
Communication Network Problems

Habilitationsschrift

von

Christian Schindelhauer

Fachbereich Mathematik/Informatik und Heinz Nixdorf Institut

Universität Paderborn

Paderborn, März 2002





I

Acknowledgments

This thesis and its preceding research were prepared at the following institutions:
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Chapter 1

Introduction

The modern world relies on the availability of huge communication networks connecting computers and
other electronic devices worldwide. Clearly, there is an enormous number of problems that must be solved.
These problems can be manifold and very complex. We will make a theoretical approach of some specific
issues in the context of network communication problems.

1.1 Broadcasting Information

Communication networks are often described as undirected graphs. The participants are nodes and in-
formation transmission is modeled by communication links between two nodes, abstracted by undirected
edges. One of the basic information tasks is to spread an information from one node to all members of the
communication network.

Assume that some people � '�� '�� '�������'�� try to organize a party. Everybody knows only some other
people, e.g. � knows � , � and � , while � knows � and 	 , � knows � ,

.
and - etc. Such relations

can be described by a graph where a player is depicted by a node and � knows � is presented by an edge.
Such a relation graph is shown on the top of Figure 1.1.

Assume that � is the one who knows the time and location of the party. In the beginning � informs
� . In a second round � and � can inform two participants in parallel, namely � and 	 . Then, the
informed participants � , � , � , and 	 continue to inform all other players. In Figure 1.1 it is shown how
the information spreads and how this information process terminates after six round.

In our simple mathematical model every communication step lasts one time unit and one node can only
inform one neighbored node. Informed nodes can inform other nodes in parallel. This process begins with
one or many informed nodes at time point & . The broadcasting time is the number of time needed to inform
all nodes. Note that given the graph and the informed nodes it is not clear how long it takes until all nodes
are informed. Observe in Figure 1.2 that for the same graph an improved strategy achieves a broadcasting
time of four.

In this context a variety of questions arise and we will discuss some of them.

� Time: How long does it take until all players have been informed in general?

Figure 1.1 and 1.2 show that the time needed for broadcasting information depends on the strategy.
Hence, to solve this questions we have to solve the following question first:

� Schedule: Which is the shortest schedule to organize the broadcast?

It turns out that there is no known efficient algorithm that computes such schedules [MJ90]. However,
this does not mean that for a specific given graph the problem cannot be solved at all.

� For which graph families can we solve this problem?

� Approximability: If the optimal broadcasting schedule cannot be computed, can we determine a
good strategy which is only some additional rounds slower than the best schedule?

1
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Figure 1.1: Player � starts the broadcasting process. Using this schedule six rounds suffice to inform all
players.
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1.2 Spreading Rumor and Viruses

The mathematical modeling of the spreading of infectious diseases goes back to Bernoulli in the 18th cen-
tury. In the first half of the 20th century probabilistic methods have been used to predict the spreading
behavior of diseases. For an overview see [Bai75]. In 1987 Pittel [Pit87] analyzed the expected contami-
nation time for a very simple model.

The virus spreads in rounds. In the beginning one individual is infected. In each round each
individual contacts a random other of the

	
subjects. If the first individual is infected then the

second will be contaminated this way and starts spreading the virus in the next round.

If we choose the contacted partner uniformly over all participants, then with probability
�
�
��� 	

two
individuals are infected in the second round (because with probability

��� 	
the individual contacts itself).

These two will infect two more in the second round with probability
�
���������	� , and so on. It is intuitively

clear that this way the number of infected beings grows exponentially unless a constant fraction of subjects
is infected. Then, the number of uncontaminated participants will decrease exponentially. For this model
Pittel showed that the expected time until all participants will be infected is

����� � 	 �
� � 	 �

��� � �
.

Unlike in the broadcasting model discussed above, here the information strategy is not the problem.
The virus, or the rumor, is spread as often as possible. Furthermore, the information process is robust.
If in one round some participants fail to transmit the rumor, this does not change the general behavior.
These may have been the arguments endorsing the application of this spreading mechanism to replicated
databases under the name epidemic algorithms. In the landmark paper [DGH 
 87] Demers et al. introduced
this concept to the public.

