1

Most of the classes, investigated in complexity theory, are sets of predicates.
however, usually address the difficulty to determine the value of functions, or to give one of many
possible solutions that satisfy certain conditions. Moreover, many such problems can be formulated

Optimization of Unary Costs

Andreas Jakoby

Christian Schindelhauer

Medizinische Universitat Liibeck*

March 1997

Abstract

We investigate the computational complexity of optimal solutions, when the costs can be bounded
by a polynomial, i.e. can be unary coded. Here, we revisit the computation problem OptP[logn],
introduced by [K 88] and the search problem, called NPbOpt by [BKT 94]. In this paper we
investigate corresponding classes uMaxP and APuMax as well as more general formulations of
optimization problems: uOptP and NPuOpt. These classes turn out to form the metric closure
I'y_7 of the maximization classes. For this we introduce adapted reductions, where for instance
we tighten the reduction model of search problems to the so-called strong reduction, where the
solution space is completely covered by the mapping of the reduction, and show that completeness
and closure results still hold.

Many properties of nondeterministic Turing machines (NTM) like time or the number of
guesses can be used to describe the class uMaxP . For this we refer to Krentel’s proof of the
correspondence of uMaxP to the output of a metric NTM (here called NP -transducer). More-
over, we show that the class of search problems N PuOpt can be completely characterized by
NP -transducers, too.

Furthermore, we show that uOptP -complete problems are not only complete for F
[K 88] but also for FPNP restricted to functions with unary range, called &/F . This gives the
new characterization of uOptP? = T'i_7 (OptP[logn]):

fPNP[log]

FPNPUsl q Y F = wOptP = FPYP nUF .

Note that the question, whether FPNPlosl £ FPNP g vet still open.

Introduction

as the problem to optimize some easy computable cost functions.

Since Krentel’s study of NP -optimization problems in [K 88] the interest in this topic has steadily
been rising. Krentel considered the case that a function underlying the optimization problem is
computable in polynomial time. He calls such a function cost function, e.g. the cost function of
the traveling salesman problem is the total length of a round tour, with respect to the given map.
Moreover, he restricts to maximizations problems which include minimization problems, if the cost

function is negated.

*Institut fiir Theoretische Informatik, Wallstrafie 40, 23560 Liibeck, Germany

email: jakoby / schindel @ informatik.mu-luebeck.de

Natural problems,

There are many optimization problems, where the costs are bounded by the size of the problem itself,
e.g. the largest clique of graph is bounded by the graph. Moreover, for these problems one could use
a unary encoding of the costs within polynomial time.

Many optimization problems may be encoded in this way, e.g. the chromatic number of a graph, the
length of a path, the number of satisfied clauses in a given Boolean formula in conjunctive normal
form, time of a nondeterministic Turing machine or worst time of a circuit. Furthermore, any given
cost function may be reduced to unary range by an arbitrary polynomial time bounded mapping
yielding an approximation of the original cost function. Consider the traveling salesman problem for
an example. In general this problem is given with binary weights, but if the problem is given by a
map, this gives an inherent unary encoding. On the other hand, the salesman will check the efficiency
of the tour in multiples of seconds or kilometers, which the salesman can easily represent unary. We
think, unary cost functions often represent the natural case and it will turn out that the situation for
unary costs is different than in the general case.

This leads to the class of problems we want to investigate here, i.e. the computation and the search
problems of optimizing unary costs. For unbounded costs it is known that the computation problem
is as hard as the search problem, which is F pNP -complete. For the unary optimization problem it is
known that there are FPVPloe] -complete computation problems [K 88], while corresponding search
problems are hard for }"Pi\t/ 7.

In this paper we study these classes under the aspect of closure, reducibility and completeness. For this
we introduce appropriate reductions. During this study we show that these completeness results lead
to the equality of F pNPloel ang F ’Pé\tfp , if both classes are restricted to functions with unary range.
Note, that the question whether logarithmic adaptive queries of a NP -oracle equal polynomial non-
adaptive NP -oracle queries, is still open for the unrestricted functional classes. For decision problems

it holds [W 88]
Ptjw\:/P = PpNPllog]

For the functional classes it is known that the collapse }"Pé\t/ P = FpNPllog implies NP = R and
FewP = P [S 94]. R is the class of all decision problems solved by polynomial-time random Turing
machines, which accepts on more than half of all computations path, or rejects on all paths. FewP
is the set of all languages recognizable by polynomial-time NTMs, for which the number of accepting
computations is bounded by a polynomial.

Chen and Toda [CT 91] showed that problems like searching the maximum clique, finding a minimum
coloring or a maximum path in a graph, are }"PA[P ‘hard. On the other hand, for the unary cost
search problem no better upper bound than FPN” is known yet. Note that these classes form sets
of relations, since many inputs may lead to optimal costs.

