A Toolbox for Mental Card Games

Christian Schindelhauer

Medizinische Universitat Liibeck*

September 17, 1998

Abstract

Mental card games are played without a trusted party and without cards. It is well known
that the problem of mental card games can be solved in principle. But the schemes known so
far are too messy to be used in practice. Only for the mental poker game a suitable solution
is known [Crép 87] that achieves security against player coalition and complete confidentiality
of a player’s strategy. Here, we present a general-purpose scheme that may be used as basic
toolbox for straight-forward implementations of card games.

We present a data structure for cards and decks that is secure against player coalitions
and enables standard operations like picking up a card, opening it, and (re-)mixing stacks.
Futhermore, we introduce tools for special operations like inserting a card into the deck,
splitting the deck, parting the game. The correctness of all operations is testified by zero-
knowledge proofs.

Finally, we discuss security problems that are typical for mental card games and suggest
solutions to enable all players maximum possible fairness.

1 Introduction

Card games have always been strongly influencing the development of mathematics and computer
science. Researchers were interested in unterstanding the structure of randomness, the combi-
natorics, and the probabilism involved. Nowadays, not only the analysis of the game, but its
simulation engages scientific imagination. The simplest example of a mental game is coin flipping
by telephone [Blum 81]: Two partners want to generate a random bit, without the assistance of a
trusted referee. Both partners are interested in manipulating the outcome of the game.

The problem of how to play mental poker was investigated by [GoMi 82]. Their protocol realizes
all necessary features of a poker game. The main drawback is that after the game all cards will be
publicized and so the players’ strategy will be revealed, which is not acceptable. Another drawback
is the exhaustive use of prime numbers: The scheme uses 2 x 52 pairs of prime numbers and each
card is encoded by the quadratic residuosity of 2 x 6 six numbers w.r.t. two products of prime
numbers. Picking up a card implies the publishing of an integer factorization.

Due to lack of space we cannot mention the variety of approaches to mental poker [SRA 78,
BaFi 83, FoMe 85, Yung 85, Crép 86, GMW 87] made so far. A sufficient and complete solution
of mental poker is presented in [Crép 87]. It achieves: Uniform random distribution of cards,
absence of a trusted third party, cheating detection, complete confidentiality of cards, minimal
effect of coalition, and complete confidentiality of strategy. The last points include that cards
picked up are not published after the game. Furthermore, if k£ is the number of players, the
scheme uses only 2k prime numbers as secret keys and k products of two prime numbers as public
keys.

Crepeau’s poker scheme is based on the all-or-nothing disclosure of secrets-protocol (ANDOS)
[BCR 87]. Alice knows some t secret strings a, € {0,1}". For {1,...,t} and j € {1,...n} let

*Institut fiir Theoretische Informatik, Wallstrafie 40, 23560 Liibeck, Germany
email: schindel@informatik.mu-luebeck.de

ar,; denote a single bit. Alice wants to disclose Bob only one of these strings ar. Bob wants to
know this string but without Alice getting any knowledge which string he has chosen. Furthermore,
Alice wants to avoid Bob getting more information than included in aj whilst & remains unknown
for Alice.

For this, Bob sends Alice P,: This includes a permutation o over {1, ..., t} and is defined for
random r, , € Z%, and a, . € {0,1} as

P, = (qx; | ke{l,...,t}, j€{l,...,n}
where g ; = 2;;(re;)?y™ mod m and i = o~ *(k)) .

ANDOS [BCR 87]

Step Alice Bob
1. Alice creates public key m and y € NQR;, ‘
2. Alice chooses nt random num-

bers z;, € Z7, and computes
an encoding of her secret strings
bt 2k := (zj1)%y%* mod m
for j e {1,...t}, ke {l,...n}.

P,

3. — Bob chooses a permutation o
and constructs P,.

Zu,x

4. ‘ Bob proves Alice the correctness P, . ‘
5. Bob chooses i € {1,...,t} and
. sends k = o (7).
H
6. Alice computes for g1, ... qk,n
the vector ¢q,...,c, such that toin
e
P { 1, qr; €QR,
e 0, aqr; € QR,, -
7. Bob computes b; j = c; @ ag,j .

Later on, we will adapt the following protocol verifying that Bob uses a correct formed P, .

Proof of P, [BCR 87]

Step Alice Bob

1. Alice chooses security parameter —— B chooses s permutations
s. (P“""PS o1,...,05 over {1,...t}. Bob

produces Py, ,..., P, .

3. Alice chooses a random subset —
X C{1,...s}.

4. Forall £ € {1,...s}:

4a. Alice checks whether o, is a cor- ;w—a If ¢ € X Bob sends all secret in-
rect permutation and whether formation of P, and the permu-
for all £ € {1,...,t} and tation oy.

j € {l,...n} it holds: s
Qr,j = 2i,j(Tk,;)y™ (mod m)
and i = o, " (k).

oo o
4b. Alice checks whether 0[1 orisa If £ ¢ X Bob sends permu-
permutation and whether values (ﬂ tation o, Yo 5. Bob proves
Cx,%, Ex,x Ar€ correct. that he can can present queries

¢+« of P, by queries ¢' in
P;. He succeeds, if he com-
putes in the representation
Qk,j = (ck7j)2yek,jq;;1(a(k))7j
(mod m) c¢i,; and ey,; and sends
them to Alice.

Crepeau uses this ANDOS-scheme and defines the following mental card protocols: Prepare the
mental poker game, get a card, detect cheaters, trace restoration, discard, open a card. These
protocols must only be used in some sequential ordering, e.g. after drawing a card further mixing
is impossible. Discarded cards cannot be reused. Of course this scheme is absolutely sufficient
for poker. But it cannot be used for games using more sophisticated basic game steps. Further-
more, some protocols like traces restoration are very expensive with respect to communication and
computation.

There is no straightforward way to apply this scheme to general card games, e.g. Crepeau’s scheme
relies on the uniqueness of cards (which is not given in general). Further, there are many exotic
operations that occur in some card games which the mentioned scheme is not able to deal with:
Introduction of new cards, drawing a card out of another player’s hand, controlling whether a
player lays a card of a certain color covered on the stack, etc. It turns out that very simple games
like scrabble or old maid need more complicated protocols than poker.

[Crép 87]: We have achieved the first complete solution to the mental poker problem.
...In order to solve even more problems of card playing or similar games (such as
scrabble), with special operations such as returning cards into the deck, the full power
of Boolean circuit simulation suggested in [BrCr 86] can be used. But unfortunately,
the resulting protocol is too messy to be explained here.

