signaling in asynchronous serial communication.

• Bit synchronization.

• Offering an interface to the transmission medium.

The design of the physical layer should meet the requirements of WSNs. The
radio transition must be inexpensive and containable in a small device. Tech-
nologies discussed to be used in the physical layer of WSNs [37] are:

• Narrowband technologies.

• Spread spectrum technologies.

• Ultra-Wideband (UWB) technologies.

CHAPTER 2. RELATED WORK 15

Data Link Layer:

Data link is definied as connection from one location to another in order to
transmit and receive data. It has the resposibility to customize requests from
the network layer and issues service requests to the physical layer. The data
link layer provides functional and procedural means to multiplex data streams,
transfer data between network entities, detect and possibly correct errors that
may occur in the physical layer. To view the functions of the data link layer, it
may be divided into other subsystems [44]:

• The Media Access Control (MAC) subsystem decides when to transmit
and what channel to use.

• The error control subsystem encodes or decodes data based on a specific
error detection or correction code.

• The transmit data subsystem transmits data to the physical layer.

• The local address subsystem is responsible for assigning a locally unique
address to a node.

• The location subsystem determines or refines a nodes location. This com-
putation can be based on sensor node’s neighbors assumed location and
the distances between neighbors and itself .

• The process data subsystem processes the data from the physical layer.

• The neighbor list subsystem creates and maintains the neighbor list. The
neighbor list has the following information about every neighbor: location,
local address and link metric.

• The mobility subsystem supports mobile nodes.

• The link metric subsystem provides a metric for every link. The network
layer uses the metric to compute the probability of taking a path. The
subsystem also stores channel status (needed by MAC subsystem) and
Received Signal Strength (RSSI) measurements (needed by the location
subsystem).

• The power control subsystem specifies the transmission power level.

Network Layer:

The network layer responds to custom requests from the transport layer and
issues custom requests to the data link layer [43]. Where the data link layer is
responsible for node to node packet delivery, the network layer is responsible
for source to destination packet delivery. In other words, the Link layer handles
how two nodes talk to each other and the network layer is responsible to decide
which node to talk to. In the network layer of WSNs there are several factors to

CHAPTER 2. RELATED WORK 16

Figure 2.10: The Power Efficiency of the
Routes.

consider: Power efficiency, data-centric design and data aggregation. In figure
2.10, node S is the sink node and node T is the source node. The nodes A, B,
C, D, E, F, G and H are intermediate nodes. P refers to the energy efficiency
based on the available power and R refers to the energy efficient based on the
energy required to transmit a data packet through the related link. Table 2.1
shows 6 routes from the source to the sink with their energy efficiency based on
the available power and energy needed.

Sum of energy based on Sum of energy based on
available power energy required

Route 1 S-C-B-T 3 7
Route 2 S-C-B-A-T 4 8
Route 3 S-D-E-T 6 10
Route 4 S-F-G-T 5 10
Route 5 S-F-G-H-T 7 11
Route 6 S-C-T 1 9

Table 2.1: 6 Possible Routes to Communicate with the Sink.

CHAPTER 2. RELATED WORK 17

There are different approaches to select energy efficient routes:

1. Maximum available power route: The selected route is the one with
the maximum sum value of the available power to transmit data packets
from the source node to the sink node. Although in table 2.1, route 5 has
the maximum sum value 7 but it is not power efficient because route 4 is
included in it. After eliminating route 5 the prefered one is route 3.

2. Minimum energy route: The selected route is the one that needs min-
imum energy to transmit the data packets from the source node to the
sink node. In table 2.1 this is route 1.

3. Minimum hop route: The selected route is the one with the minimum
number of hops from the source node to the sink node. In table 2.1 this
is route 6.

Transport Layer:

The transport layer responds to custom requests from the application layer
and issues custom requests to the network layer. The transport layer gets its
importance when the system needs to communicate with the outside world. It
handles the segmentation of large packets into smaller packets. The WSN is
not based on global addressing. Attribute-based naming is used to indicate the
destinations of data packets.

Application Layer:

A Sensor Management Protocol(SMP) at the application layer is used to make
the hardware and software of lower layers transparent to the Sensor Network
Management Applications. The system administrators and programers interact
with WSN using SMP. Again the lack of global identification in sensor networks
must be taken into consideration. SMP provides rules to enable interaction
between applications and the sensor networks for:

• Data aggregation, attribute-based naming and clustering.

• Data exchange related to the location finding algorithms.

• Time synchronization.

• Movement of sensor nodes.

• Turning nodes on or off.

• Querying WSN configuration status, reconfiguring the WSN.

• Authentication, key distribution and security.

CHAPTER 2. RELATED WORK 18

2.8 Medium Access Control (MAC)

Medium Access Control (MAC) is the first protocol layer upon the physical
layer. One of the main functions of the MAC protocol is to avoid collisions.
The collision may happen when sensor nodes intend to transmit data, control
or manage packets to another sensor node at the same time point. The MAC
protocol solves the question which sensor node should access the communication
channel in the next time point. As in all traditional networks MAC is an essential
technique to enable the successful operation of the network. In contrast to
traditional networks, the MAC protocol for WSNs should take into account the
nature of data transmission and application requirements. The goal of the MAC
protocol in traditional network such as cellular networks is to provide a high QoS
and bandwidth efficiency. Power conservation may be a secondary goal in such
systems. Power efficiency plays an important factor in WSNs infrastructure. In
tradtional networks, where wire is deployed, the sent data is usually forwarded
to every participant, in WSNs the radio signal propagates into all directions and
the received power decreases with distance between transmitting and receving
sensor nodes. This nature arises a problem in WSNs called the hidden-terminal
problem. As illustrated in figure 2.11 sensor node A can communicate directly
with sensor node B and likewise sensor node B can communicate directly with
sensor node C. But C can not reach A and A can not reach C. A and C are
not within the same sending range. If A tries to send a packet to B, C can not
hear this communication because A’s packet can not reach C. If C tries to send
a packet to B, A can not hear this communication because C’s packet can not
reach A. If A sends a packet to B and C has no sense of this communication
and sends at the same time point a packet to B, both A’s packet and C’s packet
will collide at B. Only B can detect that something is wrong.

Figure 2.11: Hidden-Terminal Problem.

CHAPTER 2. RELATED WORK 19

Figure 2.12: Exposed-Terminal Problem.

Another problem in WSNs is called the exposed terminal problem. As illustrated
in figure 2.12.
A and B are within the same sending range. A and B can reach each other.
C, D are within the same sending range. C and D can reach each other. B and
C are within the same sending range and can reach each other, too. If B sends
a packet to A, C can hear this ongoing communication. If C would like to send
at the same time point a packet to D and listens to this ongoing communication
between A and B, then C knows that the channel is busy and should wait until
the channel is free. Although C’s transmission to D might not cause a great
problem, C has prefered to wait. Both hidden terminal and exposed terminal
problem are dealt by the Multiple Access with Collision Avoidance(MACA)
protocol or RTS/CTS protocol where:
RTS means Ready To Send and
CTS means Clear To Send,
as illustrated in figure 2.13. If A wants to send a packet to B, it sends first a RTS
packet to B, which includes the address and the number of bytes to send. When
B recevies C’s RTS packet, it sends an CTS packet to A, which includes a copy
of the number of bytes that will be sent by C. When A receives B’s CTS packet,
it starts the transmission of the data packet. At the end of the transmission B
will send an acknowledge packet ACK to A, announcing that the transmission is
successfull. Lack of acknowlegment will be interpreted as collision and a possible
retransmission will be done. All other sensor nodes hearing either RTS, CTS or
ACK will be silent for a short moment through setting an internal timer called
Network Allocation Vector(NAV). If any sensor node in the sending range hears
CTS, it can conclude that it is in the sending range but not in the receiving
range. It can make a transaction with another sensor node.

There are still other problems:

• If sensor nodes A and C send RTS packets to B simultanously, the RTS
packets are lost.

• As illustarted in figure 2.13, A sends a RTS packet to B and B answers

CHAPTER 2. RELATED WORK 20

Figure 2.13: RTS/CTS.

with CTS packet to A. C hears this B’s CTS packet at the same time
point as C receives a RTS packet from D. Both packets B’s CTS and D’s
RTS packet will collide at C. Therefor C can not set its NAV variable
accordingly and D’s RTS packet fails. D will retransmit the RTS packet
again to C. In this case C answers with a CTS packet to D. One solution
for this problem is to make CTS packets take more time than RTS packets.

The most important requirements of MAC protocol designed for WSN are en-
ergy efficiency and scalability. Major reasons of useless consumption of energy
[22] [64] are:

• Collisions: When a destination sensor node receives a corrupted packet,
it consumes useless energy as the transmitted packet has to be discarded.
The retransmission consumes another part of energy. In general collisions
should be avoided.

• Overhearing: When a destination sensor node senses packet transmissions,

CHAPTER 2. RELATED WORK 21

which are sent to another destination sensor node, it consumes useless
energy.

• Protocol overhead: For packet-headers, -trailers and other protocol infor-
mation data has to be sent and received by each packet according to the
used protocol. Since this is not the orginal data, this consumes additional
energy such as RTS and CTS packets in MACA.

• Idle listening: A sensor node that is listening to receive a packet, which is
not sent, uses energy. In this case the data rate is very low through the
idle state.

2.8.1 Sensor Node’s Wakeup and Duty Cycle

As shown in figure 2.14, the sensor node left its sleep state to transmit or receive
packets. Most of the time, the sensor node is in this state. A sensor node goes
in sleep state and wakes up itself to listen if any other node wants to send a
packet to it. Any sensor node attending to send a packet to this node should
have knowledge about the listen period. The wakeup period consists of both
the sleep period and the listen period.

Wakeup period = listen period + sleep period.

The duty cycle is the ratio of the listen period length to the wakeup period
length.

Duty cycle = listen period
Wakeup period

.

Figure 2.14: Periodic Wakeup and Sleep.

CHAPTER 2. RELATED WORK 22

If the duty cycle is small compared to the overall time interval, the transceiver
is in sleep state most of the time. This means that the idle listening period is
small and energy can be preserved. The traffic concentrates in the listen period
and at certain time period a node may send more data than other sensor nodes
in the WSN.

2.9 Sensor-MAC(S-MAC) Protocol

The primary goals of S-MAC protocol are reduced energy consumption, self
configuration, scalability and collision avoidance [28][64]. Two interfering sen-
sor nodes do not transmit data at the same time point. One fundamental
consideration is the obsevation that the sensor node is for a long time in an idle
state. If no sensing event occures, it is not necessary to keep the sensor node
listening all the time in the idle state. By this the sensor node can save energy.
Every sensor node can go to sleep for some period of time and wake up to see
if any other sensor node wishes to make conversation with it. In sleep state the
sensor node turns off its radio and sets a timer to awake itself later.

Figure 2.15: Two Groups in WSN with Deferent Synchronizer, Follower and
Border Sensor Nodes.