Buhrmann, Kadin and Thierauf [BKT 94] showed that for the class of search optimization problems
NPbOpt those problems are complete with respect to weak metric reduction, which is a form of
1-Turing reduction adapted to sets of relations. Based on the notion of universal relations [AB 92],
they present a whole set of problems with this property (universal NPbOpt having an embedding
operator).

In their definition they require instance and solution to suffice a NP -relation in advance. We on the
contrary consider classes of recursive relations, where one always can embed total functions into the
relations. Later on we will see that our definitions and A"PbOpt have equal computational complexity.

Furthermore, we want to point out, that many interesting features of non deterministic computation
are described by unary cost maximization problems. Later on, we extend the gallery of complete
problems for both the search and the computation problems. In all definitions we take special care
for the difference of maximization and optimization problems, which include minimization problems.
This is necessary, since maximization problems are not closed under metric reductions, unless NP =
co-N'P [VW 95 HW 97].

2 Computing the Optimum of Unary Cost Functions

In this paper we concentrate on unarily valued functions.

Definition 1
The set UF consists of all functions with unary (tally) range, i.e. UF := {f:3X* — 1*}. Further
define UFP = UF N FP, where FP denotes the set of polynomial time computable functions.

The computation problem of unary maximization and optimization with respect to these cost functions
is defined as follows.

Definition 2
For a given UFP cost function ¢ : ¥* x ¥* — 1* and a polynomial p o unary maximization
problem is to compute the maximum cost function c*:

c*(z) = max{c(z,y) | [yl <p(z) } .

We call x an instance, y an input of the problem. If y mazimizes c(x,y) we call y a witness for
the optimal solution.

For a given UFP cost function ¢ : ¥* x ¥* — 1* and a FP -mapping m : ¥* — ¥* a unary
optimization problem is to compute the optimal cost function m/(c*).

By uMaxP we define the set of all unary mazimization problems. Further uOptP is the set of all
unary optimization problems.

For another characterization of uMaxP we will use the model of NP -transducer (also known as
metric Turing machine). In contrast to the usual NTM model the result of a transducer does not
depend on accepting or rejecting of a computation, it only depends on the final inscription of the
output tape.

Definition 3 A NP-transducer is a polynomial time bounded nondeterministic Turing machine
that produces an output string on every computation path.

We allow different outputs to appear on the halting states of a computation. Furthermore, we want
to extract a unarily valued function from these outputs. A natural definition for this is the length of
the maximum output introduced by [K 88].

Definition 4 Let moly(x) (mazimal output length) be the mazimal length of all outputs of NP -
transducer N on input x.

These machine induced functions give an additional characterization of unary optimization problems.

Theorem 1 [K 88] uMaxP = U moly .
NP -transducer N

Proof In the notation of Krentel: OptP[logn] = U, i npy OPtUHVIVIoE] |

Surprisingly many unary codable properties of a nondeterministic Turing machine can be characterized
with uMax P, e.g. the maximum number of guesses a NTM makes on an accepting path. To express
this we state the following definitions of properties of NTMs.

Definition 5 Let comp-treep (x) denote the computation tree of N. Define guess-treepn (x) for
a NTM N as the computation tree of a NTM on x reduced to all leafs and internal nodes with fanout
at least 2. Let guess-pathy (x) be the set of all paths of guess-treey(z) starting at the root and

ending at a leaf of guess-treey (z). Furthermore define acc-path () C guess-pathsy (x) as the set
of all paths of guess-treey (x) which represent accepting computations of N on input x.

For a path p € guess-pathsy () let |p| denote the length of p and p[1],p[2],...,p[p|] € {0,...,c—
1}|p| be an encoding for the sequence of nondeterministic choices N makes (Here ¢ denotes the
mazimum possible number of non-deterministic choices N can make in a single step, e.g. derived
from the state-transition-graph of N).

In contrast to computation trees, guess trees do not provide any node with fanout one. In fact,
by replacing all such nodes (and paths without branches) with edges, computation trees transform
into guess trees. Intuitively, a guess tree gives a high level description of computation of a NTM:
Every node represents some deterministic computation, whilst an edge gives the nondeterminism of
the computation.

W.l.o.g. we restrict our investigation to NTMs N where guess-tree,,(z) is a binary tree with ordered
choices. So we get a left (resp. 0) and a right (resp. 1) choice on the computation for the next state.
We call a NTM N admissible, if guess-tree;;(z) is a complete binary tree.

Definition 6 For a given nondeterministic Turing machine N define the following unary range func-
tions:

timen(z) = depth(comp-treey(z)) ,
max € acc-pathsy(z) }, N(z) accepts,
guessy (z) { ; {lpl | p pathsy (z) } els(e) P
max-1-guessy (z) = { max{>_, pli] | p € acc-pathsy ()} i\lfs(:) accepts,

Let max-reversaln (x) be the mazimum number of reversals N does on an accepting path of input
z and 0, if N rejects on x.