We modify and extend many ideas and techniques of [Crép 87] and introduce a general toolbox
for mental card games that provides efficient and secure communication protocols for transforming
every multi-player card game into an efficient and secure mental game. Such a card game is played
by k players with contrary interest. The players are separated and communicate via a broadcast
channel where each player can send, such that all partners can hear the message and identify its
sender. There is no trustable party in the game. Maybe the players have adversary interests, but
also some secret coalition of players (exchanging information secretly) may be possible.!

INote that in principle we cannot avoid that some players publish their own private cards. We only guarantee
that no coalition can find any private card of a player against his will.

We will define a data structure for cards which encodes the type of the card, e.g. 10 of spades.
More formally, there is a finite set of types, which can be computed using a function. Whether the
types of the cards are unique depends on the rules of the game. A player can only determine the
type of a card if all other players allow this. If cards are gathered in stacks, this is simply denoted
by tuple of cards D = (C1,Cs,...,C4). Only the type of a card is hidden. Every player knows
the number and the encoding of all cards.

All players know the rules of the game that may be probabilistic. Every step should be at least
checkable by one player who may change during the game. We will discuss how to check all steps
according to the rules during the game. For simplicity we do not formalize that aspect. These are
some of the possible basic steps that may be used in arbitrary order: Create of new/additional
cards, set operation on stacks, split a stack, stack cards, mix a stack, pick up a card, open a card,
checking rules of the game that apply to private cards, insert a card at a hidden position of a stack.
This extended abstract is organized as follows: After introducing some notational and number-
theoretical background we show the computation of the players’ public and private keys. Then we
present a masking operation for numbers which forms the cryptographic backbone of the scheme’s
security. Further, we present the data structure for cards and give protocols for the basic operations
on cards and on stacks. In the last section we discuss possibilities of attacking a mental card game
and practical issues needed for mental games on computer networks. At last we discuss security
issues and present some open problems.

2 Notations and Number-Theoretic Background

Let Z, = {0,1,...,n — 1} and Z% := {a € Z, | ged(a,n) = 1}, where gcd(a,n) denotes
the greatest common divisor of a and n. Further, P denotes the set of prime numbers. For
n=pi'...pSm with prime number p; < ps < ...p, Euler’s function ¢(n) denotes

Z5] = (pr = Dp1* 7" (o — Do 7 =2 0(n)
The set of quadratic residues QR,, and non-quadratic residues NQR,, is defined by

QrR, = {i€Zi|3a€Zy a®>=i (modn)},
NQR, := Z*\QR, .

The Legendre-symbol is defined for a prime number p and a € Zj as:

a\ [+1, a€QR,,
p») T -1, aeNQR, .

The Jacobi-Legendre-symbol enhances this symbol for all numbers n € N and a € Z},, where

a L
. (ﬁ) , n is prime number ,
(—) = a a . .
") (_) , m=p-m and p is prime number .
D m

Further, we define Z;, := {z € Z* | (£) =1} and NQR;, := Z;, N NQR,,. The law of quadratic
reciprocity allows an efficient computation of the Jacobi-Legendre-symbol, whereas in general it
is assumed to be intractable to determine whether x € QR,,, if n factors into two large prime
numbers and (£) = 1 . This security assumption stated by Adleman is called Intractability

Assumption of Quadratic Residuosity (QRA) [GoMi 82]:

Let 0 < e < 1. For each positive integer k£ let C} . be the minimum size of circuits C'
that decide correctly quadratic residuosity mod n for a fraction € of the k bit integers
n. Then, for every 0 < € < 1 and every polynomial) there exists .o such that
k> 0. ¢ implies C.r > Q(k).

For € Z, we define the quadratic residuosity of z by qr(xz,m) := 0, if z € QR,, and
gr(x,m) :=1 elsewhere.

3 The Toolbox

For the moment let us assume, that all communication can be received by all players and that each
message’s sender can be detected. Furthermore, all participants obey all syntactical restrictions of
the protocols. Later on, we will discuss what happens if these assumptions are weakened.

3.1 Preparation

Each player i € {1,...,k} chooses large prime numbers p;,q; € P forming i’s secret key. His
public key consists of m; = p; - ¢; and y; € NQR} . By the following protocol, a player verifies
the correct form of m and y [GHY 85]. It is sufficient to verify that m consists of some powers
of two distinct prime numbers.

Create public key (m,y)
Step Alice All other players
1. Alice chooses two secure primes p, ¢ and computes Y check y € Zs,.
m = p-q. Alice chooses y € NQR;,.

2. Alice proves Bob that m has only two primes factors [GHY 85]
3. Alice proves Bob that y € NQR;,

The following number-theoretic fact enables a zero-knowledge proof of the number of prime factors
of m.

1z,

Fact 1 If m has k different odd prime factors, then it holds |QR,,| = 2,T‘ .
Ip,q € P,v,m>1 : m = pYq" [GHY 8]

Step Alice Bob

1. Bob checks, that mi_ for j €
{1,...,logm} are not prime num-
bers.

2. u Bob chooses security parame-
ter s and s random numbers
T1,...,7s € L},

3. For each £ € {1,...,s}
3a. If r, € QR,, then
‘ Alice proves Bob that r, € QR,,, ‘
3b. If r, € NQR,, then
‘ Alice proves Bob that r, € NQR,, ‘
4. Bob accepts if
|QR,, N {r1,...,75}] >3/8 5.

Bob can sabotage Alice with 50% probability. For this, he can choose 71 € NQR,,, , with probability
of 1/2 and then he continuesly sends numbers r; = rr; . Hence, it holds r; € NQR,,, . So, Alice has
no chance to convince Bob and all witnesses that m has the desired factorization. We can avoid this
situation if Bob sends only trusted random numbers that Alice and Bob have determined via coin
flipping per telephone [Blum 81]. Under additional cryptographic assumption we have developed
an efficient and secure multi-player protocol for flipping a large quantity of many random bits
[Jako 98].

y € NQR,,,
Step Alice Bob
known p,q € P, m =pq, y € NQR,, meN yeZCy,
1. Bob chooses security parameter s.
2. Bob chooses random numbers
se T1,...,7s € Z% . With 50 % prob-
7 ability Bob sends ¢; = yr? mod m
or ¢; = r? mod m.
3. For all i € {1,...,s} Alice com- -5 Bob checks for all i € {1,...,s}:
putes b; = qr(c;, m).
bi=0 <= c¢;=r’modm .

This protocol is not a zero-knowledge proof, since Bob gets the quadratic residue property of the
numbers ci,...,Cs-

If hidden cards were already generated, the complete secret information of cards could be decoded.
So, this protocol must only be used for establishing the public key. Later on, we show how to
construct a protocol that is perfect zero-knowledge and may be used even during the game.