They proposed to extend the information process as follows. In the above described standard model the
caller informs the callee. In the case of contagious diseases it is not clear why the contacted subject should
not also infect the contacting subject. This form of transmitting a virus is called a pull. It is not surprising
that an additional transmission process speeds up the rumor spreading. However, in the second phase when
at least half of the subjects are informed the number of informed players decreases double-exponentially,
i.e. if � � 	�� is the number of uninformed players in round � then � � � ���� �� ��� for some constant � .

If we adopt the push and pull transmission scheme to broadcast information, we envisage a distributed
system where new rumors pop up locally all the time and where in a time unit, e.g. one hour, every
participating server contacts a random partner to exchange new rumors. So, the following questions arise:

� When is a rumor too old to be distributed?

� How many transmissions are necessary to inform all participants?

� Is there a robust termination mechanism ensuring fast broadcasting and small number of transmis-
sions?

1.3 Bandwidth Allocation: Utilization versus Fairness

The Transmission Control Protocol (TCP) used in the Internet is an end-to-end congestion control mech-
anism. One of its main features is the so-called Additively Increasing and Multiplicatively Decreasing
algorithm. In a simplified setting it works as follows:

A router successively sends packets in a transmission rate. For every successful sent packet an
acknowledgment appears after some time, this time is called the Round-Trip-Time (RTT). If
the acknowledgment does not appear, then a sending failure appeared possibly due to exceeded
bandwidth.

The AIMD-mechanism works as follows. If packets are submitted successfully, then the ac-
quired bandwidth is increased by an additive constant amount, if a failure occurs then the
acquired bandwidth is reduced by a constant factor.
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Figure 1.3: Schematic allocation behavior of TCP
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Figure 1.3 shows a typical behavior of this protocol. We have three players sharing a link of a specific
bandwidth. In the beginning player 1 starts and after some time player 2 and then player 3 joins in. They
both linearly (additively) increase their share of the bandwidth until the sum of their allocations exceeds the
bandwidth. In figure 1.3 this occurs four times. At the first occurrence player 2 is the one who recognizes
it and he reduces his allocation by a constant factor (in our example he halves his packet rate).

Note that even in a best case scenario this AIMD-mechanism utilizes only a constant portion of the
available bandwidth. One might argue that this is caused by the sparse feedback used by the allocation
algorithm, who never learns the available bandwidth left-over by the other players. The player’s only feed-
back is whether in the last round the allocated bandwidth was at most as high as the available bandwidth.

In the Internet packet failures are caused by the allocation behavior of other protocols. In Figure 1.3
player 1 receives an unfair high share of the bandwidth compared to player 2 and 3 although all players use
the AIMD-scheme. One reason for this situation might be that player 1 updates his bandwidth more often
than the other players, which might be caused by different round trip times (RTT). It seems that the timing
behavior of updates is one of the obstacles to achieve fairness and full utilization in the Internet.

We will investigate the following questions:
� Is it possible to converge against full utilization for such restricted feedback?
� Is it possible to enable fairness under adversarial timing?
� Can we achieve fairness and full utilization?

1.4 Cost-distance Trees

Assume that the locations of the terminal sites of a network are given and the question is, how the inter-
connecting network has to be chosen. Then, the following parameters are important:

� The size/cost of the network.
� The distance between two terminal sites, if one uses only the network edges.
� The topology. Is the network planar, or even a tree.

In Figure 1.4 and 1.5 two different (subway) network structures can be seen. In Figure 1.4 we see a
dense network, allowing short routes between all stations. In the other subway network in Figure 1.5 the
network is sparser; long detours occur between some stations. However, the tree-like network topology of
the second network may simplify many coordination problems.

