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Lectures in Wroclaw

‣ Epidemic Algorithms

• Monday, April 6th, 2009, 3pm 

‣ Random Networks

• Monday, April 6th, 2009, 6pm 

‣ Distributed Heterogeneous Hash Tables

• Tuesday, April 7th, 2009, 3pm 

‣ Network Coding

• Wednesday, April 8th, 2009, 11am 

‣ Locality in Peer-to-Peer Networks

• Wednesday, April 8th, 2009, 3pm 
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Kelips

‣ Indranil Gupta, Ken Birman, Prakash 
Linga, Al Demers, Robbert van 
Renesse

• Cornell University, Ithaca, New York

‣ Kelip-kelip
• malay name for synchronizing 

fireflies

‣ P2P Network
• uses DHT
• constant lookup time
• O(n1/2) storage size
• fast and robust update
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Kelips Overview

‣ Peers are organized in k affinity groups
• peer position chosen by DHT 

mechanism

• k is chosen as n1/2 for n peers

‣ Data is mapped to an affinity group 
using DHT

• all members of an affinity group store 
all data

‣ Routing Table
• each peer knows all members of the 

affinity group
• each peer knows at least one member 

of each affinity group

‣ Updates
• are performed by epidemic algorithms
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Routing Table

‣ Affinity Group View
• Links to all O(n/k) group members
• This set can be reduced to a partial 

set as long as the update mechanism 
works

‣ Contacts
• For each of the other affinity group a 

small (constant-sized) set of nodes
• O(k) links

‣ Filetuples
• A (partial) set of tuples, each detailing 

a file name and host IP address of the 
node storing the file

• O(F/k) entries, if F is the overall 
number of files

‣ Memory Usage: O(n/k + k + F/k)
• for 

Affinity Groups

Peers

Document

Index entry

Peers
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Lookup

‣ Lookup-Algorithm
• compute index value
• find affinity group using hash 

function
• contact peer from affinity group
• receive index entry for file (if it exists)
• contact peer with the document

‣ Kelips needs four hops to retrieve a 
file

Affinity Groups

Peers

Document

Index entry

Peers
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Inserting a Peer

‣ Algorithm

• Every new peer is introduced  by a special 
peer, group or other method, 

- e.g. web-page, forum etc.

• The new peer computes its affinity group and 
contacts any peer

• The new peer asks for one contact of the 
affinity group and copies the contacts of the 
old affinity group

• By contacting a neighbor node in the affinity 
group it receives all the necessary contacts 
and index filetuples

• Every contact is replaced by a random 
replacement (suggested by the contact peer)

• The peer starts an epidemic algorithm to 
update all links

‣ Except the epidemic algorithm the runtime is 
O(k) and only O(k) messages are exchanged
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How to Add a Document

‣ Start an Epidemic Algorithm to Spread the news in the 

affinity group

‣ Such an algorithm uses O(n/k) messages and needs 

O(log n) time

‣ We introduce Epidemic Algorithms later on
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How to Check Errors

‣ Kelip works in heartbeats, i.e. discrete timing

‣ In every heartbeat each peer checks one neighbor

‣ If a neighbor does not answer for some time

• it is declared to be dead

• this information is spread by an epidemic algorithm

‣ Using the heartbeat mechanisms all nodes also refresh 

their neighbors

‣ Kelips quickly detects missing nodes and updates this 

information
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Discussion

‣ Kelips has lookup time O(1), but needs O(n1/2) sized 

Routing Table

• not counting the O(F/n1/2) Filetuples

‣ Chord, Pastry & Tapestry use lookup time O(log n) but 

only O(log n) memory units

‣ Kelips is a reasonable choice for medium sized 

networks

• up to some million peers and some hundred 
thousands index entries
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To Do

‣ What is an Epidemic Algorithm
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Epidemic Spread of Viruses

‣ Observation

• most viruses do not prosper in real life

• other viruses are very successful and spread fast

‣ How fast do viruses spread?