All these functions are closely related, since they can describe the time behavior of a given NTM.

Lemma 1 For each polynomial time bounded NTM N there exists a polynomial time bounded NTM
N' such that

guessy: = timey , (1)
max-1-guessy, = guessy , (2)
molys = max-1-guessy , (3)
max-reversaly: = timey , (4)
molys = max-reversaly , (5)

timen (z) = (2-moly(z) + 1)2'°8P~%(2D) " for a polynomial px and all z. (6)

(2) also holds if we restrict N' to admissible NTMs.

Proof: (1) Define a NTM N’ as follows. In the first phase N' simulates N step by step and for
each computation path N’ counts the number of steps s and the number of choices ¢. In the second
phase N’ makes s — ¢ nondeterministic guesses and accepts.

(2) Based on N we construct N’ within two steps. First we construct a NTM N by replacing every
nondeterministic state of N by three nondeterministic states of N”, such that there exists a path
p € acc-pathsy(z) iff there exists a path ¢ € acc-pathsy. (z) such that

Vie{l,...,|p|}: pli]=0<% q[2i —1]¢[2]] =01 and p[i] =1 < ¢[2i — 1]q[2i] = 10 .

Note that guessy(7) = max cace-pathsyn (2) 117 < |q] | q[i] = 1}| = guessy, (x)/2 if acc-pathsy(x) # 0.

Now N’ is an admissible NTM that simulates N and accepts on a path p € acc-pathsy, (z) iff there
exists a path ¢ € acc-pathsy. () such that

Vie{l,...,lql}: pli] = q[i] and Vie{lgl+1,...,pl}: pli]=0.

Hence, all paths of guess-pathsy. (z) have same length and if acc-pathsy (z) # 0 it holds

guessy(r) = max [{i <|g| | qli] =1}
g€acc-paths/(z)

(3) N' simulates N step by step and counts on each computation path p the number of right choices
¢ of N on p. If N accepts the input on computation path p, then N’ outputs 1¢. Otherwise N’
outputs the empty string A.

(4) Define a NTM N' as follows. In the first phase N’ simulates N step by step and counts the
number of steps s and reversals r. In the second phase N’ makes s — r reversals and accepts.

(5) N’ simulates N step by step and counts on each computation path p the number of reversals r
of N on p and 1".

(6) Let py be a polynomial that bounds the time of N with respect to the input length n. First, N'
simulates IV step by step and counts the number of steps ¢ for each computation path. If N outputs
a string of length s, then N’ makes (2 - s + 1)2°87P~ (=) —¢ additional steps before accepting. |

Reductions between maximization problems require monotone transformations of the cost functions.
The according definition of such functions in U FP will be called U MFP.

Definition 7 UMFP denotes the set of all monotone increasing functions of UFP := UF N FP.

Now it follows that mol and therefore uMaxP are closed under monotone transformation.

Lemma 2

uMaxP = U U fomoly .

fFEUMFP NP -transducer N

Proof: D: Let N'P -transducer N’ simulate AP -transducer N on every branch. Then N’ computes
f(1°) on every leaf of the computation tree, where f € UMFP is given and 1° the output of N'. il

For the class uOptP we do not need such monotone restrictions, since uOptP is closed even under
the application of arbitrary U F P -functions.

Theorem 2 For any gy € {guessy, timey, max-1-guessy, moly , max-reversaly} holds

U J fogn € uMaxP and wOptP = [|J foun.

fFEUMFP NENTM fEUFP NENTM

Proof: uOptP C UfeLI]-"P Unentum f o gn follows from the fact, that all transformation given in
lemma 1 are invertible. |

3 Complete Problems for uOptP

In the following, we investigate the structure of uMaxP and uOptP with respect to completeness
and closure. The appropriate form of reduction for these classes as well as for many other functional
classes, such as }'Pftfp or FPNP is the metric reduction.

Definition 8 For functions f,g the 1-Turing reduction (also known as metric reduction) f<7"7.g
is defined as
f<ihg = 3t,tr € FP: f(z) = ta(z,9(t1(2))) .

L7 (C) denotes the closure of a set of functions C under 1-Turing reductions.

For formal reasons uOptP cannot be closed under metric reductions, since its range may not be
unarily coded anymore. Therefore we restrict the metric reduction onto UF .

Definition 9 For functions f,g a unary range 1-Turing reduction is f<Y." g is a metric re-

duction with to € UF .
If to is monotone w.r.t. its second parameter, i.e. Yx,yi1,y2 y1 < yo = t2(z,y1) < ta(x,y2), we
define f<4Y¥" g as unary range monotone 1-Turing reduction.