The following protocol proves that ¢t € QR,,, using a zero-knowledge proof:

t € QR,,
Alice Bob
knows p,q € P, m=pq, teQR,, meN, teZs,
1. <>~ Bob chooses security parameter
R.,S. >
2. Alice randomly chooses —— BobchecksVi € {1,...,s} : t=
ri,...,vs € ZY and com- & R+ S; (mod m) and chooses a
putes ti,...,ts € Z} such random subset X C {1,...,s}.
that
t=r?-s? (modm) .
Let R; = r?modm, S; =
52 mod m.
3. For all i € {1,...,s}:
3a. If ¢ € X then Alice sends r; 2% Bob checks R; = r? mod m
3b. If i ¢ X then Alice sends s; ~% Bob checks S; = s? mod m

As soon as a trusted non quadratic residue y € NQR;, is testified, we can use the following
zero-knowledge proof for verifying ¢ € NQR,, .

t € NQR? using y € NQR;,
Alice Bob
knows p,q € P, m =pgq, t,y € NQR;, meN, teZ,yeNQR;,
1. Alice computes r € QR,, such -+ Bob checkst=y-r (mod m).
that t =y -r (mod m).
2. Alice proves Bob that r € QR,, ‘

3.2 Masking Numbers

The data structure for cards consists of numbers z € Z2,, which are called the reverse side of a
card. Alice computes a new reverse side by masking each entry z by

2 =z-r’ y° mod m;

for some r € Z7,, ¢ € {0,1}. We denote this relationship between z and 2z’ by z < z’. Using the
factorization of m given z,z' one can always establish such a relationship, and if one can establish
such a relationship for given z,z’, this gives the factorization of m:

Lemma 1 Let m be a product of two prime numbers. A polynomial time bounded algorihm that
computes for given z,z' € 7%,y € NQR,, a number r € Z%, such that z' = z -r> -y* mod m for
b e {0,1} can be used to compute the factorization of m in expected polynomial time.

Proof: First note that every square s € Z%, has four roots ry,re, —ry, —r2 € Z%,, where ged(ry +
r2,m) is a non-trivial factor of m. Further, note that z'-2=1-y~% € QR,, has square root r. So, we
choose random numbers r, 2 € Z%,, and a random bit b € {0,1} and compute z = z-r%-y* mod m.
Assume that such an algorithm exists then it computes 7y = r and —r; with probability 1/2 and
ro or —ro with probability 1/2. The latter case gives the prime factorization.

Without the knowledge of factorization of m one cannot relate 2 to z in general, but can build
arbitrary large sets of numbers masking some given x,z to < 1 < Ta2,...; 2 <> 21 <> 22,....
These sets form polynomial-time sampleable equivalence classes: The mask operation is reflexive
z < z; commutative z; < 25 <= 2z < z1; and transitive z; & 25 & z3 <= 21 —
z3. So, these sets x, and z, remain disjunct, so long as Alice cannot factor m in expected
polynomial time. To every other player Alice’s built relationship is perfectly hidden, since the
mask operation produces uniform distributed numbers over Z¢ . Nevertheless, Alice can prove the
mask relationship by the following zero-knowledge proof.

Proof that z «— 2/

Step Alice Bob
knows m €N, 2,2/ € Z*,y € NQR, ,r € Z*, b € m €N, z,2 € L,y €
{0,1}, NQR®,

2=z y" mod m

<& chooses s.
Alice computes ti,...,t, such that Vi € %} Bob chooses a random
{1,...5} :2' <> t;, ie. +— subset X C{1,...,s}.
ti=2"-r?-y" mod m
for random r; € Z7,, b; € {0,1}.
3. For all i € {1,...,s}:
Ti,b;
3a. If ¢ € X then Alice publishes the secret pa- —— checks 2/ — ¢;
rameters of 2/ < ¢;
3b. If i ¢ X then Alice publishes the secret pa- —— checks z — t;

rameters of z < t;, namely b, = b @ b; and
7'-,, =17r; .T.yL(b+bi)/2J
i i

Lemma 2 If Alice cannot deduce an v € Z*, and b € {0,1} such that 2’ = z-r% - y® mod m
(z < z') then Bob can convict Alice with probability 1 — 25 wusing this protocol. Moreover, this
protocol is perfect zero-knowledge.

Proof:

e Perfect zero-knowledge: We show that an uninvolved party M can generate in polynomial
time the same probability distribution of the communication as by the protocol. For this,
1. M randomly chooses X .
2. M randomly chooses r; € Z%,, b; € {0,1} for i € {1,...,s}.
3. If £€ X then M computes t, = z' - r? - y* mod m.

4. If £ ¢ X then M computes t, =z - 77 - y* mod m.

e Security: Assume that z & 2’ from Alice’s point of view. Then either one of the following

three cases hold:

1. 2=ty and 2’ %ty
2.z te and 2’ <t
3. 2z te and 2’ bty

With at least 50% probability Bob can convict Alice in any of these cases, since Alice has to

publish the secret parameters of z < ¢, or z' < t;.

A special case of masking is 1 < z, i.e. Alice proves Bob that she knows r € Z¢, and b € {0,1}

such that z = y* - r> mod m.

Proofof 1 < ¢

Alice

Bob

knows

3.
3a.
3b.

meN yeNQR; ,r€Z:, be
{0,1}, t = 4°r> mod m, r € Z%,,
be {0,1}

(_
R.,S.
Alice randomly chooses ——
Ti,...,7s € Z};bi,...,bs €
{0,1}. Then she computes
tl,...,ts S Z;‘n,cl,...,cs S

{0,1} such that

t=r?-s2-y"t (mod m) .
Let R; = r2y* modm, S; =
s7y° mod m.

For all i € {1,...,s}:
If i € X then Alice sends r;, b;
If i ¢ X then Alice sends s;, ¢;

meN, y e NQR; , t € Z%,

Bob chooses security parameter
s.

Bob checks

Vie{l,...,s} : t = R;-S; (mod m)
and chooses a random subset
XC{1,...,s}

Bob checks R; = r7 - 4% mod m
2

Bob checks S; = s;

i -y® modm

A zero-knowledge proof of non-quadratic residuosity Note that for the standard proof of
t € NQR;, either the prover has to publish the quadratic residue property of some numbers or
all players have to use the public key information y € NQR;, .
overcome these disadvantages and enables us to decrease the error probability of y € NQR;, even

during the game.

The protocol of 1 < z helps to

Zero-knowledge proof of y € NQR,,,

Step Alice Bob

known p,q € P, m =pq, y € NQR,, meN, ye ZC,

1. Bob chooses security parameter s.

2. Bob chooses random numbers

s r1,...,7s € Z), and chooses a

<— random subset X C {1,...,s}. For all
.. L € X Bob computes
F

te =1} mod m
and for all £ ¢ X

te=r7-ymodm .