CHAPTER 2. RELATED WORK 23

Every sensor node must choose a schedule for its next sleep time point and
broadcast this schedule to all its neighbors. The sensor node retains a sched-
ule table to store the schedule of all its neighbors. After all sensor nodes are
deployed in the WSN a random timer will be started by every of these sensor
nodes. The sensor node which listen first to discover a neighbor and does not
hear any schedule from another sensor node, choses a random time to go to sleep
and broadcasts this schedule in a message called SYNC. The SYNC includes the
address of the sender and the sender’s sleep time in T1 seconds. The sensor node
which has first chosen its schedule independently is called the synchronizer. In
figure 2.15 two synchronizers are shown. All the other sensor nodes, which re-
ceived the synchronizer’s schedule are called followers. A follower must set its
schedule according to the synchronizer’s schedule. It waits for a random delay
time T2 seconds to go to sleep in T1 − T2 seconds. It transmits its schedule
to all its neighbors. If a follower hears a different schedule than the schedule
of its synchronizer, it must follow both schedules and wake up according to
both schedules. If two different sensor nodes have defined their schedule inde-
pendently because they can not hear each other, then there are two different
synchronizers. Each synchronizer and its followers constitute a group or cluster.
The border sensor nodes, which lay in both sending ranges of the two synchro-
nizers adopt both schedules. Border sensor nodes are the only sensor nodes that
are able to transmit a packet from one cluster to the other cluster. However
the border sensor nodes have a small time to sleep and consume more energy
than their neighbors. When the border sensor nodes consume all their energy,
both clusters will be isolated. When sensor node has sent a packet to another
sensor node with RTS-CTS-DATA-ACK mechanisums, uninvolved sensor nodes
may hear RTS or CTS of this transmission. These uninvolved sensor nodes can
go to sleep and turn off their radio transceiver. Each RTS and CTS packets
include the number or length of the bytes which will be sent. The uninvolved
sensor nodes use this length to set up their NAV variable. The NAV variable is
decremented every time unit by one through the timer-intrrupt until it reaches
zero. Every sensor node checks its NAV variable to know, if there is transmission
ongoing. When the value of the NAV is greater than zero then the transmission
is still ongoing or the channel is busy. So the sensor node should check its NAV
before it decides to transmit. This process is called virtual carrier sense.

2.10 Routing Protocols

Routing is the process of moving a packet of data from source to destination.
The packet may need to traverse many sensor nodes to reach its destination
network. Routing is the complex process to determine which sensor nodes will
move the packet to its destination.

CHAPTER 2. RELATED WORK 24

2.10.1 Characteristics of Routing in WSN

According to [41] the characteristics of routing in WSN are:

• The tradional IP-based protocols may not be applied to WSN due to the
large number of sensor nodes. In WSN, the overhead of ID maintainance
is very high as the number and position of sensor nodes can not be pre-
determined.

• In WSN the gathering of data is more important than knowing the IDs of
sensor nodes, which sent the data.

• Several applications of WSN require the flow of sensed data from multiple
sources and regions to a particular sink.

• Significant need of network management.

• In WSNs multiple sensor nodes may generate the same data. Hence, there
is a high probability that data has significant redundancy.

• The design requirements of WSNs change according to the application.

Routing protocols should take these characteristics into consideration. Routing
protocols in WSN can be catagorized into:

• Data-centric protocols: They are query-based and depend on the nam-
ing of the desired data. The data is requested based on certain at-
tributes. This attribute based address consists of a set of attribute-value
pair queries.

• Hierarchical protocols: They aim at clustering the sensor nodes so that
cluster heads can do some aggregation and reduce data in order to save
energy.

• Location-based protocols: They utilize the position information to
relay the data to the desired regions rather than the whole network.

One important task at the network layer is to establish reliable relaying of data
from a source node, bypassing intermediate sensor nodes, to reach the sink node.
Intermediate sensor nodes should decide to which neigbors the incoming packet
must be forwarded. Forwarding passes packets from one sensor node to another.
Routing selects the most reliable sensor node to forward the data.

There are some techniques for forwarding such as flooding, where each sensor
node sends the incoming packet to all its neighbors. In this way the same packet
may be sent several times to the same sensor node.

This is not energy efficient. As illustrated in figure 2.16 this forwarding tech-
nique suffers from implosion. In a WSN consisting of N sensor nodes a sen-
sor node may receive N copies of the same packet. N is the number of the

CHAPTER 2. RELATED WORK 25

Figure 2.16: The Implosion Problem.

same neighbors of both the sending sensor node and the receiving sensor node.
Another drawback of flooding technique is overlap, where some sensor nodes
may sense the same region and send the same data to the same neighboring
sensor nodes. The flooding technique consumes a large amount of energy, too.
Another technique for forwarding is gossiping, where each sensor node sends the
incoming packet to a randomly selected neighbors but not to all the neighbors.
The gossiping technique can avoid the implosion problem but it takes a long
time to transmit a packet.

2.10.2 Sensor Protocol for Information
via Negotiation(SPIN)

In SPIN protocol there are three types of message to transmit a packet from a
sending sensor node to a receiving sensor node. These three types are:

• ADV message,

• REQ message and

• DATA message.

As illustrated in figure 2.17, 2.18 and 2.19. When a sensor node tries to send data
to another sensor node, it sends an advertisement message(ADV) containing
meta-data first. The sensor node, which is interested in this packet sends a
request message(REQ) to the sending sensor node. After this, the sending
sensor node sends the data. Although the SPIN approach can avoid the problem
of the flooding technique, it suffers from finding an intermediate sensor node
to forward the packet to the sink when this intermediate sensor node is not
interested in the data and the sink is far away from the source sensor node.

CHAPTER 2. RELATED WORK 26

Figure 2.17: Sensor Node A
starts its Transmation by Send-
ing an Advertising Message.

Figure 2.18: Sensor Nodes B, C,
D answer to Sensor Node A by
Sending the Request Messages.

Figure 2.19: Sensor Node A
sends the DATA Message after
Receiving the REQ Message.

2.11 Time Synchronization

Time synchronization in networks is the process of adjusting computer clocks
of different devices [16] [22][33]. A sensor node has usually an oscillator and
a counter register. The oscillator produces a repetitive electronic signal, often
a sine wave or a square wave. This clock is the source for the clock in the
sensor node. The frequency at which an oscillator works is usually determined
by a quartz crystal. Oscillators have often a slight random deviation from
their nominal frequency, called drift. The counter register will be incremented
after a certain number of oscillator pulses. If two events happen between two
increments of the counter register, both have the same timestamp. The software

CHAPTER 2. RELATED WORK 27

of the sensor node has only access to the value of the counter register. Let Hi(t)
be the hardware clock of a node i at real time t, a local software clock Li(t) can
be approximated as follows:

Li(t) = θi ·Hi(t) + φi.

Where
θi is called the drift rate of sensor node i and
φi is called the phase shift of the sensor node i.
Clock adjustment is done by adjusting the coefficients of θi and φi.
The synchronization can be either external or internal:

• External Synchronization is the synchronization of all clocks in the
network to a time supplied from outside the network [40]. Given a net-
work with n sensor nodes, the sensor nodes (1, 2,.....,n) are said to be
accurate at time t within a bound δ, if |Li(t)− t| < δ ∀ i ∈ [1, 2, ..., n].
The source of the common system time can be a sensor node in the net-
work.

• Internal synchronization is the synchronization of all clocks in the
network, without a predetermined master time. The sensor nodes (1,
2,.....,n) are said to agree on the time with a bound of δ, if
|Li(t)− Lj(t)| < δ ∀ i, j ∈ [1, 2, ..., n].

In a WSN, the sensor nodes are switched on at random times. Hence the initial
phases φi of the sensor node i is assumed to be randomly distributed.
The Oscillator frequency is time variable. If two sensor nodes have the same
type of oscillator and have been started at the same time, the difference |Li(t)−
Lj(t)|might increase overtime. therefor a time synchronization algorithm should
resynchronize once in a few minutes to keep track of changing frequencies.

2.11.1 Error Source in
Network Time Synchronization

Errors in network time synchronization are due to:

• Send time: The time, the sender sensor node takes to construct a mes-
sage.

• Access time: The delay time before the actual transmission of the mes-
sage. This delay time may depend on the MAC scheme used or on the
waiting time when the channel is idle.

• Propagation Time: The time spent to propagate the message between
the network interface of the sender and the receiver sensor node.

• Receive time: The time, the network interface of the receiver sensor
node takes to receive the message and transfer it to the host.

CHAPTER 2. RELATED WORK 28

2.11.2 Lightweight Time Synchronization Protocol (LTS)

Referring to [30] according to [13] the time synchronization process can be di-
vided into three main components:

• The resynchronization event detection: It indentifies the time at
which the sensor nodes have to resynchronize their clock. One technique
is to relay on a specific sensor node to send an initiating message to every
sensor nodes in the system after kR time. Where R is the duration of a
single synchronization round and k > 1 is a real number to prevent overlap
between the rounds.

• The remote clock estimation: It determines the local time of another
sensor node in the system. One technique to do this is time transmission
when the time of a remote clock is sent in a message. This adds unwanted
communication overhead, which is avoided in LTS.

• The clock correction: It is used to update the local time of a sensor
node when a resynchronization event has occurred.

In the Lightweight time Synchronization protocol(LTS) two major steps is car-
ried out:

• A pair-wise synchronization protocol synchronizes two neigboring sensor
nodes [60].

• A spanning tree is constructed from the reference sensor node to all other
sensor nodes.

Pair-Wise Synchronization

The following scenario describes a basic scheme for sensor node i to synchronize
its clock to the clock of sensor node j:

• After the resynchronization is triggered at sensor node i, sensor node i
formats a synchronization request packet.

• Sensor node i forms a timestamp to the synchronization request packet at
time t1 with time Li(t1).

• Sensor node i hands the synchronization request packet over to its oper-
ating system and the protocol stack.

• When sensor node i is sending the first bit at time t2, sensor node j receives
the last bit of the packet at time t3 due the variability of the medium access
delay time. t3 = t2 + τ + tp, where τ is the propagation delay and tp is
the packet transmission time.

CHAPTER 2. RELATED WORK 29

• The packet arrival is signaled to the operating system of sensor node j at
some time later t4 due to the interrrupt latency.

• The sensor node j forms a timestamp to the packet at time t5 with Lj(t5).

• Sensor node j forms its answer packet and timestamps it at time t6 with
Lj(t6).

• Sensor node j hands the answer packet over to its operating system and
protocol stack. The answer packet includes the timestamps: Li(t1), Lj(t5)
and Lj(t6).

• Sensor node i receives the packet reception interrupt at time t7.

• The time t7 can be calculated as the sum of
t6 + operating system overhead + medium access delay + propagation
delay + packet transmission time + interrupt latency.

• Sensor node i timestamps the packet at time t8 with Li(t8).

Assuming that there is no drift between the clocks in the time between t1 and
t8. Sensor node i estimates the value of

O = ∆(t1) = Li(t1)− Lj(t1).

Sensor node i can estimate the value of

O = ∆(t1).

by estimating the value of O = ∆(t5) = Li(t5) − Lj(t5). Values of Lj(t5)
and Lj(t6) are known by sensor node i from the answer packet of sensor node
j. Sensor node i can compute the time between t5 and t6 from the difference
Lj(t6)− Lj(t5). As shown in figure 2.21 the value of t5 lies in the interval

I = [Li(t1) + τ + tp, Li(t8)− τ − tp − (Lj(t6)− Lj(t5))].

In the following it is assumed, that the following times are the same in both
directions:

• Operating system time.

• Networking stack time.

• Interrrupt latency time.

• Medium access delay time.

Sensor node i can conclude that the sensor node has created its timestamp
Lj(t5) at time

CHAPTER 2. RELATED WORK 30

Figure 2.20: Pair-Wise Synchronization.

Li(t5) = Li(t1)+τ+tp+Li(t8)−τ−tp−(Lj(t6)−Lj(t5))
2

= Li(t1)+τ+tp+Li(t8)−τ−tp−Lj(t6)+Lj(t5)
2

= Li(t1)+Li(t8)−Lj(t6)+Lj(t5)
2

Hence,

O = ∆(t5) = Li(t5)− Lj(t5) = Li(t1)+Li(t8)−Lj(t6)+Lj(t5)
2 − Lj(t5)

= Li(t1)+Li(t8)−Lj(t6)−Lj(t5)
2 .

Sensor node i adds the offset O to its local clock to synchronize to sensor node
j’s local time. Sensor node j needs to know the value of O, too. therefor sensor

CHAPTER 2. RELATED WORK 31

node i may send a third packet to the sensor node j. The whole synchronization
is completed with three packets.

Multi-Hop Synchronization

LTS can be extended to a Multi-Hop sensor network. Important considerations
for Multi-Hop synchronization are:

• Global reference: There is at least one sensor node that has access to
a global time reference.

• Selective synchronization: The algorithm can synchronize only sensor
nodes, which are broadcasting time-sensitive data.