In general, one expects that trees will increase the size of the network or the length of necessary detours.
Clearly, long detours cannot be prevented at all. Therefore, the weighted distance will be considered which
describes the average length of a route.

We consider a mixed measure that sums over two types of costs: the fixed costs proportional to the size
of the network and the dynamic costs proportional to the average length of a route in the network. This
measure is called the weighted cost-distance (WCD). Given a non-negative weighting ��� � � ����� 
�
and a node set

�	�
���
we define it by the following equation:

WCD 
 �� � � � ������������ � ��� � � ��  � ��� � � � '�� � � � � �*' � � '
where � � � � '�� � denotes the length of the shortest path from � to � in


.

In this context spanner-graphs have been investigated. These are graphs - where for all nodes �*' � it
holds

� � � �*' � � � � � �*' � � � '
where the constant � is called the stretch factor. Such spanner-graphs can be constructed efficiently. Fur-
thermore, additional constraints such as small size can be fulfilled. Such a spanner is called a light spanner
if for the size of the graph it holds for a constant ! :

��"���#�����   �   �
� ! ������#� MST �$�%�&� � ��� � '
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Figure 1.4: The subway network of New York downtown

Figure 1.5: The subway network of Hanover
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Figure 1.6: Traditional mobile phone networks. No interconnections between mobile phones

Figure 1.7: A mobile ad hoc network. Mobile phones can connect to closely located partners

where MST
� � �

denotes the minimum spanning tree of
�

.
Clearly, such light spanners approximate the optimal weighted cost-distance graph by a factor of

� ��� ��'�! . However the question remains:

� How well can trees optimize the weighted cost-distance?

1.5 Mobile ad hoc Communication

The standard approach for wireless communication networks is to install a central radio station that re-
lays communication between partners and connect the mobile communication partners to the other wired
communication partners, see Figure 1.6.

Obviously, this network topology has a number of disadvantages. First of all, the relay station is a
natural bottleneck. All information must pass this station and if the number of mobile phones increases the
capacity will be exhausted at some point. Another problem is that the position and the transmission power
of the central antenna determines areas without reception.

A different approach is to use mobile ad hoc networks which use neighbored radio stations as relay
stations, see Figure 1.7. Communication between mobile phones can be done without a designated radio
station using multiple hops between neighbored mobile devices. This decreases the transmission power
needed by each mobile device. Furthermore an increase in the number of participants will also increase the
available bandwidth.

However it is not clear what kind of basic network is the best choice to optimize parameters like dilation,
energy and data throughput.

� Which mobile ad hoc networks optimize dilation, energy and data throughput?

� Can all of these measures be optimized at the same time?



Chapter 2

Main Results

In the previous chapter of this habilitation thesis we presented some introductory examples of communi-
cation network problems. This chapter is dedicated to a comprehensive summary of the main results and
models presented in chapters 4–10. In the next chapter 3 we clarify some mathematical and computer
scientific notations.

2.1 Overview

In this habilitation thesis we discuss communication network problems of the following areas.

1. Broadcast information

Broadcasting in processor networks means disseminating a single piece of information, which is
originally known only at some nodes, to all members of the network. This is done in a sequence of
rounds by pairwise message exchange over the communication lines of the network.

In this thesis we consider two different models:

� In chapter 4 and 5 we consider broadcasting in the telephone model for a given undirected graph
describing the bidirectional connection between processors. Here, in one round each processor
can send a message to at most one of its neighbors. The goal is to inform all processors using as
few rounds as possible. This number is called the minimum broadcasting time of the network.
Given the network structure and the informed node we are interested in the optimal strategy,
when which neighbored node has to be informed to minimize the number of rounds. We char-
acterize the algorithmic complexity and want to find graph families where the optimal solution
can be found.

� For randomized rumor spreading presented in chapter 6 the connections between nodes change
in every round and are given by a random addressing function. In one round a processor has to
decide whether to send its information. Thus, in addition to minimizing the number of rounds
for broadcasting information we have to take care of the quantity of messages. This must be
done by a distributed algorithm because of the randomized communication structure.