In contrast to <{MF? the <%” -reduction does not restrict the metric reduction for unarily valued
functions, since for f,g € UF it holds f<\ P g & f<IZg.

Theorem 3 rv7r (uMaxP) = TY7P (uOptP) = uOptP ,

rum?” (uMaxP) = uMaxP .

Proof: TY%P (uOptP) C uOptP:

Given an optimization problem m o c¢* € uOptP and let f<{%4Pm oc*, where t;,t, denote the
functions of the reductions. We prove that f € uOptP by constructing a cost function c; and a
mapping my, such that f =myocj.

Since ¢,m, t1,t2 € FP, there exists a polynomial p such that ¢3(z, m(c*(t1(x)))) +c*(t1(z)) < p(|z]).
Let

cr(z,y) = p(lz)* +p(|2]) - et (@), y) + oz, mle(t1(2),9)))) -

So ¢y is maximal for y, iff ¢ is maximal for y. Now, define my(n) := nmod |/n]. Since this
functions outputs t2(z, m(c(t1(z),y)) for n = ¢f(z,y) the claim follows.

uOptP C TWAP (uMaxP) follows by theorem 2.

s ” (uMaxP) C uMaxP:
Given c¢* € uMaxP , let f <77 c* where t1,t, denote the functions of the reductions. f € uMaxP ,
since the cost function is directly given by cf(z,y) = ta(z, c(ti(x),y))). |

Note that uMaxP is not closed under metric reductions unless NP = co-NP, since uMaxP re-
stricted to predicates equals NP and uOptP contains co-NP. It turns out that many unary
computation problems are complete for uMaxP or uOptP . We will give a selection here.

Definition 10 Define the following optimization problems.

e MAX-SAT: For a given CNF F, compute the mazimum number of satisfiable clauses.

e MAX-k-SAT: For a given k-CNF F, compute the mazimum number of satisfiable clauses.
e COLORS: For a given graph G, compute the chromatic number of G.

e MAX-CLIQUE-SIZE: For a given graph G, compute the mazimum clique size in G .

e MAX-PATH-LENGTH: Given graph G and two nodes w,v, compute the length of the mazimum
path from u to v.

e MAX-CIRCLE-SIZE: Given graph G, compute the size of the longest closed path.

CWC-TIME: Given a circuit C', compute worst time t,. this circuit can achieve.

UW-TSP-LENGTH: Given a graph G with unary edge weights, compute the length of the shortest
round tour.

For all these problems there exist straight-forward constructions of unary cost functions. Therefore
the upper bound uMax P , resp. uOptP follows immediately. In [K 88] some of these problems were
shown to be uMax P -complete. On the other side, Chen and Toda [CT 91] showed 7:73?[7) -hardness
of some of the corresponding search problems. Unfortunately the reduction for search problems do
not work for the computation problems in general, since we have to present an explicit polynomial
time bounded mapping between the optimal costs of the problems.

Lemma 3 MAX-1-GUESS <umfP CWC-TIME
MAX-SAT <ym77P MAX-3-SAT <umZP MAX-CIRCLE-SIZE
<ymFP MAX-PATH-LENGTH <Y7F UW-TSP-LENGTH
MAX-3-SAT <umZP MAX-2-SAT
MAX-3-SAT <umf? MAX-CLIQUE-SIZE
MAX-SAT ~<u4/P COLORS
Proof:

MAX-1-GUESS <7 ¥ CWC-TIME

W.l.o.g. we restrict nondeterministic Turing machines of the MAX-1-GUESS problem to admissi-
ble NTMs. Now the reduction follows the construction of the circuit for a given nondeterministic
polynomial time bounded Turing machine in theorem 12 of [JS 96].

MAX-SAT <W%77 MAX-3-SAT (Sketch)

This proof is an adaption of a known reduction from SAT to 3-SAT. Every clause of SAT is
mapped to a sub-formula where special care is taken for the maximum number of satisfying
clauses in each sub-formula.

MAX-3-SAT <{®77 MAX-CIRCLE-SIZE see [K 8§]

MAX-CIRCLE-SIZE <{M7” MAX-PATH-LENGTH (Sketch)

Let n be the number of nodes in the graph G for the MAX-CIRCLE-SIZE problem. Now we make
n disjunct copies G; of G and add two chains. For every subgraph G; the node v; is connected
to the end node of a chain of length n. Every neighbor of v; is connected to the beginning of
the other chain of length n. The longest path has to include both chains and a path in one
sub-circuit that indicates the longest circle of G.

MAX-PATH-LENGTH<}%” UW-TSP-LENGTH (Sketch)

The unarily weighted traveling salesman graph consists of three parts: First a copy of the
original graph G of the MAX-PATH-LENGTH-problem with n nodes, a circle of length of n and
two separate nodes. The graph is complete and the structure given by the unary weight of the
edges. The weight can be chosen such that the optimal traveling sales tour in G is equivalent
to the longest path.