‣ How many individuals of the popolation are infected?

‣ Problem

• social behavior and infection risk determine the spread

• the reaction of a society to a virus changes the epidemy

• viruses and individuals may change during the infection 
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Mathematical Models

‣ SI-Model (rumor spreading)
• susceptible → infected

‣ SIS-Model (birthrate/deathrate)
• susceptible → infected → 

susceptible

‣ SIR-Model
• susceptible → infected → recovered

‣ Continuos models
• deterministic
• or stochastic

‣ Lead to differential equations

‣ Discrete Models
• graph based models
• random call based

‣ Lead to the analysis of Markov 
Processes
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Infection Models

‣ SI-Model (rumor spreading)
• susceptible → infected
• At the beginning one individual is 

infected
• Every contact infects another 

indiviual 
• In every time unit there are in the 

expectation ß contacts

‣ SIS-Model (birthrate/deathrate)
• susceptible → infected → 

susceptible
• similar as in the SI-Model, yet a 

share of δ of all infected individuals 
is healed and can receive the virus 
again

• with probability δ an individual is 
susceptible again

‣ SIR-Model
• susceptible → infected → recovered
• like SI-Model, but healed individuals 

remain immune against the virus 
and do not transmit the virus again
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SI-Model

‣ Variables
• n: total number of individuals

- remains constant
• S(t): number of (healthy) susceptible 

individuals at time t
• I(t): number of infected 

individuals	

‣ Relative shares
• s(t) := S(t)/n	
• i(t) := I(t)/n	

‣ At every time unit each individual 
contacts ß partners

‣ Assumptions:
• Among ß contact partnres ß s(t) are 

susceptible
• All I(t) infected individuals infect ß 

s(t) I(t) other individuals in each 
round

‣ Leads to the following recursive 
equations:

• I(t+1)
 =  I(t)  + ß s(t) I(t)
• i(t+1)
 =  i(t)  + ß i(t) s(t)
• S(t+1)
 = S(t) –  ß s(t) I(t)
• s(t+1)
 = s(t) –  ß i(t) s(t)



‣ i(t+1)  =  i(t)  + ß i(t) s(t)
‣ s(t+1) = s(t) –  ß i(t) s(t)
‣ Idea: 

• i(t) is a continuous function
• i(t+1)-i(t) approximate first derivative

‣ Solution:
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SI-Model

‣ The number of infected grows 
exponentially until half of all members 
are infected

‣ Then the number of susceptible 
decrease exponentially
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SIS-Model

‣ Variables
• n: total number of individuals

- remains constant
• S(t): number of (healthy) susceptible 

individuals at time t
• I(t): number of infected 

individuals	

‣ Relative shares
• s(t) := S(t)/n	
• i(t) := I(t)/n	

‣ At every time unit each individual 
contacts ß partners

‣ Assumptions:
• Among ß contact partnres ß s(t) are 

susceptible
• All I(t) infected individuals infect ß 

s(t) I(t) other individuals in each 
round

• A share of δ of all infected 
individuals is susceptible again

‣ Leads to the following recursive 
equations:

• I(t+1)
 =  I(t)  + ß i(t) S(t) –  δ I(t)
• i(t+1)
 =  i(t)  + ß i(t) s(t) –  δ i(t)
• S(t+1)
= S(t) –  ß i(t) S(t) + δ I(t)
• s(t+1)
= s(t) –  ß i(t) s(t) + δ i(t) 



‣ i(t+1)
 =  i(t)  + ß i(t) s(t) –  δ i(t)

‣ s(t+1)
 = s(t) –  ß i(t) s(t) + δ i(t)

‣ Idea: 

• i(t) is a continuous function

• i(t+1)-i(t) approximate first derivative

‣ Solution:

• for
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SIS-Model
Interpretation of Solution

‣ If ß < δ
• then i(t) is strictly decreasing

‣ If ß > δ
• then i(t) converges against 

1 − ρ = 1 − δ/ß

‣ Same behavior in discrete model

has been observed 

• [Kephart,White‘94]
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SIR-Model

‣ Variables
• n: total number of individuals

- remains constant
• S(t): number of (healthy) susceptible 

individuals at time t
• I(t): number of infected individuals
• R(t): number or recovered individ.