2. Distributed allocation of network bandwidth

The transport control protocol (TCP) of the Internet uses a distributed algorithm to determine the
packet rate of connections between computers � and � . Here � adjusts the packet rate by an
algorithm that uses only information whether the last transmission was successful, i.e. packets are
not dropped.

We will investigate two types of questions. In chapter 7 we generalize this model by a game-theoretic
approach dealing with a player, representing a host, and an adversary, representing all other hosts on
the network. In our model the adversary chooses the available bandwidth to maximize the cost of the
player. The player can choose a packet rate, i.e. allocate bandwidth, and suffers two types of costs:

9
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� Allocation of more bandwidth than available: Then the player’s cost account for re-transmission
delay and overhead.

� Allocation of less bandwidth than available: Then the player suffers opportunity costs.

The algorithm will never learn the available bandwidth in a round and thus cannot compute the total
cost it is actually suffering. However, we present a probabilistic algorithm which uses the little
feedback information available, i.e. whether the allocated bandwidth was smaller than the available
bandwidth.

It turns out that such an algorithm solves a general class of online prediction games of all discrete
forecasting problems that provide sufficient feedback information. This algorithm can bound the
relative loss, called regret compared to the best constant choice of packet rate. We can show that the
average regret of a round tends to & when the number of rounds increases.

The allocation behavior of such a bandwidth allocation algorithm tries to reach full utilization, i.e.
the packet rate equals the available bandwidth, while it does not guarantee that every participating
processor receives a fair share of the available bandwidth. On the other hand, TCP tries to distribute
fair shares while it does not converge against full utilization even in a best case situation. In chapter 8
we concentrate on the relationship of full utilization and fairness. It has been observed that the
allocation behavior of TCP depends highly on the time points when a host reevaluates and adjusts
its packet rate. To describe robust allocation algorithms we consider an adversarial timing for the
updates of the participating players. It turns out that in this model fairness and full utilization cannot
be both satisfied and we present fair distributed allocation schemes if the algorithms receive the
residual bandwidth as feedback information.

3. Designing efficient communication networks

Given a node set in Euclidean space we are interested in finding the network that optimizes the costs
of the network. In this thesis we consider the following two optimization constraints.

� The weighted cost-distance model is a measure that applies also to other networks, e.g. street, or
railway networks. In chapter 9 we describe the overall cost of a network by a static component,
called cost, and a dynamic component, called weighted distance. The cost simply depends on
the size of the network, i.e. the sum of the edge lengths. While the weighted distance combines
a non-negative weighting between network nodes describing the demand or occurring traffic,
and the shortest distance between nodes using the network.

We will see that the optimization problem can be approximated by so-called spanners. Then,
we concentrate how the weighted cost-distance increases if we restrict the network topology to
trees. It turns out that this increase can be upper-bounded and lower-bounded by a logarithmic
factor.

� In chapter 10 we concentrate on the question how mobile ad-hoc networks can be optimized.
Such networks consist of radio stations which establish a node-to-node communication net-
work. For this, every node, i.e. radio station, can adjust the transmission power such that the
transmission radius is given by the distance to the addressed node. Because only one frequency
is available, radio signals can interfere and thus additional constraints appear for the routing
problem.

We define the path system of a mobile ad hoc network as the union of all paths used for routing
information. Because of the radio interferences the choices of these paths cannot be done
independently. Therefore we want to find restricted basic networks, whose edges give a natural
upper bound on the number of interference of path systems that use only edges of this basic
network.

We present reasonable definitions for energy, dilation and congestion of path systems and give
algorithms that output optimal or nearly-optimal networks for these measures. We show that
two of these measures cannot be optimized by the same path system.
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2.2 Broadcasting in Planar and Decomposable Graphs (Chapter 4)

Broadcasting in processor networks means disseminating a single piece of information, which is originally
known only at some nodes, to all members of the network. This is done in a sequence of rounds by pairwise
message exchange over the communication lines of the network. In one round each processor can send a
message to at most one of its neighbors. The goal is to inform everybody using as few rounds as possible.
This number is called the minimum broadcasting time of the network. This short description constitutes
the telephone model for broadcasting in undirected graphs.