3. Forall £ € {1,...,s}

3a. ‘ Bob proves Alice that 1 < ¢,

4. Alice computes YV = {i | t; € Y4 Bob checks X =Y.
QR }-

3.3 The Data Structure for Cards

Every card is represented by an encoding, called reverse which is known to all players. This
information does not help (if QRA holds) to decode unless all players allow it a player. To keep
the card secret the information is spread among the players secret coding schemes (see fig. 2). The
information on the reverse is encoded by all the players’ cryptographic schemes. Only if all players
reveal their encoding the type of a card can be read.

Let T be the number of different types of cards, k& the number of players and w = [log, T']. A
reverse consists of k- w numbers (21,1,...,2kw). For i € {1,...,k}, j € {1,...,k}, it holds
2i,j € Z,,,- Every number z; ; encrypts a bit. This bit can be computed by

0, z,;€QR,,, ,
bij = qr(ziﬂ')mi) = { 1 e{sje. "

The type t of a card can be computed by the term:

w k
t=1+> 27" -Pbi;.
j=1 i=1

The quadratic residuosity of numbers solely encodes the type of a card. So, throughout all protocols
no information about quadratic residuosity may be published unless there is a proof that the
numbers are related by consecutive mask operations. Then, the owners of the secret keys do not
publish new information that could have been produced by public-key information if all the players
played honestly.

Creation of an open card For a card of type ¢ a player computes the binary representation
bi,...,b; € {0,1} of t and publishes

C=((, ...y, ..., 1),...,(1,...,1)

using only public known information.

Operations on Cards

with public keys with the help of all others

Mask open card Pickup

Open
Create covered card Create random card

-
N 0

Figure 1: Some available operations on cards.

Mask a Card There is a public available algorithm that computes for a given card another card
uniformly distributed over the set of all cards of that type. We denote C & C’ for the relationship
between original card C' and new card C’.

10

Real Binary Hidden

card representation Card
AN A

: : @001010@3031313151307
&“A& c

Figure 2: Data structure used for cards. Each bit of the binary representation is encoded by three
bits which give the original bit by an exclusive or.

Mask a card C &= C’

1. For every card C € D Alice flips kw—w random bits (ba,1,...,b2.w)s -, (k1,5 0kw)
and kw random numbers (7 ;)i jcq1,...kyxf1,...w} € (L)Y X - x(Z},)"

2. Alice computes for every card C' and for all j € {1,...,w}:

b17]’ = @ bi7j .

i€{2,m0 k)

3. Now Alice computes for a given card C' = (z,«) the new reverse C' = (2 ,). The new
values z| are computed for ¢ € {1,...,k}, j € {1,...,w} by

!

2 bi ;
Zig = Zig T Ys

mod m; .

4. Alice proves all other players that C' & C' is correct.

Theorem 1 The mask operation generates cards which are distributed uniformly over all cards
with the same type. No coalition can decode a masked card C' if the type of original card C is
not known. Computing all secret parameters of a mask operation is computationally equivalent to
computing the factorization of all m;.

Proof:

1. The mask operation generates a uniform probability distribution:

Note that the mask operation for numbers maps to all numbers of Z;, with same probability.
Further, the mask-card operation is symmetric w.r.t. to the players’ encoding such that all
binary information of type ¢ occurs with same probability.

2. No coalition can decode a masked card C" = z] , against player.

Assume that all players form a coalition against a player. Of course they know the binary
information qr(z;,;) of card C' and qr(z;;) of C' for i > 1 and so they can compute all the
secret binary information involved in a masking operation. Nevertheless, since the decisive
information qr(z; ;) stays unknown the masked card C' cannot be decoded, too.

3. Computing all secret parameters of a mask operation between two given cards of same type
is computationally equivalent to compute the factorization all m, .

We have seen that for given C,C" a coalition of all but one players can compute the binary
information of masking. Furthermore, they can compute all secret information of z; ; < z; ;
for ¢ > 1 since they know the factorization of m; . But as missing information the square
roots of z; ; < 21 ; remain. The claim follows by Lemma 1.

11

Furthermore, a mask operation for cards forms an equivalence class: Masking is reflexive, transitive
and commutative. These facts help us to create the following zero-knowledge proof of a correct
masking. Given random cards C,C’ of the same type no other player than the creator can deduce
all the secret information of C' 3+ C’ since w -k masking operations of k cryptographic public-key
systems are involved. But every player can mask a card and if all players do this, none can deduce
all secret parameters.

Proof that C & C”’
Step Alice All other players

All know the public keys and cards C, C'
Alice knows secret parameters of C' &

OI

choose security parameter s.

2. Alice computes C4,...,Cs such that
Vee{l,...s} :C'"% Cy.

3. Forall £ € {1,...,s}:

choose a random subset X C

{1,...,s}.

L T

3a. If £ € X Alice publishes the secret pa- —— checks C" ¢+ C,
rameters of C' & C,
r;,b;
3b. If £ ¢ X: Alice publishes the secret —— checks C' ¢ Cy

parameters of C' & Cy

Theorem 2 This protocol is perfect zero-knowledge and proves to all other players the correctness
of the masking-operation with an error probability of at most 2% .

Proof:

1. We can produce the same probability distribution as the communications only with the
knowledge of C',C’, and the public keys as follows.
We choose a random subset X C {1,...,s}. Then we compute C' & C for all £ € X and
C % Cy elsewhere. In both cases we publish the secret mask parameters.

2. For the error probability note that C' ¢ Cy and C & C; imply C ¢ C’, since the mask
operation is commutative and transitive. Therefore in each round all other player have a
50% chance to convict Alice if C' % C".

Creation of private card is another application of the 1 < z-protocol.

Create a private card

Alice other players
knows all public keys and her secret key know all public keys
1. Alice creates an open card C' of
type t for internal use only.
2. Alice masks C' & C' = (2z4,4) <,
3. Alice proves 1 < z; ; for alli € {1,...,k}, j,€ {1,...,m}. ‘

The last step ensures that Alice does not use numbers for the card which give information about
other cards.

Theorem 3 The encoding of such a generate private card cannot be decoded by all other players,
if QRA holds.

Proof: The j-th bit of the type of the card is given by the parity with qr(z1;), which is chosen
randomly. So, a coalition of all but one players has no chance to compute a bit if QRA holds. Hl

12

Generation of covered random cards The players want to generate a covered card with
random type of {1,...,T}. For the beginning assume that 7' = 2.