• Resynchronization rate: One-time synchronization is not useful be-
cause drift varies overtime. According to [30] referring to [13] a sensor
node’s clock H(t) is defined to be ρ-bounded, where ρ > 0 and for all real
time t:

1
(1+ρ) ≤

dH(t)
dt ≤ 1 + ρ.

• Error estimation and limitation: The synchronization algorithm should
keep track of the accuracy, performance and errors caused by a clock drift
among sensor nodes. If a sensor node’s clock has drifted, the resynchro-
nization scheme should be called.

• Robustness: The algorithm should be robust to sensor node failure.

• Mobility: The algorithm should perform synchronization for both sta-
tionary and mobile sensor nodes.

Chapter 3

Sensor Platform

In this work ScatterWeb Embedded Sensor Board(ESB) nodes as shown in figure
3.1 are used. These sensor nodes have been developed by the computer system
and telematics group at the Freie Universität Berlin(FU-Berlin) [23]. Other
platforms on the market are the Mica-2 nodes and BTnodes. Mica-2 nodes
have been developed at the University of california at berkely in collaboration
with Intel [65]. BTnodes have been developed at the ETH Zürich [3].

3.1 Embedded Sensor Board (ESB)

Figure 3.1: ESB Platform.

32

CHAPTER 3. SENSOR PLATFORM 33

ESB nodes consist of a micro controller unit(MCU), various sensors and equipements:

• Passive Infrared Sensor(PIR): A PIR is a passive electronic device
which can measure infrared light radiating from objects in the field of
view and detect motion by sensing the infrared fluctuations. This allows to
monitor rooms [8] [23] [56]. A PIR sensor is usually used in remodeling the
PIR-based motion detection, mounted on printed circut board to interpret
the signals. It consists of a solid-state pyroelectric chip, which generates an
electric charge when exposed to infrared radiation [5] [63]. Plastic covering
the sensor is used to prevent dust and insects obscuring the sensor’s field
of view. A PIR sensor can only detect motion 20 feet away. It needs
approximately 10-60 seconds to calibrate. During this time, one must
ensure that there is no motion in the sensors’ visual range. The term
’passive’ means that the PIR does not emit any type of energy but merely
sits ’passive’ accepting infrared energy through the front of the sensor,
known as the sensor face.

• Infrared Sensor: It translates the light intensity directly into a propor-
tional frequency to enable the measurement of light. The device responds
over the infrared light range of 800 nm to 1100 nm [23]. The microcon-
troller has a direct interface to this sensor.

• Temperature sensor (integrated with Real-time clock):
The DS1629 2-Wire digital thermometer integrates a real time clock and a
temperature monitor. Communication to the DS1629 is accomplished via
a 2-wire interface. The sensor enables accurate time/temperature mea-
surements in battery-powered applications. The open-drain alarm output
of the DS1629 can be used as the oscillator input for a microcontroller. It
is possible to wake-up the microcontroller from power-down mode.

• Vibration sensor: The ESB is equipped with a vibration sensor. This
can be used to monitor persons walking through a room. The vibration
sensor can trigger and wake-up the microcontroller from power-down mode
due to shake the ESB.

• Microphone: There is a microhpne equipped on the ESB, which can be
used for voice monitoring.

• Beeper: The Beeper can be used to signal an event or a required situation.

• LED: There are three LEDs on the ESB colored red, green and yellow.

• RS232: The ESB contains a standard RS232 serial interface that enables
connection with a PC or notebook to establish connection to the wide area
wireless network.

• JTAG: Figure 3.2 shows a JTAG. The JTAG interface has 2x7 pins and
allows flashing and real-time debugging of programs with no need for
an external power supply [55]. The JTAG interface has the following
properties:

CHAPTER 3. SENSOR PLATFORM 34

Figure 3.2: JTAG.

1. Programs all MSP430Fxxx flash microcontrollers.

2. No need for external power supply.

3. Works with free GCC C compiler.

4. Compatible with IAR Kickstart software for programming, debug-
ging, real time emulation, step by step program execution. IAR
Kickstart enables to write code in assembler with unlimited code
size. For C code the memory limit is 2Kbyte.

All sensor nodes may form an ad-hoc network with some nodes acting as data
sources, some as relays, and some as data sinks collecting the data. Nodes
may act in all three roles at the same time. The ESBs form a sound basis
for research in sensor networks. University level courses in CS/EE are based
on this hardware. It allows to develop prototyp of sensor network applications
for real-world deployment. Typical communication scenarios of sensor networks
based on the ESBs are [18]:

• ESBs communicate via the serial port with a standard PC/PDA for ap-
plication development.

• ESBs communicate with mobile phones/GSM modules to connect to wide-
area mobile phone networks. This enables remote configuration of ESBs
via short messages (SMS) as well as receiving sensor data on mobile phones
world-wide.

• ESBs communicate via their radio interface with other ESBs, ECRs, or
eGates to form a truly embedded, highly flexible sensor network solution.

The main features of the ESB are summarized in table 3.1.

CHAPTER 3. SENSOR PLATFORM 35

Feature
EEPROM 64 kbyte
Microcontroller MSP430F149
ESB up and running with all sensors 12 mA
ESB transmitting data 8 mA
ESB deep-sleep (clock only) 8 µA
Flash 60 kbyte

Table 3.1: Features of ESB.

3.2 Microcontroller Unit (MCU)

The Texas Instrument micro controller MSP430F149 is well suited to battery
driven applications in ESBs. It has very low power consumption and can be
switched into power-down mode [9][17]. The major componenets of the MSP430
family shown in figure 3.3 are:

• 60 kbyte Flash memory.

• An AD converter with 8 external input(port 6) and 4 internal inputs (on
chip temperature, Vcc, VeREF+, VeREF-and) with conversation speed of
200000 conversions per second.

• 16 8-bit register in setting for conversation.

Figure 3.3: MSP430F149 Block Diagram.

CHAPTER 3. SENSOR PLATFORM 36

• 16 12-bit register to store the result of conversation.

• 2 timers, timer-A and timer-B, are based on 16 bit counters and support-
ing 3 different modes of operation with different clock sources. The timers
comprises Capture-/Compare-Registers, which have special meaning de-
pending on their current mode (capture or compare).

• Timer-A consisits of 4 Capture-/Compare-Registers(CCR0-CCR3).

• Timer-B consists of 7 Capture-/Compare-Registers.

• The Watchdog consists of a timer and a control register. It offers the
possibility to reset the processor after a predefined interval. A watchdog
is reset periodically in the main loop of a program or an OS. As soon as
the program or OS crashes or is locked in a loop, the watchdog triggers a
reset. The 16 bit watchdog control register can be written. If the higher
8 bits do not equal 0x5A, the watchdog ”password” is wrong and a reset
is triggered.

3.2.1 MSP430F149 Memory Map

The MSP430F149 microcontroller has 60kbyte of flash program memory, 256
bytes of flash information memory and 2kbyte of RAM. Its memory map is
shown in figure 3.4:

Figure 3.4: Memory Map.

CHAPTER 3. SENSOR PLATFORM 37

3.2.2 Interrupts

Figure 3.5: Interrupts.

An interrupt is a signal that stops the microcontroller from what it is doing
to allow something else to happen. The signal is used to control the digital
processor at unexpected events [21][34][46][57]. When an interrupt occurs the
main program halts, while another routine is carried out. When this routine
finishes, the processor goes back to the main routine again. The interrupt can
be seen as an event from hardware that triggers the processor to jump from its
current program counter to a special point in the code as illustrated in figure
3.5. A possible reason for an interrupt is when the processor is following a
program and new input signals are needed. If these signal inputs are available,
the input circuits announces this by interrupt to signal the processor that inputs
are present. This situation begins an interrupt to the processor. The processor
halts on the interrupt and stops to input the required data. After the data is
proccessed, the processor continues its task from the place it was interrputed.
When an interrupt occurs, the following tasks will be done [6]:

• The program counter as it is after the above instruction is pushed onto
the stack.

• The status register is pushed onto the stack.

CHAPTER 3. SENSOR PLATFORM 38

• If many interrupts occure during the last instruction, the highest priority
interrupt is selected.

• Single source interrupts have their interrupt request flags reset automat-
ically. Multiple source interrupt flags do not. The interrupt service rou-
tine(ISR) can determine by the flags what has to be done next.

• The status register with the exception of the SCG0 bit is cleared. The
SCG0 bit is left unchanged. Clearing the status register leads to terminate
any low-power mode. Further interrupts are disabled, since the general
interrupt enable bit (GIE) is cleared.

• The counter of the interrupt vector is loaded into the program counter.
An interrupt vector is the memory address of an interrupt handler.

MSP has some different kinds of events, which can trigger interrupts. For each
of these events the processor sends the execution to an unique, specific point
in memory. The interrupts in MSP can be classified into maskable and non-
maskable:

• Maskable Interrupts: They can be turned off by the programer. The
trigger event of the maskable interrupt is usually not important. therefor
the programer can decide if the event should cause the program to jump.
Generally, the maskable interrupts can be allowed to occur or prevented to
occur by software. The processor is able to mask, or temporarily ignore,
any interrupt if it is needed.

• Non-Maskable Interrupts (NMI): They can not be handeled by soft-
ware. They are used to report hardware errors that are non-recoverable
such as access violation in the flash memory. NMI can be used for serious
conditions that demand the immediate attention of the processor. The
NMI cannot be ignored by the system unless it is shut off specifically.

The interrupt priority determines which of the interrupt is served first. When
two interrupts happen at the same time, the higher priority event is handled
first. The interrupt service routine(ISR) is the function to be called when an
interrupt happens. It is called when the GIE is set. The interrupt handling
routine terminates with the instruction RETI (They return from an interrupt
service routine). A special interrupt of MSP430 is the reset interrupt forcing
the processor to jump to the beginning of the memory. The interrupt vectors
and the power-up starting address are located in the address range 0xFFFF -
0xFFE0. The highest priority interrupt vector starts at address 0xFFFF and
the lowest priority interrupt vector is at address 0xFFF0. Tabel 3.2 shows the
interrupts and their priorities.

CHAPTER 3. SENSOR PLATFORM 39

System interrupt Intrrupt source Address Priority
Reset External rest, Power up

Watchdog timer reset, Invalid flash memory activation 0xFFFE 15
Non-maskable NMI, Oscillator fault

Flash memory access violation 0xFFFC 14
Maskable Timer B7 0xFFFA 13
Maskable Timer B7 0xFFF8 12
Maskable Comparator A 0xFFF6 11
Maskable Watchdog Timer 0xFFF4 10
Maskable USART0 Receive 0xFFF2 9
Maskable USART0 Transmit 0xFFF0 8
Maskable ADC12 0xFFEE 7
Maskable Timer A3 0xFFEC 6
Maskable Timer A3 0xFFEA 5
Maskable I/O Port P1 0xFFE8 4
Maskable USART1 Receive 0xFFE6 3
Maskable USART1 Transmit 0xFFE4 2
Maskable I/O Port P2 0xFFE2 1
Maskable Basic Timer1 0xFFE0 0

Table 3.2: Interrupts and their Priorities

3.2.3 Watchdog Timer

The watchdog timer is a computer hardware timing device that performs a
controlled system restart after a certain period of time. It can be used to
automatically fix software problems and reset the processor if software problems
occur. The watchdog timer is based on a counter that counts down from its intial
value to zero. If the defined time interval expires, a system reset is generated.
The intention is to bring the system back from the hung state to the normal

CHAPTER 3. SENSOR PLATFORM 40

How to select timer mode:

/* WDT is clocked by fACLK (assumed 32Khz) */

WDTCL=WDT ADLY 250; // WDT 250MS/4 INTERVAL TIMER

IE1 | =WDTIE; // ENABLE WDT INTERRUPT

How to stop watchdog timer:

WDTCTL=WDTPW + WDTHOLD ; // stop watchdog timer

Assembly programming:

WDT key .equ 05A00h ; Key to access WDT

WDTStop mov # (WDT Key+80h),& WDTCTL ; Hold Watchdog

WDT250 mov # (WDT Key+1Dh),& WDTCTL ; WDT, 250ms Interval

Table 3.3: Watchdog Timer Programming

state. If the watchdog function is not needed in an application, the module
can work as an interval timer, to generate an interrupt after the selected time
interval. Special properties of the watchdog timer are:

• There are eight software time intervals to select from.