MAX-3-SAT <{mFP MAX-2-SAT (Sketch)

Every clause C of the given 3-CNF F' can be reduced to a set S of 21 2-CNF clauses, such that
if an assignment X of F satisfies C', exactly 18 clauses of S are satisfiable. Otherwise, if C' is
not satisfied, all assignments corresponding to X can only satisfy 15 clauses of §.

MAX-3-SAT <77 MAX-CLIQUE-SIZE
The reduction follows a well known NP -reduction of the CLIQUE problem ([AHU 74, K 88]).

e MAX-SAT <y%” COLORS: see [K 8§] |

Theorem 4 All problems of definition 9 are uOptP -complete under <Y.F -reducibility. All maxi-
mization problems of this definition are uMaxP -complete under <477 -reducibility.

The Agollowing theorem shows that uOptP? complete problems are also hard for a restricted class of
FPYT.

Theorem 5 MAX-1-GUESS is (.7:73?[7) N UF) -complete under <477 -reducibility.

Proof: is given in the appendix. |

On the other hand, max-1-guessy (z) can also be determined in polynomial time by binary search
using log(size(C)) adaptive queries to an NP -oracle that decides for a given NTM N, an input z,
and a number ¢ whether max-1-guessy(z) > t.

Corollary 1 FpNPloel nyyr = wOptP = FPNPNUF .

So it is clear that uOptP restricted to predicates equals PVPlogl | Note that uMaxP and uMinP ,
defined according to uMaxP , restricted to predicates give the classes NP, resp. co-NP [VW 95].
Hence, it is not sufficient to consider optimization classes as the union of minimization and maximiza-
tion problems, since these do not cover the whole range of optimization.

Note that these results do not imply that the uOptP -problems provide hard functions for .7:73?[73
or FpNPlogl However, Krentel has shown that MAX-SAT is complete for uMaxP and FpNPlog]
under metric reducibility.

Theorem 6 [K 88] MAX-SAT is FPNPUEl _complete under <77 -reducibility.
Since FPNPIo#l 5 closed under metric reductions, the following holds.
Corollary 2 Ty7(uOptP) = FpNPlog]

This corollary shows that uOptP is closely related to fPNP[IOg], i.e. essentially uOptP and
FPNPlogl 4ddress the same computational complexity. Reducing FPV P8l to unarily valued func-
tions does not decrease its computational power. On the other hand, FPVPlogl }"Pi\t/ P implies
that FPN" £IR FPNT nuF.

4 N'P-Optimization Search Problems

Considering search problems we will not distinguish between different solutions having same costs.
Note that an additional weighting, like the lexicographically ordering of solutions, may lead to F pNP
hardness. Furthermore, restricting optimization to a unary cost function leads to complexity classes
consisting of relations instead of functions.

In this paper, we consider only recursive relations which implies that all relations are total:

Definition 11 A relation R : ¥* x £* is total iff for all x € ¥* there exists y € £* with (z,y) € R.
A relation R' : ¥* x ¥* solves the relation R : X* x ¥* iff R C R and R' is total. If R' denotes a
function f, we call f a solution function of R, i.e. {(z,f(x)) |z € X*} C R.

Based on unary cost functions we will now introduce two classes of search problems, which are closely
related to the classes NPOP [CT 91] and NPbOpt [BKT 94].

Definition 12 The unary search maximization problem for a cost function ¢ € FP and a
polynomial p is the relation

Maxe, = {(z,y) [c(z,y) = " (x) A [yl <p(lz])} .

NPuMax is the class of search mazimization problems.

Note that for a unary search maximization problem a pair (z,y) completely witnesses the optimum
of the unary cost function. Investigating a more general form of search problems, we have to consider
that a solution y may not completely witness the optimum. Some partial information may not be
interesting, e.g. consider a traveling salesman problem, where one only wants to know the next station
of an optimal tour.

Definition 13 Let (y,z) denote a polynomial time computable bijective length preserving encoding of
y and z.
The unary search optimization problem for a cost function ¢ € FP and a polynomial p is the
relation

Opt,, = {(@,y) | Iz cla,(y,2)) = (@) A Jyl+]el <ple])} -

NPuOpt denotes the class of search optimization problems with cost function ¢ € UF .

Similar to the unary maximization problem we will now present an exact characterization of APuOpt
based on the output of a transducer.

Definition 14 For a polynomial time bounded transducer N we define the relation mospn as the set
of all pairs (x,y), such that there exists a computation path of N on input x, where the output is
either yO1¢ with |y| + ¢+ 1 = moly(z) or 1™ (@) which implies y = X.

So every computation path providing an output of maximal length indicates an element of the relation
mosy .