Create covered random card

1. Every player i € {1,...,k} randomly chooses z;; € Z;,, for j € {1,...,w} and pub-
lishes it.

2. The card C is given by 2.

In this protocol the proof of correct masking is obsolete, since each player only uses his key.
Although every player uses only public key information it is not desirable to allow other players to
create one’s encoding, simply because the card is not trustable random. But also when the card
is picked up or opened, this player could achieve information about the quadratic residuosity of
numbers on the reverse sides of other cards.

Suppose that T is no power of 2. Then the situation becomes more complicated. We will choose
w such 2¥~1 < T < 2% and use the original protocol for the creation of the covered card. If Alice
picks up a card she sees whether its type is out of range. Then Alice opens this cards and may
get a new covered card using the protocol shown above. Now she privatizes this card and this
continues as long as a correct card appears. Of course the expected number of rounds is less than
2 and Alice gets her card considerably faster than using a mix-protocol of a deck with T' cards
shown below.

This way all players may compute trustable random numbers in every range, e.g. simulating
flipping coins or cubes: They compute a covered random card and then open it (see below).

Pick up a card In the following protocol a player gets the decoding of a covered card. All
other players eaves-dropping the protocol gain no information, since the crucial information stays
encoded:

Pick up a card

Alice Bob Charly
know all public keys and the covered card C' = (24)
knows her secret key p1,q; his secret key po, ¢o his secret key ps, q3
1. Bob sends the informa- Charly sends the informa-

tion qr(zs,;,ms) for j € tion qr(zs;,mg) for j €
{1,...,w} {1,...,w}

2. Bob proves Alice the cor- Charly proves correctness.
rectness.

All used proofs used are perfect zero-knowledge. But by sending the quadratic residuosity there is
a way for Alice to get information that may not be designated for her.

Consider Alice creating the card C' without proving the correct form w.r.t. masking. So, she can
get secret information about another covered card D. For this, she may directly copy all entries
of D to C' or she may mask the entries z using z < z'. So, Alice can read both cards C and D
using one pick-up operation. Therefore, the proof of correct masking a card is essential.

Theorem 4 If a card C' is the result of a create-open-card, create-random-covered-card, or create-
private-card operation followed by a sequence of mask-card operations, then the pick-up operation
does only give further information as the type of the card picked up. All players besides Alice cannot
extract the type of the card picked up unless they already know it.

Proof:

1. Consider a player Z getting all public and secret parameters of creation and masking a card.
Further Z gets the public key information. We prove the first claim by showing that this Z
is now able to compute the same information published in the pick-up procedure.

13

Let Cy be the at first published card and C the card that is picked up. Further, let Cy &
C1 % -+ % C be the masking steps. These steps can be contracted to Cy & C' by Z such
that he knows the secret parameters of this masking. There are three cases:

(a) Cp was an open card. Then, Z can compute all secret parameters in C' and therefore
qr(z;,;) for i € {1,...,k}, j € {1,...,w}.

(b) Cp was a private card. Since Z has the private mask parameters this case can be
reduced to the above situation.

(c) Co was a covered random card. Again Z has collected all private mask parameters,
which gives the same situation as for a private card.

This completes the proof since all mask operation use only public key information and there-
fore the overall operation of hiding and picking up a card is an operation that Z could have
done by himself with the same probability distribution.

2. Note that the security of a covered card does not depend on the mask operations but the
missing knowledge of the quadratic residuosity of the first card. The decisive secure part is
the quadratic residuosity w.r.t. the module of the player picking up the cards, which is the
only one that an all but one player coalition cannot decode.

Open a private card This protocol is similar to the last stated. Note that Alice cannot prove
the correctness of the other players’ encodings. This has to be done by them.

Open a card

Alice Bob Charly

know all public keys and the covered card C' = (z.,.)
knows her secret key his secret key ps, g2 his secret key ps, g3
p1,q1

1. Alice sends all other play-
ers qr(z;,;,m;) for i €
{1,...,k}, je{l,...,w}

2. Alice proves the correct- Bob proves the correct- Alice proves the correct-
ness of qr(z1 j,m1) for j € nessof qr(za j,mo) for j € mnessof qr(zs ;,ms) forj €

{1,...,w} {1,...,w} {1,...,w}

Again it is crucial that the card was created by the mask operation (that should have been proved
before this step). If not, some player (the one that at last should have masked the card) may get
some additional information.

Theorem 5 If a card C is the result of a create-open-card, create-random-covered-card, or create-
private-card operation followed by a sequence of mask-card operations, then the open operation does
only give information about C'.

Proof: analogously to Theorem 4. |

3.4 Operations on the Deck

A deck is modelled by a tuple of cards. Stacks are not necessarily disjunct subsets of the deck.
In the beginning of the game some player may create the deck. This operation corresponds to
a number of creations of open cards shown above. Contrary to the protocols known so far, it is
always possible to include a new deck later on.

14

Operations on Stacks

with public keys with the help of all others Proofs
Hide Pick up Proof of set-equality
@ || w =
N
A
Mask covered stack Open stack Proof of subset
&+ w AW
Stack cards 111 Proof of superset
~ = /
SN || 2 &7

Figure 3: Some available operations on stacks.

Stacking the cards Alice stacks a set of d cards S, i.e. she masks all cards and applies a secret
permutation o to the stack.

Stack the cards S to S’: S~ S’

1. Alice masks each card C; € S: C; & C}, for i € {1,...,d}.

2. Alice changes the position of all cards using her secret permutation o and publishes the
new covered stack S’ = (C(,y(1): R Cc’r(d)).

3. Alice proves all players the correctness of S~ S’.

The secret parameters of this permutation are called P, , similary to the ANDOS-scheme [BCR 87].
W.r.t ANDOS additional information is encoded that allows the publication of the new permuted
stack:

o(1) bi,aa) -0 bikaw) TLO) --- TL(kaw)

P, = . .)

o(d) b,y - bakw) Taa0) oo Td(kw)

Alice’s transformation of the stack is denoted by S % S’. Alice does not use her secrets p and
q for this operation. So, even an uninvolved party can create and prove a valid P, only by using
public available information. Since for the open- and pick-up-protocols it is essential that all entries
of the cards are masked correctly Alice has to prove the correctness of her stacking—operation.

P, Pr 7rocr .
For given P, and P, we compute Pyo,, where S = ' = §" <+«— S S" . Let P, given
by
(1) ey - CLw) ST s ST (k)
P =)) .)) .)

m(d) caa) oo Cd(kw) Sdy(1,1) --- Sdy(kaw)

15

Then Py, is given by
T(0(1)) be1),1,1) D Co()(hyw) -+ Do), (kw) D Cly(kw) t1,(11) -+ U, (kw)
Pﬂ'oa = - -)
m(o(d) be(a),(1,1) D a1,y oo Doa),(kw) D Ca(bw) ta,(1,1) --- td(kw)

where , R
b (i) = (To(w,(i,j) Su(ig) o) J) mod m;

On the other hand, the knowledge of Pr., and P, enables the computation of P, using only
public keys. In the following protocol Alice proves the correctness of her P, , by proving that she
properly masks the cards analogously as above in the mask-operation.