• There are two operating modes, watchdog mode and timer mode.

• The access to the watchdog timer can only be through a password.

• The expiration of the time interval in watchdog mode generates a system
reset.

• The expiration of the time interval in timer mode generates an interrupt
request.

Table 3.3 explain how to use watchdog to select a timer mode and how to stop
watchdog.

CHAPTER 3. SENSOR PLATFORM 41

3.3 Embedded Chip Radio (ECR)

In contrast to ESB nodes, ECR nodes shown in figure 3.6 come only with a
vibration sensor and many I/O ports.

Figure 3.6: ECR Platform.

CHAPTER 3. SENSOR PLATFORM 42

3.4 eGate/USB Platform

Figure 3.7: eGate/USB Platform.

The eGate/USB platform is a simple USB stick shown in figure 3.7. Attaching
the eGate/USB to a PC grants access to the sensor network. It allows debugging
and collecting sensor data.

Chapter 4

Data Logging

WSNs introduce several constraints: small memory, limited power supply and
computational constraints. In WSNs several distributed sensor nodes are de-
ployed to observe, understand and analyse the physical data. The amount of
data, that the sensor nodes sense is growing with the number of sensor nodes in
a WSN. therefor the data must be logged while taking into account the infea-
sibility of a fully centralized data collection. Processing the overall data might
not be necessary for specific area of interest. The software of the USB sen-
sor nodes allows a user to initiate, track and schedule experiments. It enables
the reprogramming of the sensor nodes and logs the data generated during the
experiment.

4.1 Types of Logging

There are two approaches of data logging:

1. Online Data Logging: During the experiments the log data is collected
by many sensors and sent to the main computer as illustrated in figure
4.1. For example, consider a WSN consisting of hundereds or thousands of
sensors. Each sensor senses temperature periodically. During the experi-
ments it keeps sending information to a main computer. A problem in this
approach is the huge traffic overhead leading to unwanted energy consump-
tion. This extra traffic creates extra collision and increases packet loss.
therefor an offline approach defined below is considered in this project.

2. Offline Data logging: In the offline approach each sensor temporary
saves the log data locally. After the end of the experiment or after a fixed
period of time it sends the log collected to the main computer as illustrated
in figure 4.2. Consider the same application described above consisting of a
huge number of sensors collecting temperature measurements periodically.

43

CHAPTER 4. DATA LOGGING 44

Figure 4.1: Online Data Logging.

In the offline approach each sensor will keep temperature readings locally.
After a long time period (e.g. at the end of a day) it will send the data
to main computer. This approach is selected in this project instead of
the online approach to reduce traffic overhead, collisions and save sensor
node’s energy.

The sensor nodes collect a great amount of data, only some of it may be useful.
therefor data gathered by sensor nodes needs to be controlled and managed to
extract useful information based for decision-making. In the offline approach
data is sent to the main computer by a sensor. This can be depend on two
things.

• Time period: After a fixed period of time, for example at each end of the
day, a sensor sends data which is collected since previous data despatch is
sent to main computer.

• Trigger event: In this case, a sensor sends data to the main computer
after receiving a trigger event, for example upon receiving a request from
the main computer. This trigger event may also indicate what kind of log

CHAPTER 4. DATA LOGGING 45

Figure 4.2: Offline Data Logging.

is required and the time interval of the log data needed by the base station.
This approach reduces traffic compared to the time period approach.

The data logging could be wireless or wired.

4.1.1 Wired Logging

In case of wired logging each sensor is manually connected with the base station
and the base station retrieves log data from the sensors. Advantages of this
approach are reliability and energy conservation during experiments. However
in a sensor network consisting of a large number of sensor nodes this wired
logging is not feasible. Furthermore the approach of trigger events to collect log
data can not be wireless. In this case a trigger event could be simply pressing
a button on a sensor or a base station sending a request to a sensor attached
to it. Wired logging is not feasible when sensors can not be attached with the
base computer and only provides a wireless interface.

CHAPTER 4. DATA LOGGING 46

Figure 4.3: Wired Logging.

4.1.2 Wireless Logging

In this case trigger events and log data is sent wireless. First a base station
sends trigger events to sensors in its surrounding. Upon receiving a trigger
event a sensor could propagate this trigger event to further sensors and send
locally saved logs to the base station through multiple hops. Advantages of
this approach are feasibility for larger sensor network and less manual efforts
involved.
In applications of WSNs the data is the focus of interest, not the source of the
data. Typical queries in such aplication are:

• Can you tell me if anyone is going in this room?

• Can you tell me, how many people are going in that room?

• What is the current average humidity in room Y?

• In which room is the temperaure greater than 25 ◦C?

• Is the light of room y turned on?

• What is the maximum temperature in room Z?

• Tell me in which room is Mr. Hans?

CHAPTER 4. DATA LOGGING 47

In such applications only the information is of interest, not the source of this
information, not the identity of the sensor node and it does not matter how many
events occured. Hence, interaction in WSN is data-centric. In this approach
the application depends only on the reported data, not on the identity of the
sensor nodes that report the data. In this suitation multiple sensor nodes can
report the same event. In the first query the task is to announce the presence
of an object. Hence, the sensor nodes in the WSN that can sense the objects
announce the Interest. The last query’s task is to know the location of an object.
The sensor nodes should know their location and be able to maintain it. There
are some differents between the traditional network and data-centric network.
In data-centric networking:

1. The sensor nodes, which report events do not care about the identity of
the source node.

2. The sensor nodes are interested only in the offered information and do not
care about the source of the information.

3. The sensor nodes, which report events, do not care about the number of
the events.

4. The source node can be switched off to save energy once the data trans-
mission is made.

5. The networks comprise of many sensor nodes. Each node can be both a
provider and a consumer of information.

6. The sensor nodes, which report events, do not care about the number of
the sink nodes.

7. The sink node can be switched off to save energy, untill the data is avail-
able.

8. The data should be sent and made available in an asynchronous approach.

4.2 Publish/Subscribe Model

To implement a data-centric network the publish/subscribe model as illustrated
in figure 4.4 is used. In this model any sensor node interested in a given type
of data subscribes to its publication by a subscribe action. All sensor nodes
are connected to a software bus, where data is published by the publisher by a
publish action. When the data is published, all subscriber of this type of data
are notified about the availability of this data. The publish/subscribe model
has three major properties in the relationship between publisher and subscriber
of the information:

• Decoupling in time: Publication and notification of data can happen
at different times. The software bus provides an intermediate storage.

CHAPTER 4. DATA LOGGING 48

Figure 4.4: Publish/Subscribe System.

• Decoupling in space: Publishers and subscribers do not need to know
each other. therefor they can ignore their mutual identities.

• Decoupling in flows: Interactions with the software bus can happen
asynchronously. therefor the operation of the software bus can happen
without blocking.

4.2.1 Content-based Naming and Addressing

The question when publishing data or when subscribing to it is:
How to refer to this data?
Refering to data is done via a content-based adressing scheme of the sensor
nodes. In WSNs the sensor nodes are not independent. They collaborate to-
gether to solve a given task and offer the user an interface to the physical world
providing the appropriate data. The user for WSN wants to know data about
some physical phenomene and not about individual sensor nodes. therefor the
user should be allowed to name the interested data but not the sensor nodes
that produce this data. In a WSN, names refer to things such as data, sensor
nodes or transaction, addresses provide the needed information to find these
things.

Chapter 5

Displaying and Processing
Log Data

Each sensor saves data in its memory. This format is not intended for presen-
tation to the end user. The base station collects all data from different sensors
and processes the data to make it user friendly. Data representation at the base
station should be independend of:

1. The number of sensors,

2. the number of events sensed,

3. the type of sensors and

4. the type of events.

The ScatterWeb command ”rld 03” is used to display data. In figure 5.1 and
5.2 the log data from two ESBs is shown. The ID of the first ESB is 4 and the
ID of the second is 16. There are other termial commands such as:

• ”dea”: It is used to erase the EEPROM. The whole code of this command
can be found in the file ScatterWeb.IO.c.

• ”RST”: It is used to reset the system. The code of this command can
be found in ScatterWeb.Messaging.c.

• ”rid”: It is used to read the ID of the sensor node. This command can
be found in ScatterWeb.Configuration.c.

• ”sid x”: It is used to set the ID of the sensor node to value x. The
command can be found in ScatterWeb.Configuration.c.

• ”mem”: It is used to read to display free stack bytes. The command is
in ScatterWeb.Messaging.c.

49

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 50

Figure 5.1: Log Data from Sensor Node 4

Figure 5.2: Log Data from Sensor Node 16

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 51

5.1 How to Write a Command to the Sensor

The ScatterWeb software is divided into two parts [24]: The system and the
application. The system handles all interrupts, packet sending, packet receiving
and access to the hardware. It initializes the hardware and continuously checks
whether sensor events were noticed, whether data arrived at the serial port and
data in the outgoing buffers has to be handled. The interaction between the
system and the applications is realized by callback functions. The application
resembles a userlevel application in full-featured operating systems. It is respon-
sible for registering callback functions with the system when the application is
interested in sensor events or packets are arriving in the network. It registers
own handler functions as callbacks in the system during the initialization phase:

void Process_init() {
System_registerCallback(C_RADIO, Process_radioHandler);
Event_init();
Comm_log(LOW, "| Application %s initialized\r\n\r\n",

imageData.versionName);
System_registerCallback(C_PERIODIC, periodic_function);

}

The periodicfunction() function has to be implemented in the application and
is linked with the system after compilation.

void periodic_function() {
Data$_redOn();
Data_beeperOn();
System_wait(50000);
Data_beeperOff();
Data_redOff();$

}

This code example above switches the red light on and lets the sensor beep for
50000 milliseconds. After this time the code stops the beeper and the red light
off. The command ”rLi” has to be added using this macro:

COMMAND(rLi,0){
periodic_function();
}

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 52

5.2 Sending and Receiving Information in
a Simple Alarm Application

When anyone is going, the sensor switches the red, green and yellow lights on. In
addition, the sensor beeps to alarm. With lights and beeper on, alarm continues
for one minute. In the example movement is handled by the handleEvent
function. The handleEvent function is implemented in ScatterWeb.Event.c.
In the example above it looks like:

void handleEvent(sdata_t* data) {
if(data->sensor==SENSOR_MOVEMENT && data->value==1){

Comm_print("\%s","Alarm,
someone is going now in the room");

Data_redOn();
Data_greenOn();
Data_yellowOn();
Data_beeperOn();
System_wait(60000);
Data_beeperOff();
Data_redOff();
Data_yellowOff();
Data_greenOff();
sendConnectivityTestPacket();

}
}

Parameter of this function is a structure called sdata t. This structure is defined
in ScatterWeb.data.h.

typedef struct {
UINT16 id;
UINT8 sensor;
time_t timeStamp;
UINT16 value;

} sdata_t;

UNIT8, UNIT16 and UNIT32 are elementary data types defined in Scatter-
Web.System.h.

typedef unsigned char UINT8;
typedef unsigned int UINT16;
typedef unsigned long UINT32;

The structure time t is defined in ScatterWeb.time.h.

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 53

typedef struct {
UINT32 secs;
UINT16 millis;

} time_t;

The handleEvent function calls another function.
The function sendConnectivityTestPacket() is implemented in the same file
ScatterWeb.Event.c.

void sendConnectivityTestPacket(){
struct ConnectivityTestPacketStruct ConnectivityTestPacket;
ConnectivityTestPacket.type=0;
ConnectivityTestPacket.src=Configuration.id;
packet_t p;
p.to = BROADCAST;
p.type = CONNECTIVITY_TEST_PACKET;
p.header=0;
p.header_length = 0;
p.data = (UINT8*)&ConnectivityTestPacket;
p.data_length = sizeof(ConnectivityTestPacket);
Net_send(&p, NULL);

}

The structure ConnectivityTestPacketStruct is implemented in Scatter-
Web.Event.h as.

struct ConnectivityTestPacketStruct{
char type;
unsigned int src;
};

The structure packet t is defined in ScatterWeb.Net.h as:

typedef struct {
UINT16 to;
UINT16 from;
UINT8 type;
UINT8 num;
UINT8* header;
UINT16 header_length;
UINT8* data;
UINT16 data_length;

} packet_t;

The Bitmasks BROADCAST and CONNECTIVITY TEST PACKET
are defined in ScatterWeb.net.h.