Given a graph and a subset of nodes, the sources, the problem is to determine its specific broadcast time,
or more generally to find a broadcast schedule of minimal length. This is known as a an

���
-hard problem.

We are interested to find out more about the computational complexity of this problem. In particular, we
ask which graph topology allows the efficient computation of a broadcast schedule and for which graph
families the problems remains

���
-hard.

For the lower bounds we consider the decision problem of broadcasting: The MULTIPLE SOURCE

BROADCASTING DECISION PROBLEM (MB) is: Given a set of sources, an undirected graph and a deadline,
determine whether there exists a broadcasting strategy informing all nodes within the deadline. Further-
more we consider the SINGLE SOURCE BROADCASTING DECISION PROBLEM (SB), which is MB reduced
to the case of a single source. We show the following results:

� MB restricted to planar graphs with degree 4 and deadline 4 is
���

-complete.

� SB restricted to graphs with degree 3 and is
���

-complete even when the deadline is logarithmic.

� SB restricted to planar graphs of degree 3 is
���

-complete.

On the other hand, we investigate for which classes of graphs this problem can be solved efficiently
and show that broadcasting and even a more general version of this problem becomes easy for graphs with
good decomposition properties. The solution strategy can efficiently be parallelized, too.

For this purpose we have to extend the notion of graph decomposition to measure its properties more
exactly. A careful inspection of the possibilities how information can flow within a component and between
different components of a graph will be required. For the internal flow components that are connected
behave most favorably, but in general connectivity cannot always be achieved by a tree decomposition into
small components.

In particular, we consider the following two types of tree decompositions:

� Edge decomposition:

For a graph - � � � ' 	 �
an edge decomposition graph

� � � ��� '�	 � � provides the following
properties:

– The nodes -�� of
� �

represent induced sub-graphs -�� � � � � '�	�� � of - such that the
� � are

pairwise disjoint and
� ���	��
 ���� � � .

– � - � '1-������ 	 � iff there is an edge between a node of - � and a node of -�� �
A graph - is ������������ –edge decomposable if there exists an edge decomposition graph

� �� � � '�	 � � such that for all - � � � � � cut
� - � � �"!

,  � �  �$#
and %&% � - � � � � where %'% � - � �

denotes the number of connected components of - � . The cut of a node - � is the union of all edges
of - that connect - � to other components.

Such an edge decomposition graph
�

is called an �(���)�����&� –edge decomposition tree of - if
�

is
a tree.

� Node decomposition:

For a graph - � � � ' 	 �
a graph

� � � � � ' 	 � � is a node decomposition graph if

– The nodes - � of
� �

represent sub-graphs - � � � � � ' 	 � � of - such that
� � � � 
 ��� � � � and

	 � � � 
 ��� � 	 � ;
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– For each node � holds: if � � � � � � � then
�

contains a path � from
� � to

� � such that �
belongs to every node

���
in � .

A graph - � � � '�	 �
is called �(���)���)�&� –node decomposable if there exists a node decomposition

graph
� � � � � '�	 � � such that for all -�� � � �

holds cut
� -�� � � !

,  � �  � #
, and %'% � -�� � � � .

Here, we define the cut of a node - � as the union of all cuts cut
� -��1'1- � � to neighbored sub-graph

- � , where cut
� -�� '1- � � � � � � � � � .

Such a decomposition
�

is called a ���������)�&� –node decomposition tree of - if
�

is a tree.

We present algorithms that construct the optimal broadcasting schedule in polynomial graphs, if one of
the following decompositions is known for the given graph:

� The graph has a
�����
	 �� �	 ����	 �� ��� ' ���
	 �� �	 ���	 ��� ��� ' � � � � � –edge decomposition tree.