Theorem 7 NPuOpt = U mosy .
N

Proof: C: A NP -transducer N can compute a NP uOpt problem Opt, , as follows: On input
N guesses (y, z) and outputs y01¢(w:2N+r(lzD) -yl

D: Let z encode a guess path of the NP -transducer N. Now define a polynomial p such that
p(|z|) > 2-timen(x). Let g(N,z,2) denote the output of N on input and guess path z and define
the cost function ¢ as follows
1+|g(N,z,2)| , if g(N,z,2) € y01*,
e(z, (y,2)) = 1+g9(N,z,2)|, ify=X A g(N,z,2z) € 1%,
0, else. |
Based on an NP -relation R with domain Dg = {z | Jy € £* : (z,y) € R} and a unary optimal

solution cost function ¢* Buhrman et al. introduce the class of polynomially bounded NP optimization
problems N'PbOpt [BKT 94]. They call a partial function f a solution function of NPbOpt, if

. | some y such that (z,y) € Max., , ifz € Dg,
VreXt : fl) = { 1, elsewhere .

Note that in our setting Dp is integrated into the cost function such that for example L is represented
by 0 and all other costs ¢ by ¢+ 1. Since a solution of a NPbOpt problem depends on the domain of
a relation R, a reduction between two NPbOpt problems has also to consider the domains of their
relations. [BKT 94] use the notion of weak reduction for ANPbOpt, which we adapt for recursive
relations as follows:

Definition 15 A relation F can be reduced to a relation G (F <V%<7" @) by an 1-Turing reduc-
tion, iff for all solution functions g C G there ezists a solution function f C F such that f <% 7. g,
i-e. for all solution functions g C G

Jti,th EFPYzEX : (x,ta(z,g9(ti(x))) €EF

Considering the weak reduction NPbOpt and NPuMax are equivalent and define the the same
complexity class. Note that the weak reduction does not guarantee that all solutions of the reduced
relation can occur. To consider such settings we introduce a stricter reduction, the strong 1-Turing
reduction, which is incomparable to the notion of strict reduction [BKT 94], which refers to properties
concerning Dpg.

Definition 16 The strong 1-Turing reduction between relation F and G (F <" 7 Q) will be
defined as follows:

F gslt_r;“g'fp G <= 3t1,ta € FP Vz ta(z,{y | (ti(x),y) €G}) = {z| (z,2) € F}.

So, if a relation G and a concrete strong reduction F Sit_rj?ng'}-PG is given, the relation F' is well-
defined. Note that a weak reduction may only give a solution F' C F'.

Similar to the problems investigated in section 2, define:

Definition 17 According to the unary cost optimization problems of definition 6 and 9, we define the
search problems: MAX-GUESS-PATH, MAX-SAT-ASS, MAX-2-SAT-ASS, MAX-3-SAT-ASS, COLORATION,
MAX-CLIQUE, MAX-PATH, MAX-CIRCLE, UW-TSP. Furthermore, we define

CWC: Given a circuit C', compute worst case input for this circuit,

TIME-PATH: Given a NTM M and input x, compute a computation path with length times(z).

Theorem 8
The search problems of Definition 17 are N'PuOpt-complete under <3"o"& % reducibility.

Proof: follows by careful adaption of the reductions concerning the unary cost functions given above.

It is already proved (see for example [CT 91] and [BKT 94]) that most of these search problems are
F Pé\tmy -hard or uMax P -complete under <1"¢akF? _reducibility. On the other hand, no better bound
than FPV” is known for APuOpt. Hence,

FPNP C NPuMax C NPuOpt C FPVP .

Although the optimization problems may conceal some information needed to witness a solution, we
can strongly reduce ANPuOpt to N'PuMax.

Theorem 9 NPuOpt <5677 APuMax .

Proof: ~We will show that for all I € NPuOpt we can construct G € NPuMax such that
ngt_rfng'}—PG. Let Opt,, = F and define the cost function cg of G as

CG(:U:(ylvy?)) = C(ZIZ, <y15y2>) :

The reduction is given by the functions #;(z) := x and t2(x, {y1,y2)) := y1 . The reduction is strong,
since for all =z ta2(x, {(y1,¥2) | (z,(y1,y2)) € Maxc, p} = {y1 | Jy2 c(z, (y1,¥2) = c*(z)} . |

In addition to N"PbOpt, the classes N’PuMax and NPuOpt can be strongly reduced to each other.
Furthermore, we show that A"PuOpt is closed under this reducibility.

10

Theorem 10 Fslt_r;ng'fp (NPuMax) = Fslt_r;ng'fp (NPuOpt) = NPuOpt .