‣ Relative shares
• s(t) := S(t)/n	
• i(t) := I(t)/n
• r(t) := R(t)/n

‣ At every time unit each individual 
contacts ß partners

‣ Assumptions:

• Among ß contact partnres ß s(t) are 
susceptible

• All I(t) infected individuals infect ß 
s(t) I(t) other individuals in each 
round

• A share of δ of all infected 
individuals is immune (recovered) 
and never infected again

‣ Leads to the following recursive 
equations:

• I(t+1)
 =  I(t)  + ß i(t) S(t) –  δ I(t)
• i(t+1)
 =  i(t)  + ß i(t) i(t) –  δ i(t)
• S(t+1)
 = S(t) –  ß i(t) S(t)
• s(t+1)
 = s(t) –  ß i(t) s(t) 
• R(t+1)
 = R(t) + δ I(t)
• r(t+1)
 =  r(t) + δ i(t)
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SIR-Model

‣ The equations and its differential 
equations counterpart

• i(t+1)
 =  i(t)  + ß i(t) i(t) –  δ i(t)
• s(t+1)
 = s(t) –  ß i(t) s(t) 
• r(t+1)
 =  r(t) + δ i(t)

‣ No closed solution known
• hence numeric solution

‣ Example
• s(0) 	 = 1
• i(0) 	 = 1,27 10-6
• r(0) 	 = 0
• ß 
 = 0,5
• δ 
 = 0,3333 



Epidemic 
Algorithms

Peer-to-Peer Networks
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Replicated Databases

‣ Same data storage at all locations
• new entries appear locally

‣ Data must be kept consistently
‣ Algorithm is supposed to be decentral 

and robust
• since connections and hosts are 

unreliable
‣ Not all databases are known to all
‣ Solutions

• Unicast
- New information is sent to all 

data servers
• Problem: 

- not all data servers are known 
and can be reached

• Anti-Entropy
- Every local data server contacts 

another one and exchanges all 
information	

- total consistency check of all 
data

• Problem
- comunication overhead

‣ Epicast …
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Epidemic Algorithms

‣ Epicast

• new information is a rumor

• as long the rumor is new it is distributed

• Is the rumor old, it is known to all servers

‣ Epidemic Algorithm [Demers et al 87]

• distributes information like a virus

• robust alternative to BFS or flooding

‣ Communication method

• Push & Pull, d.h. infection after log3 n + O(log log n) rounds with 
high probability

‣ Problem:

• growing number of infections increases comunication effort

• trade-off between robustness and communication overhead
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SI-Model for Graphs

‣ Given a contact graph G=(V,E)
• n: number of nodes
• I(t) := number of infected nodes in 

round t
• i(t) = I(T)/n
• S(t) := number of susceptible nodes 

in round t
- I(t)+S(t)=n 

• s(t) = S(T)/n

‣ Infection:
‣ If u is infected in round t and (u,v) ∈ E, 

then v is infected in round t+1 

‣ Graph determines epidemics
‣ Complete graph:

• 1 time unit until complete infection
‣ Line graph

• n-1 time units until complete 
infection
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Epidemics in Static Random 
Graphs

‣ Random graph Gn,p 

• n nodes

• Each directed edge occurs with independent probability p

‣ Expected indegre γ = p (n−1) 

‣ How fast does an epidemic spread in Gn,p, if γ ∈O(1) ?