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 54

#define BROADCAST (0xFFFF)
#define CONNECTIVITY_TEST_PACKET (0x0c)

or any other unused Bitmaskocation. The Net send function will be used
to send the packet. This function is defined in ScatterWeb.net.c. It should
be checked if the packet CONNECTIVITY TEST PACKET arrived to
take the appropriate actions. Checking the packet type will be implemented in
ScatterWeb.Process.c with the case-statement in the Process radioHandler.

case CONNECTIVITY_TEST_PACKET:
Comm_print("%s","Connectivity Test packed received");
handle_connectivity_test_packet((unsigned int*)&rxPacket.from,
rxPacket.data);
break;

The appropriate actions are defined in the handle connectivity test packet
function.

int handle_connectivity_test_packet(unsigned int* from, char* payload){
struct ConnectivityTestPacketStruct* ConnectivityTestPacket;
ConnectivityTestPacket = (struct ConnectivityTestPacketStruct*)payload;
Comm_print("%s","Connection test Packet from: ");
Comm_print("%i",*from);
Comm_print(",from field in payload:");
Comm_print("%i\r\n", ConnectivityTestPacket->src);
Data_redOn();
Data_greenOn();
Data_beeperOn();
System_wait(60000);
Data_redOff();
Data_greenOff();
Data_beeperOff();
return 1;

}

The rxpacket is defined as a structure in Scatterweb.net.c as:

volatile packet_t rxPacket;

While the structure packet t structure is defined in ScatterWeb.net.h.

typedef struct {
UINT16 to;
UINT16 from;
UINT8 type;
UINT8 num;

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 55

UINT8* header;
UINT16 header_length;
UINT8* data;
UINT16 data_length;

} packet_t;

5.3 Getting Data from the Sensors
with Java Serialization

The Java Communications API is located in the javax.comm package. It
enables to write Java software accessing communication ports in a platform-
independent way [31][48]. The JavaComm API is not part of the standard Java
2 distribution. The implementation of the API has to be downloaded separately.
The first three things to program the serial lines in the Java communication API
are typically to the following:

• Enumerate all serial ports (port identifiers) available to the Java commu-
nication API.

• Select the desired port identifier from the available ones.

• Acquire the port via the port identifier.

CommPortIdentifier is the central class to control access to communication
ports. It includes methods to:

• Determine the communication ports made available by the driver.

• Open communication ports for I/O operations.

• Determine port ownership.

• Resolve port ownership contention.

• Manage events that indicate changes in port ownership status.

After defining port configuration variables, the CommunicateWithSerialPort
program constructs a javax.comm.CommPortIdentifier object to handle the
serial communications port.
The CommunicateWithSerialPort program calls the open method on that
object to return an object of the javax.comm.SerialPort class. This object de-
scribes the low-level interface to the COM1 serial port, assumed to be connected
to the ESB. After this the program calls several methods on the SerialPort ob-
ject to configure the serial port. The program uses the I/O package java.io to
write to and read from the serial port [20]. It calls a static method to return
a PrintStream object bound to the serial port. This object is passed to the

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 56

constructor of PrintStream. write() methods on the PrintStream object are
used to write a command to the serial port and acquire the log data. An object
of the BufferedReader class is used to read from the serial port. In details,
communication with the serial port is set up in the following steps

• Define variable for serial port configuration and output:
The configuration of the serial port is made with the parameters of the
method SetSerialPortParams. The first parameter defines the baud rate
to be 115200. The second parameter defines number of data bits to be 8.
The third defines the number of stop bits to be 1. The fourth parameter
defines parity to be off.

public void initSerialPort(SerialPort port) throws Exception {
port.setSerialPortParams(115200, SerialPort.DATABITS_8,

SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
}

• Create a CommPortIdentifier object:
The javax.comm.CommPortIdentifier class has static methods that re-
turn an instance of the class. The CommunicateWithSerialPort uses
the getPortIdentifier to return a CommPortIdentifier object for port
COM1.

CommPortIdentifier comId = connect.getPortId("COM1");

• Open the serial port:
The CommunicateWithSerialPort program opens the serial port by call-
ing the open() method on the CommPortIdentifier object portId. The
open() call returns a SerialPort object, assigned to port. The first ar-
gument in the open() method is the name for the port, and the second
argument is the number of milliseconds to wait for the port to open the
connection.

public SerialPort OpenPortCom(CommPortIdentifier portId) {
SerialPort port = null;
try {

port = (SerialPort) portId.open(applicationName,
// Name of the application asking for the port

10000 // Wait max. 10 sec. to acquire port
);

} catch (PortInUseException e) {
System.err.println("Port already in use: " + e);
System.exit(1);

}
return port;

}

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 57

• Set up a PrintStream object to write to the ESB:
The CommunicateWithSerialPort program calls the constructor to cre-
ate and open a PrintStream object. The constructor call passes the
OutputStream object, returned by a call to the getOutputStream() method
and assign the PrintStream object to the instance os.

PrintStream os = new PrintStream(port.getOutputStream(), true);

• Write command to the serial port and close print stream:
The CommunicateWithSerialPort program writes a string command to
the serial port, by calling the write() method of the instance os. the
command ”rld03” is used to get log data from ESB.

os.print("rld 03");

The CommunicateWithSerialPort program then calls close() to close os.

os.close();

• Open an input stream:
The CommunicateWithSerialPort program reads the log data expected
from the ESB in response to the given command through opening an
input stream. The program opens an input stream by calling the static
method, getInputStream(), to obtain an instance InputStream from the
serial port.

• Create an input stream reader for the serial port:
The CommunicateWithSerialPort program calls the constructor of
InputStreamReader, with the InputStream object and assigns the new
object to an instance of BufferedReader is.

BufferedReader is = new BufferedReader(new InputStreamReader
(port.getInputStream()));

• read data from serial port and close the buffer:
The CommunicateWithSerialPort program reads from the serial port,
by calling the read method of the BufferedReader object is byte by byte.

try {
char c =(char) is.read();
while (c != ’\0’ || c != ’\n’ || c != -1) {
out.write(c);
System.out.println(c);
c = (char)is.read();
}

}catch (IOException ex) {
ex.printStackTrace();

}

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 58

After reading the data, the program calls close() method on is to close
the BufferedReader object is.

is.close();

• Close the serial port:
The program closes the serial port, by calling close() on the SerialPort
object.

port.close();

5.4 XML Representation

In this work the base station converts data from the sensors into Extensible
Markup Language (XML). While HTML was designed to display data and to
focus on how data looks on the screen, XML was designed to described data in
details [10][38][66]. A XML document must adhere to the following rules to be
well-formed:

• XML document must have only one root element.

• Every start-tag must have a matching end-tag.

• XML tags can not overlap.

• XML tags are case-sensitive.

• XML attribute values must always be quoted.

• XML will keep white space in the text.

• XML element names must obey XML naming conventions.

A sample xml file for this project is look like that:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="dip.xsl"?>
<Sensor sID="1747"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="dip.xsd">
<Event eID="0">
<Time>
<time>16:32:25</time>
<date>2001-03-29</date>

</Time>
<EventName>PIR</EventName>
<state>DETECT</state>

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 59

</Event>
<Event eID="0">
<Time>
<time>16:32:28</time>
<date>2001-03-29</date>
</Time>
<EventName>Tmp</EventName>
<state>+23.00</state>

</Event>
<Event eID="0">
<Time>
<time>16:32:30</time>
<date>2001-03-29</date>
</Time>
<EventName>PIR</EventName>
<state>SILENT</state>

</Event>
</Sensor>

An XML Schema is required to describe the structure of the XML document
above. The schema has to define the following:

• The elements and attribute that can appear in a document.

• The child elements for a particular element.

• The number and the order of the child elements.

• Whether an element is empty or can include text.

• Define the data types for elements and attributes.

The XML Schema is independent of the number of sensors and the kind of
sensed events. If the number of sensors increase or their capability to sense the
environment change, no further change are required to the XML Schema. The
XML Schema for log data looks like:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3schools.com"

xmlns="http://www.w3schools.com"

elementFormDefault="qualified">

<xs:element name="Sensor">

<xs:complexType>

<xs:sequence>

<xs:element name="Event" maxoccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="Time" maxoccurs="unbounded">

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 60

<xs:complexType>

<xs:sequence>

<xs:element name="time" type="xs:time"/>

<xs:element name="date" type="xs:date"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="EventName" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

5.5 Creating Dynamic HTML

To present the end user a log data, easy to understand and user friendly XML
is converted dynamically to HTML. The dynamic generation of HTML from
XML is done using Extensible Stylesheet Language (XSL) as shown in figure
5.3. It is used to define style and data represented in XML. If the data changes
or increases, the XSL document remains same. XML does not have a fixed
tag set like HTML and does not have semantics by itself [32] [53]. The XML
document does not say anything about the way in which a particular piece of
information should be presented. There is no formatting information included.
For example, the Sensor element in XML document is not understood. It can
mean any thing. XSL describes how the XML document should be displayed.
The goal of XSL is to develop a stylesheet language that creates the desired
output. XSL consists of three parts:

• XSLT: XSL Transformations(XSLT) is a language for transforming XML
documents into another. A transformation expressed in XSLT describes
rules to transform a source XML tree into a result tree.

• XPath: A language to navigate through elements and attributes in XML
documents.

• XSL-FO: A language for formating XML documents.

Since a XSL stylesheet is a XML file itself, the file begins with an xml decla-
ration. The xsl:stylesheet element indicates that this document is a stylesheet.
The template has also been wrapped with xsl:template match=”/” to indicate
that this is a template that corresponds to the root (/) of the XML source
document.

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 61

The root element is the Sensor in the XML document shown in the beginning
of this chapter. The XSL document transform the log data into HTML table
looks like:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

<html>
<head>
<title>Log Data</title>

</head>
<body>
<h3>Log Data</h3>
<table border="6" width="750">
<tr bgcolor="#9ACD32">
<th>Event Name</th>
<th>Event Time</th>
<th>Event Date</th>
<th>State</th>

</tr>
<xsl:for-each select="Sensor/Event">
<tr>
<td bgcolor="#C6DEFF"><xsl:value-of select="EventName"/></td>
<td bgcolor="#00FFFF"><xsl:value-of select="Time/time"/></td>
<td bgcolor="#FAF8CC"><xsl:value-of select="Time/date"/></td>
<td bgcolor="#ff00ff"><xsl:value-of select="state"/></td>
</tr>

</xsl:for-each>
</table>

</body>
</html>

Figure 5.3: Creating HTML.

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 62

</xsl:template>
</xsl:stylesheet>

Figure 5.4: Presenting XML Log Data in Table

Separating stylesheet (XSL) from data (XML) offers the benefit to present the
data in different ways. A XSL stylesheet basically consists of a XSL transfor-
mation templates. Each template matches some set of elements in the source
tree and describes the contribution that the matched elements make in the re-
sult tree. A template is instantiated for a particular source element to create
part of the result tree. A template can contain elements that specify literal
result element structure. When a template is instantiated, each instruction is
executed and replaced by the result tree fragment that it creates. Instructions
can select and process descendant source elements. Processing a descendant
element creates a result tree fragment by finding the applicable template rule
and instantiating its template. The elements are only processed when they have
been selected by the execution of an instruction. The result tree is constructed
by finding the template rule for the root node and instantiating its template.
The xsl:for-each is an iterator which processes each of the selected nodes using
the template that it contains. The xsl:value-of element inserts the string value
of an expression into the result tree. Figure 5.4 illustrate the result presentation

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 63

from the HTML document generated. The combination of XML and XSL gen-
erate dynamic and data independent HTML. The whole process is illustrated in
figure 5.5. To convert log data from sensor nodes into XML file, the following
three classes are implemented:

1. GenXMLFromtext

2. Sensor

3. Event

The main class is GenXMLFromText. It has five methods: The constructor
GenXMLFromFile(), parseText(), WriteInFile(), toString() and main().
This class aggregates a HashMap keeping the sensors instance.