Proof of P,
Step Alice All other players
Py

Alice has P, kept in secret, such that S =~ S'. know S, S’

1. <2~ agree on a security pa-
rameter s.

2. Alice chooses s permutations oy,...,0s over agree on a random subset

{1,...,t} and corresponding P,,,...,P,,. Us- X C{1,...,s}.

ing this information, Alice creates new permu-

S.
=
Psy Py,
tations of the stack S’ ~ Sy,...,58" ~ S;and x
publishes them. —
3. Forall £ € {1,...,s}:

P, P,
3a. If £ € X Alice publishes P, . —5 check whether §' ~ ;.

Psyoo Psyoo
3b. If £ ¢ X Alice publishes P,,o,. —" % check whether S &~ S,.

Theorem 6 The stacking operation is perfect zero-knowledge and can be performed by only using
the public keys. It performs a permutation on the given stack which stays secret to all other
players. A series of stacking operations followed by a pick-up or open-operation does not reveal
any additional information but the type of the addressed card and its former place in the stack.

Proof:

1. Proof of P, is perfect zero-knowledge:

Generate a random subset X C {1,...,s}. Forall £ € {1,...,s}: if £ € X then compute
S" &~ Sy and else compute S ~ Sy. In both cases output the secret parameters.

2. It performs a permutations on the given stack which stays secret to all other players:

Let S be the original stack and S’ the output of the operation. Assume that the stacking
operation is not a permutation. Then a type ¢ exists such that it occurs n times in S and
n' times in S’, such that n # n’. Let ng be the number of occurences of ¢ in S,. For n,
there are three cases:

(a) n=mng, n' #ny

(b) n#ng, n' =ny

(c) n#ng, n' #ny
Since Alice has to prove S &~ S; or S’ & S; by publishing all secret parameters without

knowing which one in advance. All other players can convict Alice with at least a 50%
probability in each of the s rounds.

Since the masking operation produces a uniform probability distribution over all cards of the
same type. That part of the cards in the new stack, which a all-but-one coalition of players
can decode and analyze, is produced by the same uniform probability distribution.

16

3. Assume that after a pick-up procedure all players who performed a stacking procedure publish
a trace of the picked-up or opened card through all permutations. Then, we get a sequence
Co% Cy % -+ C. Now, the claim follows by Theorem 4 and 5.

Mixing a stack The best way to mix a stack is to let each of the players stack the cards. Such a
stack may consist of private, open, or random covered cards and this operation may be performed
in every state of the game whenever the rules allow this operation.

Mix a stack
Alice Bob Charly

They know all public keys and the covered stack S
stacks S to S'. stacks S’ to S”'. stacks S” to the resulting stack S"’.

1

2 Alice proves S ~ S’
3. Bob proves S’ ~ S"

4 Charlie proves S" ~ S""

Drawing a card from a private or open stack If some player wants to draw a card from a
stack, at first he informs all players which card he is going to take by quoting its encoded side.
Then the above mentioned “pick up a card”-protocol follows. If he wants to draw a card from the
hand of a player, according to the rules of the games the other player may stack his cards before he
gets a card picked away. If all other players insist on a random card they can determine a random
number which gives the position (shown above).

Set-comparisons of private and public stacks Consider a private stack S and a stack of
open cards U. A player can easily prove that S is a permuted version of U by constructing a
corresponding P, and prove its correctness. If a player wants to prove that a private stack S is
a subset of an open stack U without revealing S he creates the missing cards U \ S and mixes
them into S getting S’. Now he proves the equality between S’ and U:

Proof of S C U
Step Alice All other players
known Alice has private stack S. U is open stack U, covered stack S.
an open stack.
1. Alice creates hidden cards A = 2 verify that the reverse sides of S
U\ S. and combines S and A in are on top of S’
this ordering to stack S’
2. Alice stacks U to S’
3. ‘ Alice proves that U ~ S’
Proof of S D U
Step Alice All other players
known private stack S, open stack U. open stack U, reverse sides of S.
1. Alice creates hidden cards A = 2 verify that the reverse sides of U
S\ U. and combines U and A in are on top of U’
this ordering to stack U’
2. Alice stacks U’ to S
‘ Alice proves that U' ~ S

For the following protocol we assume that all types of cards only appear once and thus identify a
card:

17

Proofof SNU =0

Step Alice All other players

known Alice has private stack S. U is open stack U, reverse sides of S,
an open stack, set of all types U. set of all types U.

1. Alice combines S, U and the cre- N verify that U, S are on top of S’
ated hidden cards A = U\ (UUS)
to stack S’.

2. Alice stacks S’ to D, which is the
deck.

3. Alice proves that S’ ~ D

If a type of a cards may appear more than once, we use multisets as a representation of all cards
and insert a card of a type |S| times in the set of all types. The rest of the protocol is analogously.

Rule control In some games like “Skat” or “Schafkopf” there are some restrictments according
to cards that a player may lay on the open stack, e.g. on a card of spades only a card of different
type may be put, if the player cannot serve, i.e. has no spades in his private stack. Normally, such
rules cannot be controlled during the game without a referee. In fact our scheme can prevent the

breaking of such a rule just in time.

More formally, let U C {1,...,T} be a set of types of cards. Let S denote the private stack of
Alice. The following protocol proves that Alice chooses a card C € S such that if UNS # () then

C € U without publishing the type of C' and whether U NS # 0.

Alice serves card C of type U if possible
Step Alice All other players
known Alice has private stack S with open stacks H,U, reverse sides of
card C' € S, U is an open stack, S,C.
U, is the first card of U, H is an
arbitrary subset of D \ U of size
|S]-
1. < agree on a security parameter s.
2. Alice generates a random subset
X C{1,...,s}.
3. Forall £ € {1,...,s}:
SHEH
3a. If ¢ € X then Alice gener- ——
ates S~ S}, Ui & C}, H~ S, C0.Ci
2 —
C*Cj.
SHEH
3b. If ¢ ¢ X then Alice gener- ——
ates S~ S?, Uy & C3, H~ S}, ¢0.Ci
C+Cy. ’
4. & All players agree on a random
subset Y C {1,...,s}.
5. Forall £ € {1,...,s}:
da. If/e XNY then
‘ Alice proves that S} ~ S, S ~ H, C & C},U; & C}
5b. If €Y\ X then
‘ Alice proves that S7 ~ S, S} ~ H, C & C},U; % C}
5C. If (€ X\Y then
‘ Alice proves that S NU =0, {C}} CU
5c. If{¢g XUY then
‘ Alice proves that S} NU =0, {C}} CU

18

Split the cards Splitting the cards means that a player chooses a secret number of cards of the
top of a stack and places them in this order to the end of the stack. This operation corresponds
to a cyclic shift. Since all player can see the card by their reverse sides we cannot simulate this
operation in its original setting — the secret shift parameter could be seen by all the participants.
Note that cyclic shifts are a subset of permutation that are closed against iteration. The basic
idea for a protocol for proving the correctness of a secret cyclic shift, is an adaption of the stacking
operation:

Secret cyclic shift

1. Alice masks every card C; of S: C; % C].

2. Alice performs her secret cyclic shift operation. For this, she removes ¢ cards from top
of the stack and places them at the bottom: S’ = (Cl,,,...,C}{,C1,...,C}).