‣ Observation für n>2:

• With probability ≥ 4−γ  and ≤ e−γ 

- a node has in-degree 0 and cannot be infected 

- a node has out-degree 0, and cannot infect others

‣ Implications:

• Random (static) graph is not a suitable graph for epidemics
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Random Call Model

‣ In each round a new contact graph Gt=(V,Et):

• Each node in Gt has out-degree 1

- chooses random node v out of V

‣ Infection models:

• Push-Model

- if u is infected and (u,v) ∈ Et, then v is infected in 

the next round

• Pull-Modell: 

- if v is infected and (u,v) ∈ Et, then u is infected in 

the next round
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Push Model
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Push Model
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Push Model
Start Phase

‣ 3 cases for an infected node
1. he is the only one infecting a new node
2. he contacts an already infected node
3. he infects together with other infected nodes a new node

- this case is neglected in the prior deterministic case
• Probability for 1st or 3rd case  s(t) = 1-i(t)
• Probability for 2nd case i(t)
• Probability for 3rd case is at most i(t)

- since at most  i(t) are infected
‣ Probability of infection of a new node, if i(t) ≤ s(t)/2: 

• at least 1 – 2i(t)
‣ E[i(t+1)]  ≥  i(t) + i(t)(1 – 2 i(t)) = 2i(t) -2i(t)2  ≈  2 i(t) 



‣ If i(t) ≤ s(t)/2:
• E[i(t+1)]  ≥  2 i(t) – 2i(t)2  ≈  2 i(t) 

‣ Start phase: I(t) ≤ 2 c (ln n)2

• Variance of i(t+1) relatively large
• Exponential growth starts after 

some O(1) with high probability

‣ Exponential growth:  
I(t) ∈ [2 c (ln n)2, n/(log n)]

• Nearly doubling of infecting nodes 
with high probability, i.e. 1-O(n-c)

‣ Proof by Chernoff-Bounds
• For independent random variables 

Xi∈{0,1} with

• and any

• Let  δ = 1/(ln n) 
• E[Xm]  ≥  2 c (ln n)3

• Then δ2 E[Xm] /2 ≥ c ln n
• This implies
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 Start phase & Exponential Growth
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Chernoff Bounds

‣ Bernoulli-experiment
• result 1 with probability p
• result 0 with probability 1-p

‣ Theorem Chernoff-Hoeffding
• Let x1,...,xn independent Bernoulli-

experiments with 
- P[xi=1]=p 
- P[xi=0]=1-p 
- let

• Then for all c>0 

• For all 

Sn =
n∑

i=1

xi

P [Sn ≥ (1 + c)E[Sn]] ≤ e
−1

3
min{c, c2}pn

c ∈ [0, 1]

P [Sn ≤ (1− c)E[Sn]] ≤ e
−1

2
c2pn



‣ Probability of infections of a new node if 
i(t) ≤ s(t)/2: 1 – 2i(t)

• E[i(t+1)]  ≥  2 i(t) – 2i(t)2  ≈  2 i(t) 

‣ Middle phase I(t) ∈ [n/(log n), n/3]
• term  2i(t)2 ≥ 2i(t)/(log n) cannot be 

neglected anymore
• Yet, 2i(t) – 2i(t)2  ≥ 4/3 i(t) still 

implies expontential growth, 
but with base < 2

‣ Saturation: I(t) ≥ n/3 
• Probability that a susceptible node is 

not contacted by I(t) = c n infected 
nodes:

• This implies a constant probability 
for infection ≥  1 – e–1/3 und ≤ 1 – e–1

• Hence
E[s(t+1)] ≤ e–i(t) s(t) ≤ e–1/3 s(t)

• Chernoff-bounds imply that this 
holds with high probability

• Exponential shrinking of susceptible 
nodes

• Base converges to 1/e
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Push Model
Middle Phase & Saturation
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Random Call Model

‣ Infection models:

• Push Model

- if u is infected and (u,v) ∈ Et, then v is infected in 

the next round

• Pull Model 

- if v is infected and (u,v) ∈ Et, then u is infected in 

the next round
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Pull Model
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Pull Model
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Pull Model
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Pull Model
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Pull Model
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Pull Model
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Pull Model