Figure 5.5: Creating HTML from Log Data

The constructor GenXMLFromFile() takes three parameters: The path of
the schema, the log data file generated from the sensor node and the name of
the output XML file. It adds the path of the schema to be linked to the XML
file. The parseText() method opens the log data file and reads each line. It
uses the Java StringTokenizer class to break a string into tokens according to
the data of the event (time, date, name, data). According to the kind of the
data in the token, parseText() calls a particular method from the class Sensor
or the calss Event to handle this token. The parseText() method looks like:

public void parseText() throws Exception {
RandomAccessFile file = new RandomAccessFile(LogDataFile, "r");
String line = "";
StringTokenizer token = null;
String tokenNext = "";

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 64

Event evt = null;
while (file.getFilePointer() < file.length()) {
line = file.readLine();
if (line.length() == 0) {
continue;

}
token = new StringTokenizer(line, " ");
System.out.println(line);
Sensor sensor = null;
int size = token.countTokens();
for (int loop = 0; loop < size; loop++) {
tokenNext = token.nextToken();
switch (loop) {
case 0:
sensor = (Sensor) sensors.get(tokenNext);
evt = new Event();
if (sensor == null) {
sensor = new Sensor(tokenNext);
sensors.put(tokenNext, sensor);

}
sensor.addEvent(evt);
break;

case 1:
tokenNext = tokenNext.substring(1);
evt.date = tokenNext;
break;

case 2:
tokenNext = tokenNext.substring(0, tokenNext.length()-1);
evt.time = tokenNext;
break;

case 3:
evt.name = tokenNext;
break;

case 4:
evt.data = tokenNext;
break;

case 5:
evt.eventId = Integer.parseInt(tokenNext);

break;
}

}
}
}

CHAPTER 5. DISPLAYING AND PROCESSING LOG DATA 65

5.6 Remote Log Display

As explained above for the offline log a trigger event could be used. Sensors
which receive this event send their logs towards the base station and propagate
this event to other sensors. This event could be generated by an operator on
the base station or in regular intervals. In case there is no operator near base
station and log needs to be displayed at a remote computer, a new mechanism
is required. This mechanism is outlined below.

• Communication with the base station is done using a cellular-phone or
internet.

• Upon receiving a message, the base station generates a trigger event.

• Sensors receiving the trigger event send their logs towards the base station
and propagate trigger events to their neighbors.

• The base station generates XML and converts it into HTML.

• HTML is viewed by users, who do not need to be near the base station,
accessing the web-server running on the base station.

The procedure described above enables end users to view the log data at different
location only in need of an internet connection. This eliminates the need of being
present near the sensor network.

Chapter 6

Memory Management
in the Application

Sensors are inexpensive devices with tiny memory. Proper memory management
is necessary for an application. In the last chapter it is explained, how to display
and processing the log data. In this chapter memory management techniques
are presented. Log data contains entries of the structure:

struct {
int logType; //log type are defined in a separate file for

//example 49 means temperature
Time time; //time at which log is generated
Data date; //date at which log is generated
vector data; //data associated with log.

} logEntry;

6.1 Block Reservation

In case a new sensing event occurs and no space is left to log data, some previous
log entries have to be overwritten. In the following text two log strategies are
explained: FIFO and Priority based overwriting.

6.2 FIFO Log Overwriting

In the FIFO (First In First Out) log overwriting scheme, the oldest log entry is
overwritten by an new log entry [7] [54]. This scheme has two advantages: It is
easy to implement and needs little processing. It can be implemented using a
list only keeping track of two pointers. One pointer points to the head of the

66

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 67

list and the other points to the bottom. When the bottom pointer reaches the
reserved memory limit for logging, it is set to the head pointer. New log entries
overwrite the oldest log entries. The scheme is illustrated in figures 6.1, 6.2 and
6.3.

Figure 6.1: Memory Block with n-2 Log Entries

Figure 6.2: Memory Block with N Log Entries

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 68

Figure 6.3: Memory Block with N+1 Log Entries

A further advantage of this scheme is that no traversing of the list is required.
Overwriting is done in O(1) time. The log data entries are stored in the reserved
memory block with n entries. The log data entries are stored according to their
arrival time.

6.3 Priority Based Log Overwriting

Concernning the possibility that some log entries are more important than oth-
ers, FIFO-Log overwriting might not always be the best strategy. The FIFO-Log
overwriting scheme does not care about the importance of log entries in the ap-
plication. Log entries are always replaced, when a new log entry arrives. If the
oldest log entry has higher priority than the new log entry, it is still replaced.
Priority based log overwriting scheme comprises an alternative strategy in this
situation. When memory block reservation has reached its limit, the new log
entry is written by overwriting the oldest log entry with lesser priority. This
log overwriting scheme is illustrated in figure 6.4 and 6.5. When environmental
variables are collected by sensors distributed over the area, reading of these sen-
sors must be transmitted to a base station for further processing. We assume
wireless communication and only a limited number of sensors in the range of
the base station. The size of the sensor node’s memory is only 64 kbyte. Events
occured are stored in the sensor node memory. When memory is full and a new
event ocurres, an old log entry has to be overwitten by the new data. The oldest
log entry is choosen to be overwritten by the new log entry. In figure 6.4, log
entry number 1 is the oldest. The head pointer points to the oldest log entry.
Depending on the priority of the new event, the oldest log entry is overwritten

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 69

Figure 6.4: Memory Block with N Log Entries.

Figure 6.5: Memory Block after Overwriting wit log
entry 4.

if its priority is smaller. Another example is illustrated in figure 6.5. The new
event has priority 4, log entry number 3 is overwritten with the new log entry.
In a worst case, an entry with smaller priority is stored in the last position of
the memory. Since this entry is the only, which has a smaller priority (2) than

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 70

Figure 6.6: Memory Block in the Worst Case.

the new entry’s priority (3) as illustrated in figure 6.6. In this case the whole
memory is searched without finding a place for the new entry in O(n) time.

6.3.1 Implementation of Priority Based Log Overwriting

The time complexity of priority based log overwiting can be reduced to O(log(n)).
Two implementations, a priority queue based and a priority linked list based
are explained below.

Queue Based Implementation

A priority queue is an abstract data type (ADT). Each element has an associated
priority. The dequeue operation always removes the lowest (or highest) priority
item remaining in the queue [7] [12] [14] [47] [49] [58]. Data structure supporting
these operations is called a min(max) priority queue. Priority queues can be
implemented by a simple unordered linked list. Log entries are compared by
attributes called keys. The Keys are assigned to each log entry in the log data.
Keys are used to identify or weight entries. Keys assigned to an log entry must
not necessarily be unique. A comparsion rule (≤) is needed for priority queue
that will never contradict itself. therefor the comparison rule must define a total
relation. A relation is total if for every pair of keys, it satisfies the following
properties:

• Reflexive: k ≤ k.

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 71

• Antisymmetric: if k1 ≤ k2 and k2 ≤ k1, then k1 = k2.

• Transitive: if k1 ≤ k2 and k2 ≤ k3, then k1 ≤ k3.

A priority queue supports the following operations:

1. size(), which returns the number of entries in the queue.

2. Insert(k, e), which inserts an entry e with key k in the priority queue.

3. min(), which returns an entry with smallest key.

4. deleteMin(), which finds, returns and removes the minimum entry in the
priority queue.

5. isEmpty(), which tests whether the queue is empty.

Event Priority
MOVEMENT 6
VIBRATION 5
BUTTON PRESSED 4
MICROPHONE LOUD 3
SENSOR LIGHT 2
SENSOR TEMPERATURE 1

Table 6.1: Events and their Properties.

Operation Priority Queue
insert(3, BUTTON {(3, BUTTON
PRESSED) PRESSED)}
insert(5,VIBRATION) { (3, BUTTON

PRESSED), (5, VIBRATION)}
insert(1, SENSOR {(1, SENSOR
TEMPERATURE) TEMPERATURE),

(3, BUTTON
PRESSED),
(5, VIBRATION)}

deleteMin() {(3, BUTTON
PRESSED), (5, VIBRATION)}

deleteMin() {(5, VIBRATION)}

Table 6.2: Operations and their Effects in a Priority Queue.

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 72

Note that one type of log entry could occure many times. In this case,
the priority number and the time constitute the whole priority of the
log entry. For log entries with the same priority, a second comparsion
on the time stamp is carried out.
Table 6.1 shows events coded in log entries and their priorties. Table 6.2 shows
in a series of operations. A binary heap could be used to implement the priority
queue. A binary heap has the following structure properties:

• A heap is a complete filled binary tree with the exception of the bottom
level. The bottom level is filled from left to right.

• A binary tree has between 2h and 2h+1 − 1 nodes, where h is the height
of the tree.

• The height h of a complete binary tree is blogNc.

• A complete binary tree can be represented in an array and no links are
needed.

• For any element in array position i, the left child element is in array
position 2i and the right child is in array position 2i+1.

Figure 6.7 shows a binary tree and its array implementation.

Figure 6.7: A Binary Tree and its Array Implementation.

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 73

A binary heap allows operations to be performed quickly. When searching
minimal entries, it makes sense that the smallest entry should be at the root.
The binary tree has the following order properties:

• There is a root node, which does not have parents.

• Every node except the root node, has a key greater than (or equal to) the
key in its parent.

• The minimal entry can be found at the root node in constant time.

Insert operation:
Consider a binary heap with N entries. After insertion of a new entry, it will
have N+1 entries. To insert an entry into the binary heap, a node is added so
that the resulting tree is a compelete binary tree with N+1 nodes. If the new
entry can be placed in the new node without violating heap order, then there
is nothing left to do. Otherwise the entry’s key is greater than its parent’s key.
In this case, keys are swapped between the two nodes (i.e. the entry and its
parent). This process is repeated from the bottom toward the root until the
order properties are perserved. Figure 6.8 illustrates the initial heep. Figure
6.9 and 6.10 illustrate the procedure to place a new entry e with key 6 into the
heap.

Figure 6.8: Initial Heap before Insertion

Figure 6.9: Finding Place e=6 Figure 6.10: Inserting e=6

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 74

Figure 6.11: Finding Place for e=2 Figure 6.12: Finding Place for e=2

Figure 6.13: Inserting e=2

In figure 6.11, 6.12 and 6.13 a new entry e with key 2 is inserted into the
initial heap from figure 6.8. Figure 6.14, 6.15 and 6.16 illustrate how to place a
new entry e with key 1 into the initial heap from figure 6.8. It is supposed that
a new entry occures after the first entry is placed in the initial heap.