The secret parameters of this permutation are called P, consist of ¢ and all secret mask-parameters.

We denote S &5 S’ for this operation. Of course the correctnes of this operation has to be proven.
Here, we use the closure of cyclic shifts, i.e. two succeeding cyclic shift operations can be described
by one cyclic shift.

Proof of P,
Step Alice All other players
known Alice has P, in secret, such that S, S’
SRS .
< agree on a security parameter s.
2. Alice chooses s cyclic shift pa- All players agree on a random
rameters ci,...,cs and corre- subset X C {1,...,s}.

*

sponding FP.,,...,P.,. Using 57)
this information Alice creates <—
shifted versions of the stack S’,

P. 2
namely S’ ~ S, ..., S'vas s
and publishes them.
3. Forall £ € {1,...,s}:
. . P, , Pe,
3a. If ¢ € X Alice publishes P.,. EREY check whether S’ ~ S,.
Pege Pepie
3b. If £ ¢ X: Alice publishes P., .. N check whether S < S,.

Test of equal cards A+ B or C D A, B, C, and D are cards where Alice masked
A% B or C % D. She wants to show that she performed at least one of these mask-operations.

19

Proof of A% B or C % D

Step Alice All other players
known mask information of A & B or reverse sides of A, B,C, D

Cs D
1 P agree on a security parameter s.
2. Alice generates a random subset

XC{1,...,s}.
3. Forall £ € {1,...,s}:

A',B',C",D'

3a. If ¢ € X then Alice gener- —

ates Av A", B» B, C% (',

D+ D'

A',B',C",D'

3b. If ¢ ¢ X then Alice gener- —

ates Av-C', B D', C+ A,

D+ B
4. L All players agree on a random

subset Y C {1,...,s}.

5. Forall £ € {1,...,s}:
5a. If /e XNY then

‘ Alice proves that A+ A', B B, C+ C', D% D'. ‘
5b. If €Y\ X then

‘ Alice proves that A+ C', B& D', C+ A', D+ B'. ‘
5c. If (¢ e X\Y and A & B) or

((¢ XUY and B & D) then

‘ Alice proves that A’ & B’ ‘
5d. If (€ X\Y and B & D) or

((¢ XUY and A% B) then

‘ Alice proves that C'" & D' ‘

Secretly insert a card into a stack Alice wants to insert a hidden card C into a stack S at
a secret position. For this Alice shows that a cyclic shifted version S’ of the resulting stack S”
consists of C' on the top and a cycled version S in the rest. It remains to prove that both cyclic
shifts combined preserve the order of S. Note that the first card of S has to correspond to the
first card S” or the last card S to the last card S”. Alice proves this by the above shown protocol.

Insert a card C in a secret position of a stack S

Step Alice All other players
known reverse sides C', S c, s
1. Alice chooses position ¢ € N

{1,...,]S|} and computes an en-

coded stack that corresponds to
the cyclic shift of S by ¢ cards:

S~G5.
2. ‘ Alice proves that S ~ S’
3. Alice computes the resulting AN

stack S” as the cyclic back-
shifted stack of S’ (i.e. shift by
P|S|—c+1) (C, Sl) ~ 5"
4. Alice proves that (C,S’) ~ S"

Alice proves that S[1] & S”[1] or S"[|S]] & S"[|S| + 1]

20

Glueing and separating cards The encoding of the binary representation gives more oppor-
tunities. If partial information like the color of a card is stored in corresponding positions of the
binary representation other information can be discarded and further operations may work only
with the interesting partial information.

On the other hand, some cards may be glued together, forming a new card data structure which
for example may be used to mix up stacks, completely preserving their cards and order. After the
mix-operations the separation of the large cards (stacks) gives the original data structure.
Moreover, the binary representation may be used for sharing-of-secrets schemes. Now the pick-up
procedure for a player alone does not give all the needed information. The card has to be shared
among some players.

Introduction of a new player is a delicate operation, if some game steps already took place,
e.g. Charly, the new player, has no guarantee that the others really mixed stacks. Even so, he can
testify all protocols despite the verification whether creation of covered random cards and mixing
operations were fair against him.

Introduction of a new player

1. Charly publishes and proves his public key.
2. All (private and covered) cards in the game get an additional row containing (1,...,1).
3. The owners of private cards mask them, all covered cards are masked by Charly.

4. Charly performs secret permutations on all covered stacks that are claimed to be mixed
and proves the correctness of each operation.

Leaving a game In some games there are situations where a player, e.g. Charly, is not involved
in the rest of the game, e.g. they play “old maid” and a player has laid down all his cards. In the
above shown scheme Charly is involved in all the protocols for the rest of the game. If he does not
want to control the game anymore, his encodings are removed from the data structure. Of course
this operation makes only sense if at least two players continue the game. If only the adversary
players’ coalition remains, then they can get all information of covered cards which Charly has
left for them in the game. Charly’s private cards and public covered cards that are not needed for
the rest of the game stay securely encoded. Of course the danger stays that some of his strategic
decisions or card information may be detected from now on and he is no longer able to keep the
game under surveillance. All this has to be considered before using the following protocol:

Parting from a game

Step Charly All other players

1. & ask Charly for the encoding of

the covered cards S that remain
in the game.

2. For every card C' € S he pub-
lishes his encoding.
3. ‘ Charly proves his encoding of S. ‘
4. i ask Charly for the proof of
his encoding of all their private
cards S.
3. ‘ Charly proves his encoding of S’. ‘

21

&M&g% e

Figure 4: Sabotage! The diabolic player disconnects Charlie and claims that he left without
quitting. Alice and Bob cannot disprove that claim.

4 Discussion and Conclusion

4.1 Cheating and Attacks

How can a player cheat or sabotage a game? We classify six categories and discuss whether this
toolbox prevents them.