� The graph has bounded degree � and a
� � ��	 ��� �	 ���	 �� � � ' � � � � � 	�� ' � � � � � –edge decomposition tree.

� The graph has a
� � � � � ' � �
	 ��� �	 ���	 ��� ��� ' ��� � � � –node decomposition tree.

� The graph has maximal degree � � ����	 ���	 ��� �	 ����	 ���	 ��� � � and a
�����
	 ��� �	 ���	 ��� � � ' ��� 	 �� �	 ����	 ���	 ��� � � ' � � � � � –

node decomposition tree.

� The graph has constant degree and a
� � �
	 �� �	 ���	 ��� ��� ' � ������� 	�� ' � � � � � –node decomposition tree.

The algorithm even works for a more general version of the broadcasting problem. Furthermore, it can
be parallelized efficiently to yield

���
-algorithms.

A preliminary version of this chapter has been published in [JRS94] and a journal version appeared in
the Journal of Discrete Applied Mathematics [JRS98].

2.3 On the Inapproximability of Broadcasting (Chapter 5)

Then, we investigate the computational complexity of approximating the broadcasting time of a given
graph. We show the following results.

� There is no efficient �� � � approximation algorithm for the broadcast time of a network with a single
source unless

� � ��� . It is
���

-hard to distinguish between graphs having broadcast time smaller
than � ��� � 	 � �

and graphs with broadcast time larger than
�
�� � �

� � for any ��� & and some ��� & ,
where

	
denotes the number of nodes.

� For the additive approximation of the broadcast time we show a tight lower bound of � 	 , i.e., we
show that it is

���
-hard to distinguish between graphs with broadcast time smaller than � and larger

than � ��� � � 	�� .
� For graphs with degree 3 we show that it is

���
-hard to decide whether the broadcast time is � �

� ������� 	��
or � � � � � � � in the case of multiple sources. For graphs with single sources and degree 3,

it is
���

-hard to distinguish between graphs with broadcast time smaller than � � � � � 	�� and larger
than � � � � � � � � .

We prove these statements by polynomial time reductions from set-cover and E3-SAT. A preliminary
version of this chapter was presented at the 3rd International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems [Sch00b].
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2.4 Randomized Rumor Spreading (Chapter 6)

In this chapter we discuss the problem of broadcasting information in a processor network in a different
communication model. We investigate the class of so-called epidemic algorithms that are commonly used
for the lazy transmission of updates to distributed copies of a database. These algorithms use a simple
randomized communication mechanism to ensure robustness. Suppose

	
players communicate in parallel

rounds in each of which every player calls a randomly selected communication partner. In every round,
players can generate rumors (updates) that are to be distributed among all players. Whenever communica-
tion is established between two players, each one must decide which of the rumors to transmit.

The communication graph - � � � � '�	 � � � � � �
of round ��� �

is obtained by a distributed,
randomized process. In each round, each player � chooses a communication partner � from

�
at random

and � calls � . In round � , the rumor and other information can be exchanged in both directions along the
edges of - � . Whenever a connection is established between two players, each one of them (if holding the
rumor) has to decide whether to transmit the rumor to the other player, typically without knowing whether
this player has received the rumor already. Regarding the flow of information, we distinguish between push
and pull transmissions. Assume player � calls player � .

� The rumor is pushed if � tells � the rumor.

� The rumor is pulled if � tells � the rumor.

The major problem (arising due to the randomization) is that players might not know which rumors
their partners have already received. For example, a standard algorithm based on push-communication,
i.e. forwarding each rumor from the calling to the called players, for � � � � � 	��

rounds needs to transmit the
rumor � ��	 ����� 	��

times in order to ensure that every player finally receives the rumor with high probability.
We investigate whether such a large communication overhead is inherent to epidemic algorithms. On

the positive side, we show that the communication overhead can be reduced significantly if we use push
and pull–communications:

� We start with a simple push&pull algorithm that terminates transmission when the rumor is
� � �
�
	
���������� ����� 	��

rounds old. It turns out that this algorithm needs only
����	 �����
� � � 	��

transmissions and
broadcasts the rumor with high probability, i.e. with probability of at least

� � ���� for any fixed ��� �
.