‣ Consider 
• an susceptible node and I(t) infected 

nodes

‣ Probability that a susceptible node 
contacts an infected node: i(t)

• E[s(t+1)]   
=   s(t) – s(t) i(t)   
=   s(t) (1 – i(t))   =   s(t)2

• E[i(t+1)] 
= 1-s(t)2 
= 1 –  (1 – i(t))2 
= 2 i(t)  – i(t)2  ≈  2 i(t) for small i(t)

‣ Problem
• if i(t) ≤  (log n)2 then exponential 

growth is not with high probability
• O(log n) steps are needed to start eh 

growth with high probability
- yet in the expectation it grows 

exponentially
‣ After this phase

• If s(t) ≤ ½
- then the share of susceptible 

nodes is squared in each step
• This implies E[s(t+ O(log log n))]  = 0, 
• If i(t) ≥ ½ then after O(log log n) 

steps all nodes are infected with 
high probability
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Pull Model

i(t)
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Push&Pull Model

‣ Combines growth of Push and Pull
‣ Start phase: i(t) ≤ 2 c (ln n)2

• Push causes doubling of i(t) after 
O(1) rounds with high probability

‣ Exponential growth:
 I(t) ∈ [2 c (ln n)2, n/(log n)]

• Push and Pull nearly triple in each 
round with high probability:

- i(t+1) ≥ 3 (1-1/(log n)) i(t)
‣ Middle phase: I(t) ∈ [n/(log n), n/3]

• Push and Pull
- slower exponential growth

‣ Quadratic shrinking: I(t)  ≥ n/3
• caused by Pull: 
• E[s(t+1)]   ≤   s(t)2

• The Chernoff bound implies with 
high probability

• s(t+1)   ≤   2 s(t)2 

• so after two rounds for s(t) ≤ 1/21/2

- s(t+2)   ≤   s(t)2 w.h.p.
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Push&Pull Model
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Max-Counter Algorithm

‣ Simple termination strategy
• If the rumor is older than maxctr, 

then stop transmission

‣ Advantages
• simple

‣ Disadvantage
• Choice of maxctr is critical
• If maxctr is too small then not all 

nodes are informed
• If maxctr is too large, then the 

message overhead is Ω(n maxctr)
‣ Optimal choice for push-

communication
• maxctr = O(log n)
• Number of messages: O(n log n) 

‣ Pull communication
• maxctr = O(log n)
• Number of messages: O(n log n) 

‣ Push&Pull communication 
• maxctr = log3n + O(log log n)
• Number of messages: O(n log log n)
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Shenkers Min-Counter Algorithm

‣ Only is the rumor is seen as old then 
contact partners increase the age-
counter

‣ Shenkers Min-Counter-Algorithmus 
für maxctr = O( log log n)

• Every player P stores age-variable 
ctrR(P) for each rumor R 

• A: player P does not know the 
rumor:

- ctrR(P) ← 1
• B: If player P sees rumor for the first 

time 
- ctrR(P)  ← 1

• B: If partners Q1, Q2, …, Qm  

communicate with P in a round
• If mini{ctrR(Qi)} ≥ ctrR(P) then

-  ctrR(P)  ← ctrR(P)  + 1
• C: If ctrR(P)  ≥ maxctr then

- tell the rumor for maxctr more 
rounds

- then D: stop sending the rumor
‣ Theorem 

• Shenkers Min-Counter algorithms 
informs all nodes using Push&Pull-
communication in log3n + O(log log 
n) rounds with probability 1−n−c, 
using at most O(n log log n) 
messages.
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Shenker‘s Min-Counter-
Algorithm

‣ Theorem 
• Shenkers Min-Counter algorithms 

informs all nodes using Push&Pull-
communication in 
log3n + O(log log n) rounds with 
probability 1−n−c, using at most 
O(n log log n) messages.
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