Proof of T5""8 7P (N'PuMax) = NPuOpt: Let Max,, € NPuMax, F<""6"” Max,,, and let
t1,t> denote the functions of this reduction. Define the unarily valued cost function

1+C(t1($),y)) lfy:tQ(Z))
0, else .

er(a(:2) = {

Let pr(n) > |t2(n)| +n, then F = Opt € NPuOpt. |

CF,PF

5 Conclusion

Krentel et al. [K 88, GKR 95] characterized optimization problems by the number f(n) of adaptive
NP -oracle queries OptP[f(n)] C FpNPLUMI, Moreover, they addressed complete problems in
OptP[f(n)] for FPNP[f(n)], where the number of oracles gives a bound for the range of the cost
functions as well. These classes are of crucial interest for proving non-approximability of optimization
problems, since

Theorem 11 [K 88] If I is OptP[f(n)]-complete and suppose P # NP . Then there exists €, such
that any polynomial time approzimation algorithm A must have infinitely many inputs I with

JA(I) -~ TI(1)] > 1.2/

Here we have considered the case f(n) = logn and have shown that in addition this class even contains
complete problems for .7:73?[7) N UF , which gives

T'yr (OptPllog]) = uOptP = FPNP nUF .

Note that uMaxP = OptP[log] is not closed under metric reductions, unless NP # co-NP. So
closure for uMaxP can only be stated if metric reductions are considered, that use a monotone
mapping for the costs. With respect to this reduction, most of the known uMaxP -complete problems
stay complete, since their reductions obey this restriction anyway.

For the search problems we mostly referred to Buhrman et al. [BKT 94]. They have defined the
relation complexity class NPbOpt, which essentially is equivalent to the class ANPuMax defined
here. We examined the more general case, if one does not search a total witness of an optimum, but
is satisfied with a partial answer. We show that this class NPuOpt forms the closure of N'PuMax.
For this we use a stronger version of metric reductions as used in [BKT 94]. This weak reduction
enables for a given solution function only to compute a solution function for the reduced relation. The
strong reduction claims that this solution covers all solutions of the relation.

For a comparison of the computational complexity between search and computation problems of unary
cost functions, a straight-forward observation leads to

NPuOpt =72 uOptP = FPNP = FpNPlesl — NP =R A FewP="P .

This follows from the 7:732\[7) -hardness of NPuOpt-problems [CT 91], the inclusion uMaxP C
FPNPlosl [K 88, GKR 95], and results from [S 94].

6 Open Problems

Buhrman et al. formulated a general criterion for the completeness of AP bOpt-functions: universal-
ity of the underlying NP -decision problem and the existence of an embedding operator for the cost

11

function. This criterion does not imply hardness for the computation problem. Assuming that some
special sort of one-way functions exist, we are able to prove that such a criterion does not exist, if it
does not address the exact values of the cost functions. It is open whether regular one-way-function
imply this, too.

The overall open problem of optimization problems is a lower bound criterion for tight non-approxi-
mability results. Results using probabilistic checkable proofs [FGLSS 96, H 96] sound promising.
Perhaps, these ideas in combination with some techniques shown here, may lead to a general theory
of approximability of optimization problems.

Acknowledgment

We want to thank Stephen Fenner, Riidiger Reischuk, Gerhard Buntrock, Karin Genther, Barbara
Goedecke, and Stephan Weis for fruitful discussions and hints to literature.

References

[AB 92] M. Agrawal, S. Biswas, Universal Relations, Proc. Structure in Complexity Theory, 1992, pp.
207-220.

[AHU 74] A. Aho, J. Hopcroft, And J. Ullman, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA, 1974.

[BKT 94] H. Buhrman, J. Kadin, Th. Thierauf, On Functions Computable with Nonadaptive Queries to NP,
Proc. Structure in Complexity Theory, 1994, pp. 43-52.

[CT 91] Z. Chen, S. Toda, On the Complezity of Computing Optimal Solutions, Intern. Journ. of Founda-
tions of Computer Science, Vol.2, No.3, 1991, pp. 207-220.

[C 71] S. Cook, The complezity of theorem-proving procedures, Proceedings, 3rd Annu. ACM Symp. on
Theory of Computing, 1971, pp. 151-158.

[FGLSS 96] U. Feige, S. Goldwasser, L. Lovész, S. Safra, M. Szegedy, Interactive Proofs and the Hardness of
Approzimating Cliques, Journal of the ACM, Vol.43, No.2, March 1996, pp. 268-292.

[GKR 95] W.I. Garsarch, M.W. Krentel, K.J. Rappoport, OptP as the Normal Behavior of NP-Complete
Problems, Math. Systems Theory 28, 1995, pp. 487-514.

[GJ 79] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP -
Completeness, Freeman, San Francisco, 1979.

[H 96] J. Hastad, Clique is hard to approzimate within n'~¢, 28th Annu. ACM Symp. Theory of Com-
puting, 1996, pp. 627-636.