� Shenker proposed a distributed termination mechanism using a counter indicating indirectly the
spread of the rumor. We show that this min-counter algorithm performs as well as the push&-
pull algorithm.

� In order to improve the robustness, we devise a distributed termination scheme, called the median-
counter algorithm, that is provably robust against adversarial node failures as well as stochastic
inaccuracies in establishing the random connections.

In particular, we show that the efficiency of the algorithm does not rely on the fact that players
choose their communication partners uniformly from the set of all players. We show that the median-
counter algorithm takes

��� � � � 	��
rounds and needs only

����	 ����� ����� 	��
transmissions regardless of

the probability distribution used for establishing the random connections as long as all players act
independently and each player uses the same distribution ��� � ��� &�' ��� to select its communication
partner.

� On the negative side, we show that any address-oblivious algorithm (i.e., an algorithm that does not
use the addresses of communication partners) needs to send � � 	 ����� � � � 	�� messages for each rumor
regardless of the number of rounds.

� Furthermore, we give a general lower bound showing that time- and communication-optimality can-
not be achieved simultaneously using random phone calls, that is, every algorithm that distributes a
rumor in

���������
	��
rounds needs 	 ��	�� transmissions.

These results were presented at the Symposium on Foundations of Computer Science [KSSV00].
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2.5 Online Prediction with Partial Feedback (Chapter 7)

Bandwidth allocation in the Internet is managed by the Transport Control Protocol (TCP). When host �
transmits information to � it is � who regulates the packet rate, called allocated bandwidth. However
� never learns the actual available bandwidth but receives a feedback from which � learns whether it
over- or underestimated this value. Papadimitriou, Koutsoupias and Karp [KKPS00] investigate protocols
optimizing the cost needed to find the optimal packet rate when the available bandwidth is constant. We
extend this approach and investigate the dynamic case where in every round the available bandwidth is
chosen by an adversary.

The cost � ��� '�� � of allocating � and available bandwidth is given and reflects two major components:
opportunity costs due to sending less than the available bandwidth when ��� � , and re-transmission delay
and overhead due to dropped packets when ��� � . The goal of the host A is to minimize the total cost
incurred over all periods. In [KKPS00] the following cost models are introduced: the gentle cost function,
� � ��� '�� � � � �	� when � �
� and � � ��� '�� � � � � � � � � when � � � ; and the the severe cost function,� ��� '�� � � � ��� when � �� and

� ��� '�� � � � when ��� � . We model the feedback by the threshold
feedback function � ��� '�� � � & , if the allocated bandwidth was higher than the available bandwidth, i.e.� ��� and � ��� '�� � � �

elsewhere.
Given the loss function � and the feedback function � in this model it is impossible to minimize the

absolute loss. Therefore we only compete with the best constant choice of bandwidth allocation. We
generalize this bandwidth allocation problem to an online-prediction problem, by allowing any discrete
feedback and the loss function:

We investigate the problem of predicting a sequence when the information about the previous elements
(feedback) is only partial and possibly dependent on the predicted values. This setting can be seen as a
generalization of the classical multi-armed bandit problem and accommodates as a special case a natural
bandwidth allocation problem. According to the approach adopted by many authors, we give up any sta-
tistical assumption on the sequence to be predicted. We evaluate the performance against the best constant
predictor (regret), as it is common in iterated game analysis.