Figure 6.14: Finding Place for e=1 Figure 6.15: Swapping Keys

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 75

Figure 6.16: Inserting e=1

Delete operation:
The entry to be deleted (i.e. the minimum key in the binary heap) is removed
from the root node. When the minimum is removed, a hole is created at the
root. The heap’s size becomes now one smaller and the last entry e in the heap
must move somewhere in the heap to satisfy the heap properties. Since the
binary tree must be restructured to become a complete binary tree with N-1
entries. The entry in the last node is deleted and placed into the root. If this
entry has a key less than or equal to either of the root’s two childern, nothing is
left to do. If this entry has a key greater than or equal to either of the root’s two
childern, the heap properties are broken. In this case, we slide the smaller of the
root’s childern into the hole, thus pushing the hole down one level. This step is
repeated until the new entry can be placed into the hole. Figure 6.17 shows an
initial heap prior to deleteMin. Figure 6.18. 6.19, 6.20 and 6.21 show the whole
deletion process step by step. In the worst case, the deletion algorithm moves
down the heap from the root to its leafs spending O(1) time at each level. For a
heap with n elements, this takes O(log(n)) time. In figure 6.16 a heap prior to
the deleteMin is shown. After the entry 1 is removed, entry 5 must be moved to
the right place in the heap. The entry 5 can not be placed in the hole, sliding
the hole down one level. This operation is repeated again and since entry 5 is
larger than entry 2, entry 2 is placed into the hole and this creates a new hole
one level deeper. Then entry 4 is placed into the hole and a new hole is created

Figure 6.17: Heap before Deletion

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 76

Figure 6.18: Deletion in the Heap Figure 6.19: First Swapping Keys

Figure 6.20: Second Swapping Keys Figure 6.21: Final Heap

in the bottom level. Since once again, entry 5 it too large. Finally, entry 5
is placed in the hole at the bottom level. This general strategy is known as a
percolate down.

6.4 Binary Tree and Linked list based imple-
mentation

A binary tree and a linked list based implementation improves the worst case
time complexity of queue-based implementation. A linked list is a data structure
in which the objects are arranged in a linear order [7] [54]. It is a collection
of nodes gathered in a linear order. The linked list is an alternative to the
array when a collection of objects is stored. Where in array the linear order
is determined by the index of the array, the linear order in a linked list is
determined by a pointer in each object. Thus, the linked list is implemented
using pointer. Figure 6.22 shows a linked list whose elements are integer. Each
element in the list is an object with fields for the key and the pointer to the next
object. The next field of the tail is NIL. Linked list provides a simple, flexible
representation for dynamic sets. A linked list supports the following operations:

• Search(S, k), which returns a pointer x to an element in a given set S
such that key[x] = k, or NIL if no such element belongs to S.

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 77

• INSERT (S, x), which augments the set S with the element pointed to
by x.

• DELETE(S, x), which removes the pointer x to an element from S. This
operation uses a pointer to an element x, not a key value.

• MINIMUNM(S), which returns the element of S with the smallest key.

• MAXIMUM(S), which returns the element of S with the largest key.

• SUCCESSOR(S, x), which returns the next element in S greater to x.

• PREDECESSOR(S, x), which returns the next element in S smaller to
x.

Note that the operations SUCCESSOR(S, x) and PREDECESSOR(S, x) are
queries that can be often extended to sets with non-distinct keys. The search
operation in linked list takes Θ(n) time, where n is the number of object in the
list.

6.4.1 Binary Search Trees

A binary search tree is a tree data structure that can be used to implement
both dictionary and priority queue. It supports all the operations of linked list
but takes only Θ(log(n)) time for the DELETE and SEARCH operations [12]
[54]. A key in a binary search tree T are always stored in such a way that
satisfies the binary search tree property:
Let v be a node in a binary search tree T . If w is a node in the left sub-
tree of v, then key[w] ≤ key[v]. If w is a node in the right subtree of v, then
key[w] ≥ key[v].

A binary search tree can be represented by a linked data structure in which each
node is an object. The property allows to print out all the key in a binary search
tree in sorted order by an algorithm called INORDER− TREE −WALK as
illustrated in table 6.3. This algorithm takes Θ(n) to walk an n-node binary
search tree. If INORDER-TREE-WALK algorithm is used with the binary tree
in figure 6.23, it prints the keys in the order 2, 3, 3 , 4, 5, 6. Note that when
a child or the parent is missing, the appropriate field contains the value NIL.
Each node in a binary tree contians the following fields:

Figure 6.22: Linked List Example

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 78

Figure 6.23: Binary Tree Example

INORDER-TREE-WALK(root[T])
x← root[T]

if x 6= NIL
then INORDER-TREE-WALK(left[x])

print key[x]
INORDER-TREE-WALK(right[x])

Table 6.3: Inorder Tree Walk Algorithm.

• key[x], which points to the key of the node x.

• left[x], which points to the left child of the node x.

• right[x], which points to the right child of the node x.

• p[x], which points to the parent of the node x.

Search in Binary Search Trees

To search for a key stored in the binary tree, the binary tree is seen as a decision
tree. Given a pointer to the root of the tree and a key k, the TREE-SEARCH
algorithm shown in table 6.4, returns a pointer to a node with key k if it exists.
Otherwise it returns NIL. The TREE-SEARCH algorithm begins its search at
the root of the tree and traces a path downward in the tree. It takes O(h) time,
where h is the height of the tree. Using the TREE-SEARCH algorithm on the
binary tree depicted in figure 6.23 to search for the key 2, the path 4→ 3→ 2
is followed from the root.

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 79

TREE-SEARCH(x, k)

if x = NIL or k = key[x]
then return x

if k < key[x]
then return TREE-SEARCH(left[x], k)
else return TREE-SEARCH(right[x], k)

Table 6.4: Search Algorithm in Binary Trees

Insertion in Binary Search Trees

The TREE-INSERT(T, z) algorithm, as shown in table 6.5, is used to insert a
new value v into a binary search tree T. This algorithm is passed a node z for
which key[z] = v, left[z] = NIL, and right[z] = NIL. It begins at the root of
the binary tree and traces a path downward. The algorithm takes O(h) time,
where h is the height of the binary tree. If the TREE-INSERT algorithm is
applied to insert a node z in the binary tree in figure 6.23 with key[z] = 1, the
resulting tree is shown in figure 6.24.

TREE-INSERT(T, z)

y ← NIL
x← root[T]

while x 6= NIL
do y ← x

if key[z] < key[x]
then x← left[x]
else x← right[x]

p[z]← y
if y = NIL

then root[T]← z
else if key[z] < key[y]

then left[y]← z
else right[y]← z

Table 6.5: Insert Algorithm in Binary Trees

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 80

Figure 6.24: Inserting Key 1 into the Binary Tree shown in figure 6.23.

Deletion from Binary Search Trees

The TREE-DELETE(T, z) algorithm is shown in table 6.6 It calls another al-
gorithm called TREE-SUCCESSOR(x). This algorithm is shown in table 6.7.
The TREE-SUCCESSOR(x) algorithm finds the successor of the node x in the
sorted order determined by an order tree walk. If TREE-SUCCESSOR algo-
rithm is applied to the key 3 in the binary tree from figure 6.23, it returns the
root node with key 4. If it is applied to the key 1 in the binary tree from figure
6.24, it returns the node with key 2.

1. If the node z has no children, it just be removed from the binary tree.
For example, if the node with key 2 in figure 6.23 is removed, the result
binary tree will be as in figure 6.25.

2. If node z has only one child, it will be spliced out. A link between its
parent and its child is made. For example, if the node with key 6 in figure
6.23 is removed, the result binary tree will be as in figure 6.26.

3. If node z has two children, its successor will be spliced out, which has at
most one child. A link between its parent and its successor is made. For
example, if the root node with key 4 in figure 6.23 is removed, the result
binary tree will be as in figure 6.27.

The TREE-DELETE(T, z) algorithm takes O(h) time, where h is the height of
the binary tree.

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 81

TREE-DELETE(T, z)

if left[z] = NIL or right[z] = NIL
then y ← z
else y ← TREE − SUCCESSOR(z)

if left[y] 6= NIL
then x← left[y]
else x← right[y]

if x 6= NIL
then p[x]← p[y]

if p[y] = NIL
then root[T]← x
else if y = left[p[y]]

then left[p[y]]← x
else if right[p[y]]← x

if y 6= z
then key[z]← key[y]

return y

Table 6.6: Delete Algorithm in Binary Trees

TREE-SUCCESSOR(x)

if right[x] 6= NIL
then return TREE-MINIMUM(right[x])

y ← p[x]
while y 6= NIL and x = right[y]

do x← y
y ← p[y]

return y

TREE-MINIMUM(x)

while left[x] 6= NIL
do x← left[x]

return x

Table 6.7: Successor Algorithm in Binary Trees

In the case where a small number of priotity and log data, a linked list can be
used to store the priority of the event and a queue can be used to store the

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 82

Figure 6.25: Deleting Key 2 from the Binary Tree shown in figure 6.23.

Figure 6.26: Deleting Key 6 from the Binary Tree shown in figure 6.23.

Figure 6.27: Deleting the Root Key 4 from the Binary Tree shown in
figure 6.23.

log entries. A linked list and a queue are used in this case due to their simple
implementation. Each element of the linked list as illustrated in figure 6.28 has

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 83

Figure 6.28: Using Linked Lists and Queues to store Log Data

three pointers:

1. Next pointer, which points to the next element in the linked list.

2. Bottom pointer, which points to the tail of the queue.

3. Top pointer, which points to head of the queue.

To insert a new log entry in the queue, priority search algorithm is made first
in the linked list. This algorithm to search for the aprpriate priority of the
new log entry. The new log entry is then inserted in the queue and the bottom
pointer is increased by 1 to points to the new position of the tail of queue. If the
appropriate priority of the new log entry is not found in the linked list, a new
element is inserted in the linked list. This new priority element in the linked
list points to a new queue, where the new log entry will be inserted.

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 84

Figure 6.29: Inserting new Log Data with Priority in the Structure
shown in Figure 6.28.

This case is illustrated in figure 6.29. If a queue is full, the new log entry
overwrite the first element in the queue, where the top pointer points to.
Figure 6.30 shows the case, where a new log entry is inserted in the structure
from figure 6.28. The new log entry has priority 5 and there is a free place in
the queue belongs to this priority. In practice, the number of priorities is small
and the number of log entries is a huge. therefor, the priority is implementd

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 85

Figure 6.30: Inserting new Log Data in free Space in the Queue.

using linked list like before, but the log entries is implemented using binary
search tree as illustrated in figure 6.31. This makes the search operation take
only O(log(n)).

CHAPTER 6. MEMORY MANAGEMENT IN THE APPLICATION 86

Figure 6.31: Using Linked Lists and Binary Search Trees to Store the
Log Data.

Chapter 7

Conclusion

The fundamental focus of this thesis has been on analysis, design and implenta-
tion of data-logger using offline strategy. The system should be flexible enough
to include existing access solutions and extensible enough to work with future
ones. To reach this goal the system is perused and evaluated in order to de-
termine the important features required in its design. Although it is difficult
to perform a full evaluation of such a design, a prototype implementation can
be used to show the feasibility of the solution. Thus when the evaluation was
finished and the design was complete a prototype was implemented to test the
design. The implemented system represents the log data and independent of
the number and type of sensor nodes as well as the number and type of events.
The work has been achieved in an experimental fashion. Many initial ideas
were discussed to give an understanding of its integerity. Those ideas that were
found to be very important were implemented and tested to see if they should
be investigated further. Successfully implemented ideas were then refined and
further discussed. The developed system able to extract the data from sensor
nodes, process and represent the log data using Java and XML technologies.
The XML representation has been presented and tested. Aspects such as event
priority, time complexity and independency have been considered. The system
is dynamic and change the provided display depending on the collected data.
The need for mobility and data management in WSNs makes it necessary to
develop algorithms, protocols and data structures which can combine together
to offer flexible QoS and a user friendly interface. In this sence a new worst
case optimal solution is implemented for the problem of combining log data
with priorities in a given sensor network. The implemented system gives the
possibility of comparing different constructions methods for WSNs. The data
structure used is similar to ScatterWeb, it adds time, identification and priority
information to the sensor readings. The XML representation can be accessed by
other applications independent of their home-platform and their programming
language. Polling the information from the sensor nodes relaxes the sensor node
memory size limitation at the price of adding a little bit latency. However, since

87

CHAPTER 7. CONCLUSION 88

no complicated processing is done in each step of processing chain in parallel, the
latency could even be smaller than human reaction time. Incapsulation action
behind a facade makes it possible to interface to application via XML like-query
and additional command. In WSNs, the mobility of requester for information
and log data from sensor network is a big issue. Based on this implementation
different WSN applications can be realized:

• Implementation and testing of WSN protocols for future real world appli-
cations.

• Organizing the data in a database with a query language similar to SQL.