[HW 97] H. Hempel, G. Wechsung, The Operators min and maz on the Polynomial Hierarchy, Proc. 14th
Symp. on Theoretical Aspects of Computer Science, 1997, pp. 93-104.

[JS 96] A. Jakoby, C. Schindelhauer, On the Complezity of Worst Case and Ezpected Time in a Circuit,
Proc. 13th Symp. on Theoretical Aspects of Computer Science, 1996, pp. 195-306.

[K 88] M. Krentel, The Complexity of Optimization Problems, Journal of Computer and System Sciences
36, 1988, pp. 490-509.
[S 94] A. Selman, A Tazonomy of Complezity Classes of Functions, Journal of Computer and System

Sciences 48, 1994, pp. 357-381.

[VW 95] H. Vollmer, K. Wagner, Complezity Classes of Optimization Functions, Information and Compu-
tation, 120 (2), 1995, pp. 198-219.

[W 88] K. Wagner, Bounded Query Computations, Proc. Structure in Complexity Theory, 1988, pp. 260-
277.

[W 90] K. Wagner, Bounded Query Classes, SIAM Journal of Computing, Vol. 19, No. 5, 1990, pp 811-
846.

12

Appendix

Theorem 5 MAX-1-GUESS is (fpgp NUF) -complete under <Y7F -reducibility.

Proof: Let O be a polynomial time bounded nondeterministic Turing machine that verifies for a
given NTM N, an input z, and a number ¢, whether max-1-guessy (z) > t. Using O as an oracle, a
TM M can compute max-1-guessy (z) by asking the oracle ¢(|z|) unadaptive queries for a polynomial

q.

Level 1:
Oq(y) Woracle ™ © ° 1‘1(}”
Level 2:
Woracle[o]:0 .
reject
Woracie[1]=1
accept
simulate D with Weracie—
v
value(v)‘ e J
Level 3: 1

d d
0 e Wyalwe * * * 1

O oo O O

accepts iff v accepts and value(v) = Wyalue

Figure 1: The computation tree of NTM N'.

Now we construct a nondeterministic TM N’ within three steps by using the following technique, see
figure 1. First N' chooses the answer string woracie € {0, l}q(y) of the oracle O such that these strings
are lexicographically sorted at the leafs of the computation tree of N'. Further, N’ verifies whether
all binary digits woracie[f] Of Woracte With wWorac1e[i] = 1 corresponds to the positive answers of O.
At last N’ simulates D, where the oracle queries are answered by the corresponding binary digits of
Woracle - Define Woracie (p) for a path p of the computation tree of N’ as the answer string of O. Let
p be an accepting path of the computation tree of N'. Since p has an accepting leaf, only the digits
Worac1e(P)[]] = 0 might be wrong. For apath p let T(p) = {j e {1,...,q(y)} | Woracie(P)[j] =1 }.
Since queries are non adaptive, for each pair p,p’ of accepting paths with 7(p) # T (p') there exists
an accepting path p” with T(p") = T(p) U T (p'). Therefore there exists an accepting path p such
that the set 7 (p) is maximal, i.e. for each path p’ holds 7 (p’) C 7 (p). Note that p determines the
output of D.

Now, N’ can be modified to an admissible NTM, i.e. all paths from the starting state to a leaf of the
computation tree 7' have the same length d and N’ has two nondeterministic choices at each state
except the halting states.

Every leaf v of T' corresponds to a path p. Therefore it corresponds to the computation of D with
oracle answers Worac1e(P), t00. For an accepting leaf v of T define value(v) € IN as the output of D
with oracle answers Weracie(p). For a rejecting leaf v let value(v) := 0.

13

Let N” be a NTM that works like N’ with the difference that N guesses nondeterministically a
String Wyaiwe € {0,1}? at a leaf v of T'. N" accepts iff v accepts and wyaige = Q- value(v) value(v)
Again we can assume, that N' is an admissible NTM, that means the computation tree of N is a
complete binary tree.

For a path p of N let weomp(p) denote the sequence of nondeterministic choices of N on p and
define the subsequence wyaiye (P) := Weomp (P)[d+1]..Weomp (P)[2d]. Then for each pair p,p’ of accepting
paths of N" with Woracle (p) = Woracle (p,) holds Wvyalue (p) = Wyalue (p,) .

Now, N is an admissible NTM that simulates N" at first. Further, N makes 2d?> + d and then
2d® + d? + d nondeterministic choices. N’ accepts on a computation path p iff

1]...p[d] indicates an accepting computation path of N’ with leaf v,

Pl

e p[l]...p[2d] indicates an accepting computation path of N,
p[2d + 1] ...p[2d? + 3d] contains (2d + 1) - value(v) right choices, and
Pl

2d? + 3d + 1] ...p[2d° + 3d? + 4d] contains (2d®> +d + 1) - |T(p[1]...p[d])| right choices. N

14