Sabotage This includes all syntactical errors violating the protocol. The most important case
is that a player leaves the game without quitting. This case is mostly relevant for a sabotage of
a bad loser who wants to spoil the whole game. But note that we cannot differ between a bad
loser disconnecting and a local network breakdown. An implementation of an electronic card game
should take special care to those kinds of errors (see fig. 4). If a saboteur attacks the game, the
only possibility seems to quit the game, identify the saboteur(s) and the kind of attack.

Protocol attack Here the offender tries to attack the cryptographical protocols, e.g. he claims
that m has only two prime numbers in its integer factorization, while it has more, he tries to factor
m, he uses wrong mask-operations trying to muddle through the proof of it. We have proved that
under QRA our scheme is secure against such an attack.

Cheating The offender tries to break the rules of the underlying game, e.g. he serves the wrong
card. We have given an example of on-line control of rules that even refer to private cards. Most
of the underlying games provide rules for the treatment of cheaters.

Secret coalitions At least two players exchange private information and use it for their advance.
At least we can guarantee that their coalition does not enable to turn covered cards or decode
private cards of other players. The attempt to try to avoid any secret communication is of course
hopeless. There is only one way to ensure that their strategic decisions are independent from the
knowledge of an allied partner’s private cards: Every player has to fix his strategy before the games
starts by programming it into a probabilistic Turing machine. During the game he has to verify
that all his (secret) decisions coincide with the (secret) output of this machine. In principle such
a scheme can be implemented, but this method fails since most of the human players are not able
and willing to describe their strategy.

Public coalitions A coalition of players discriminates a player, only with public known infor-
mation. A commonly practiced example is a game of three people where two of them are a couple.
Here, even the approach of a secret strategic Turing machine does not help, since the strategy
could provide sensors that identify the partner by his strategic decisions.

Ghost players A player invents new virtual players to increase the probability of winning.
Many games support this strategy, e.g poker, whilst for other games the probability of loosing
increases. Like secret and public coalitions ghost players cannot be detected, since the players play
anonymously. Since this problem highly depends on the sort of game, players participating these
games should always be aware that this can happen.

22

In the beginning we assumed that all players use a broadcast channel, where everybody hears
everything and the sender of a message can be identified. In the real world we have point-to-point-
communication which has to emulate the broadcast channel. For identification a digital signature
scheme should be used. Signing all messages can prevent also the problem of byzantine agreement
when convicting an offender: Consider Charly playing fair with Alice while cheating Bob and
claiming that Bob cheats. Now, without signed copies of all messages sent so far, Alice would have
no chance to identify Charly as offender.

4.2 Conclusion and Open Problems

We presented an intuitive and simple data structure for cards. Cards may be covered, open, or
private to one or more players. Further, we presented protocols for mixing a stack consisting of
open and hidden cards, picking up cards, opening cards, inserting cards in the stack, splitting the
stack, and many more. It is possible to control that players obey the rules even when they make
hidden moves without disclosure of their secrets.

All proofs can be repeated such that it is always possible to decrease the probability that a protocol
attack was not detected. Only the insecurity caused by too small secret keys cannot be diminished.
Like in Crépeau’s scheme private cards have not to be revealed after the game keeping the player’s
strategy secret. Furthermore, secret and public keys can be used for many games.

At last we discussed the problem of secret and public coalitions and ghost players in mental card
games. It is an open problem how these problems can be solved in practice. Another open problem
is the question how rules can be controlled just in time applying to covered cards without publishing
this secret information. Further, it is open whether and how other cryptographical methods, e.g.
discrete logarithm, or modular exponentiation, can replace the quadratic residuosity used here.

Acknowledgement

This work was inspired by the discussions with a group of interested students, namely Thomas
Arand, Matthias Holm, Matthias Kolberg. Further I have to thank Andreas Jakoby for the very
detailed explanation of mixing tradition in “Doppelkopf” which led me to the glueing and separa-
tion operation. Special thanks are given to Stephan Weis and Barbara Goedecke for proof-reading
and Riidiger Reischuk for drawing my attention to cryptographic protocols.

At last T want to mention that there is at our institut an ongoing student project of an interactive,
graphical implementation of parts of this system that in its final state will allow a transparant
secure mental card game in the internet.

References

[BaFi 83] I. Banary, Z. Fiiredi, Mental Poker with Three or More Players, Information and
Control, 59, pp. 84-93, 1983.

[BrCr 86] G. Brassard, C. Crépeau, Zero-Knowledge Simulation of Boolean Circuits, Crypto 86,
LNCS 263, pp. 223-233, 1986.

[BCR 87] G. Brassard, C. Crépeau, J.-M. Robert, All-or-nothing disclosure of secrets (extended
abstract), Crypto’86, pp. 234-238, 1987.

[Blum 81] M. Blum, Coin Flipping by Telephone, A Protocol for Solving Impossible Problems,
SIGACT News, 1981, pp. 23-27, 1987.

[Crép 86] C. Crépeau, A Secure Poker Protocol That Minimizes the Effect of Player Coalitions,
Adavances in Cryptology: Proc. of Crypto 85, LNCS 218, Springer, pp. 73-86, 1986

[Crép 87] C. Crépeau, A Zero-Knowledge Poker Protocol that Achieves Confidentiality of the
Players’ Strategy or How to Achieve an Electronic Poker Face, Crypto’86, pp. 239-
247, 1987.

23

[FoMe 85]

[GHY 85]

[GoMi 82]

[GMR 85

[GMW 87]

[Jako 98]
[SRA 78]
[Yung 85]

S. Fortune, M. Merrit, Poker Protocols, Advances in Cryptology: Proc. of Crypto 84,
LNCS 196, Springer, pp. 454-464, 1985.

Z. Galil, S. Haber, M. Yung, A Private Interactive Test of a Boolean Predicate and
Minimum-Knowledge Public-Key Cryptosystems, FoCS’85, pp. 360-371.

S. Goldwasser, S. Micali, Probabilistic Encryption €& How To Play Mental Poker Keep-
ing Secret All Partial Information, SToC’82, pp. 365-377, 1982.

S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof-
systems, SToC’85, pp. 281-304, 1985.

O. Goldreich, S. Micali, A. Widgerson, How to Play any Mental Game or a Complete-
ness Theorem for Protocols with Honest Majority, SToC’87, pp. 218-229, 1987.

A. Jakoby, Private Communication, 1998.
A. Shamir, R. Rivest, L. Adleman, Mental Poker, MIT Technical Report, 1978.

M. Yung, Cryptoprotocols: Subscription to a Public Key, The Secret Blocking and the
Multi-Player Mental Poker Game, Advances in Cryptology: Proc. of Crypto 84, LNCS
196, Spring, pp. 439-453, 1985.

24