• Building an asynchronize service to reconfigure the sensor nodes in real
time.

• Embedding the XML representation in a meta-XML language to extend
the implemented application.

Further enhancement
For the system developed in this project there are further enhancemnets.

• During the expriments, a lower range of the ESB’s transceiver have been
observed to deliver stable wireless connections inside building like the test-
lab.

• Adding security to the system architecture, without security the system
can become a point of attack (e.g.:cryptography and key management).

Bibliography

[1] A. Liers, H. Ritter, J. Schiller, Data Gathering and Routing in the Scat-
terWeb Sensor Network, Freie Universität Berlin Institute of Computer
Systems and Telematics, Technical Report, August 2004.

[2] Bharath Sundararaman, Ugo Buy, and Ajay D. Kshemkalyani, Clock Syn-
chronization for Wireless Sensor Networks: A Survey, Department of Com-
puter Science, University of Illinois at Chicago, 2005.

[3] http://www.btnode.ethz.ch/Documentation/Tutorials,ETH Zurich, 2007.

[4] C. Schindelhauer. Mobility in wireless networks. In 32nd Annual Con-
ference on Current Trends in Theory and Practice of Informatics, Czech
Republic, January 2006.

[5] C. F. Tsai and M. S. Younga, Pyroelectric infrared sensor-based ther-
mometer for monitoring indoor objects, Department of Electrical Engi-
neering, National Cheng-Kung University, Tainan, 701 Taiwan, Republic
of China, 2003.

[6] http://cnx.org, 2006,Naren Anand,Connexions.

[7] Cormen Thomas H.,Ronald L. Rivest, Charles E. Leiserson, Introduc-
tion to Algorithms, McGraw-Hill Companies (Juli 1990), ISBN-13: 978-
0070131439.

[8] http://cva.ap.buffalo.edu/courses/f06/arc598/node/122,2006,Physical
computing.

[9] http://www.datasheetcatalog.com/datasheets pdf/M/S/P/4/
MSP430F149.shtml, 2006.

[10] David Hunter, Kurt Cagle, Chris Dix, Beginning XML, Wiley & Sons;2nd
(2004), ISBN-10: 1861005598.

[11] Dazhi Chen and Pramod K. Varshney, QoS Support in Wireless Sensor
Networks: A Survey, Dazhi Chen and Pramod K. Varshney, Department
of EECS, Syracuse University Syracuse, NY, U.S.A 13244, 2004.

89

BIBLIOGRAPHY 90

[12] Dinesh P. Mehta, Sartaj Sahni, Handbook of Data Structures and Ap-
plications, Chapman & Hall/CRC (October 28, 2004), ISBN-13: 978-
1584884354.

[13] E. Anceaume and I. Puaut , A Taxonomy of Clock Synchronization Algo-
rithms, Research report IRISA, NoPI1103, July 1997.

[14] Ellis Horowitz, Sanguthevar Rajasekaran, Computer Algorithms,
W.H.Freeman & Co Ltd; Auflage: 2Rev Ed (August 1997), ISBN-13:
978-0716783169.

[15] Feng Zhao,Leonidas Guibas, Wireless Sensor Networks: An Information
Processing Approach, Morgan Kaufmann (2004), SBN-10: 1558609148.

[16] Fikret Sivrikaya, Blent Yener, Time Synchronization in Sensor Networks:
A Survey, Department of Computer Science Rensselaer Polytechnic Insti-
tute, NY., 2004.

[17] http://focus.ti.com/lit/ug/slau056f/slau056f.pdf,User
Guide,MSP430x4xx Family.

[18] http://www.fu-berlin.de/forschung/transfer/messen/04HMISchiller.pdf,
ScatterWeb.

[19] G. Hoblos, M. Staroswiecki, A. Aitouche, Optimal design of fault tolerant
sensor networks, IEEE International Conference on Control Applications,
Anchorage, AK, September 2000.

[20] Herbert Schildt, Java 2: The Complete Reference, McGraw-Hill Osborne
Media; 5th edition, ISBN−10: 0070495432, 2004.

[21] http://www.hobbyprojects.com/pic tutorials/tutorial11.html
Electronic Circuits and tutorials.

[22] Holger Karl, Andreas Willig, Protocols and Architectures for Wireless
Sensor Networks., Wiley (June 24, 2005), ISBN-13: 978-0470095102.

[23] http://www.inf.fu-berlin.de/inst/ag−tech/scatterweb net/datasheets/
TSL245.pdf

[24] www.inf.fu-berlin.de/inst/ag−tech/scatterweb net/documentation/
First Steps.pdf.

[25] http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb net/documentation/
ScatterViewer UserGuide.pdf

[26] http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb net/documentation/
User Guide.pdf

[27] Ioannis Chatzigiannakis, Athanasios Kinalis, Sotiris Nikoletseas, Sink Mo-
bility Protocols for Data Collection in Wireless Sensor Networks, Com-
puter Technology Institute (CTI) and University of Patras, 2006.

BIBLIOGRAPHY 91

[28] Ilker Demirkol, Cem Ersoy, and Fatih Alagz, MAC Protocols for Wireless
Sensor Networks:a Survey, 2006.

[29] Jamal N. Al-Karaki, Ahmed E. Kamal, Routing Techniques in Wireless
Sensor Networks:A Survey,Dept. of Electrical and Computer Engineering
Iowa State University, Ames, Iowa 50011, 2004.

[30] Jana van Greunen, Jan Rabaey, Lightweight Time Synchronization for
Sensor Networks, University of California, Berkeley, 2003.

[31] http://www.javaworld.com/javaworld/jw-05-1998/jw-05-javadev.html.

[32] Jeni Tennison, Beginning XSLT, WROX Press Ltd 2002, ISBN-10:
1861005946.

[33] Jeremy Elson, Time Synchronization Services for Wireless Sensor Net-
works, Department of Computer Science University of California, Los An-
geles Los Angeles, CA, 90095, 2001.

[34] Jerry Luecke, Analog and Digital Circuits for Electronic Control System
Applications: Using the TI MSP430 Microcontroller, Newnes,ISBN-10:
0750678100,2004

[35] John P. Hayes, Computer Architecture and Organization, McGraw-Hill
Companies; 3rd edition (December 1, 1997),ISBN-10: 0070273553.

[36] Juan Alonso, Adam Dunkels and Thiemo Voigt, Bounds on the Energy
Consumption of Routings in Wireless Sensor Networks, SICS, Swedish
Institute of Computer Science, Stockholm Sweden Dept. of Comp. Sci.
and Engineering, Malardalen University, Sweden, 2005.

[37] K. Daniel Wong, Physical Layer Considerations for Wireless Sensor Net-
works, Department of Information Technology Malaysia University of Sci-
ence and Technology Petalhg Jaya, Selangor, Malaysia, 2004.

[38] Kal Ahmed, Sudhir Ancha, Andrei Cioroianu, Jay Cousins, Jeremy Cros-
bie, John Davies, Kyle Gabhart, Steve Gould, Ramnivas Laddad, Sing Li,
Brendan Macmillan, Daniel Rivers-Moore, Judy Skubal , Karli Watson,
Scott Williams,Professional Java XML, WROX Press Ltd (3. Mai 2001),
ISBN-10: 186100401X.

[39] Kay Rmer, Oliver Kasten, Friedemann Mattern, Middleware Challenges
for Wireless sensor networks, Department of computer science, ETH
Zurich, Switzerland, 2002.

[40] Kay Rmer, Philipp Blum, Lennart Meier, Time Synchronization and Cal-
ibration in Wireless Sensor Networks, ETH Zurich, Switzerland

[41] Kemal Akkaya and Mohamed Younis, A Survey on Routing Protocols for
Wireless Sensor Networks, Department of Computer Science and Electri-
cal Engineering University of Maryland, Baltimore County, 2003.

BIBLIOGRAPHY 92

[42] Kyle Jamieson, Hari Balakrishnan, A MAC Protocol for Event-Driven
Wireless Sensor Networks, MIT Laboratory for Computer Science, Mas-
sachusetts Institute of Technology Cambridge, MA 02139, 2006.

[43] Lan F. Akyildz, Wilian su, Yogesh Sankarasubramaniam, Erdal Cayiric,
A Survey on sensor networks, george Institute of technology, 2002.

[44] Lizhi Charlie Zhong, Jan Rabaey, Chunlong Guo, Rahul Shah, Data Link
Layer Design For Wireless Sensor Networks, Berkeley Wireless Research
Center Department of EECS University of California at Berkeley, 2001.

[45] Loannis Chatzigiannakis, Athanasios Kinalis, Sotiris Nikoletseas, Sink
Mobility Protocols for Data Collection in Wireless Sensor Networks, Com-
puter Technology Institute (CTI) and University of Patras, 2006.

[46] Lutz Bierl, Das grosse MSP430 Praxisbuch, Franzis,2004.

[47] Mark A. Weiss, Data Structures and Algorithm Analysis in Java, ddison-
Wesley Longman, Amsterdam; Auflage: US Ed (Dez. 2002), ISBN-13:
978-0201357547.

[48] http://www.math.carleton.ca/∼help/matlab/MathWorks R13Doc/
techdoc/matlab external/ch jav38.html.

[49] Michael T. Goodrich, Roberto Tamassia, Data Structures and Algorithms
in Java, Wiley & Sons; Auflage: 2nd (September 2005), ISBN-13: 978-
0471383673.

[50] Mihaela Cardei, Ding-Zhu Du, Improving Wireless Sensor Network Life-
time through Power Aware Organization, 2005.

[51] Mihail L. Sichitiu and Chanchai Veerarittiphan, Simple, Accurate Time
Synchronization for Wireless Sensor Networks, Electrical and Computer
Engineering Department North Carolina State University Raleigh, NC
27695-7911, 2003.

[52] N. Bulusu, D. Estrin, L. Girod, J. Heidemann, Scalable coordination for
wireless sensor networks: self-configuring localization systems, Interna-
tional Symposium on Communication Theory and Applications (ISCTA
2001), Ambleside,UK, July 2001.

[53] http://nwalsh.com/docs/tutorials/xsl.

[54] Ottmann Thomas, Peter Widmayer, Algorithmen und Datenstrukturen,
Spektrum Akademischer Verlag; Auflage: 4. A. (Januar 2002), ISBN-13:
978-3827410290.

[55] http://www.olimex.com/dev/pdf/msp430-jtag-d.pdf.

[56] http://www.parallax.com/dl/docs/prod/audiovis/PIRSensor-V1.2.pdf.

BIBLIOGRAPHY 93

[57] Peter Spasov, Microcontroller technology the 68HC11,Printic Hall,1999.

[58] Randy Brown,Calendar Queues: A Fast O(1) Priority Queue Implementa-
tion for the Simulation Event Set Problem, Communications of the ACM,
Volume 31, Pages: 1220 - 1227, Issue 10 (October 1988).

[59] S. Cho, A. Chandrakasan, Energy-efficient protocols for low duty cycle
wireless microsensor, Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, Maui, HI Vol. 2 (2000).

[60] Saurabh Ganeriwal, Ram Kumar, Sachin Adlakha and Mani Srivastava,
”Network-wide Time Synchronization in Sensor Networks,” Technical Re-
port UCLA, April 2002.

[61] http://www.scatterweb.net.

[62] Seungjoon Lee,Suman Banerjee,Bobby Bhattacharjee, The Case for a
Multi-Hop Wireless Local Area Network,University of Maryland College
Park, MD 20742 USA, 2003.

[63] http://www.st.com/stonline/books/pdf/docs/10305.pdf,PIR (PASSIVE
INFRARED) DETECTOR USING ST7FLITE05/09/SUPERLITE.

[64] Wei Ye, John Heidemann, Deborah Estrin, An Energy-Efficient MAC Pro-
tocol for Wireless Sensor Networks, 2001.

[65] http://www.xbow.com/Products/Product pdf files/Wireless pdf/
MICA2 Datasheet.pdf.

[66] http://www.w3schools.com/xml/xml whatis.asp.