We describe the problem as a game between a player choosing an action � � and an adversary choosing
the action

� � at time � . There are � possible actions available to the player, without loss of generality from
the set

� � � � � � '�������'�� � , and � actions in the set
� � � from which the adversary can pick from. At every

time step the player suffers a loss equal to � ��� � '�� � � � � & ' � � .
The game is played in a sequence of trials � � � '���'�������'�� . The adversary has full information about

the history of the game, whereas the player only gets a feedback according to the function � ��� '�� � . Hence
the � ��� -matrices � and

.
, with � � � ��� ��� '�� � and

. � � ��� ��� '�� � completely describe an instance of the
problem. At each round � the following events take place.

1. The adversary selects an integer
� � � � � � .

2. Without knowledge of the adversary’s choice, the player chooses an action by picking ��� � � � � and
suffers a loss (�� � � � � ��� ��� � '�� � � .

3. The player observes � � ��� ��� � '�� � � .
Note that due to the introduction of the feedback function this is a generalization of the partial infor-

mation game of [ACBFS95].
Let � � � � � � ��!��" � (#� � � � � � ��!��" � � ��� �1'�� � � be the total loss of player � choosing � � '�������'�� ! . We

measure the performance of the player by the expected regret �%$ , which is the difference between the total
loss of � and the total loss of the best constant choice �'& , that is ��!��" � (#�)( � � � .

�*$ � � � ���+-, /././.  +)0 E
1 !�
��" � � ��� �1'�� � � � � ����

!�
��" � � ��� � '2� ��3

where each
� � is a function of � � '������ '�� ��4 � . In some works the corresponding min-max problem is investi-

gated, transforming the loss into a reward. The two settings are equivalent, as it is easy to check.
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� We present an algorithm ���������	��
� which solves this online prediction problem with a sub-linear
expected regret. More specific, if there exists a matrix - such that

. - � � for feedback matrix
.

and loss matrix � then the expected regret E
� � FeedExp3

� � � � of algorithm FeedExp3 after � steps is
bounded by

E
� � FeedExp3

� � � � � ��� � � ��� ��� � � � � � � � � � � � '
where � is the number of rounds and � the number of available choices.

� We apply this theorem to the original bandwidth allocation problem and show that the expected regret
with respect to

– the severe cost function is bounded by
��� � �� ������� � � ,� � � � ;

– the gentle cost function is bounded by
��� � � �� ������� � � ,� � � � ;

– the severe cost function in the continuous case is bounded by
��� � �� � � � � � � ,� � ;

– the gentle cost function in the continuous case is bounded by
��� � � �� ������� � � ,� � .

The continuous case reflects the case where the algorithm can choose any real number in the interval� & ' � � and it also applies if the number of discrete choices is larger than the number of rounds.

� We show that for any discrete loss function � and feedback function � only one of two situations can
occur: Either there is a prediction strategy that achieves small regret as the FeedExp3 algorithm, or
there is a sequence which cannot be predicted by any algorithm without incurring a regret of

��� � � .
For this, we show how to construct a sequence that no algorithm can predict without incurring a
linear regret with probability at least

� � � .
A preliminary version of this chapter was presented at the 14th Conference on Computational Learning

Theory and the 5th European Conference on Computational Learning Theory [PS01].

2.6 Bandwidth Allocation under Adversarial Timing (Chapter 8)

Congestion control algorithms like, e.g., TCP have to meet the demands of high utilization and fairness
simultaneously. We study the trade-off of these two objectives in a plain model consisting of players,
shared resources with bounded bandwidth capacities and rate update events, i.e., points of time at which
players can adjust their shares of occupied bandwidth. The times at which players can perform their rate
update operations is determined by an adversary. As feedback we allow players to receive the size of the
unused bandwidth.

We investigate infinite games, where players can enter and leave at any time but focus our analysis on
those periods in which the system is closed, i.e., the set of players that perform update operations is fixed.
The major novelty of our model is the adversarial timing of the rate update events.

� We start our investigation with bandwidth allocation on a single bus. The adversary specifies a
sequence of events � ��� � � � � � ����� , where each event � � is a tuple

��� ')( � with
� � � and ( �

� enter ' leave ' update � . With each player
� � � , we associate a positive rate variable � � whose value

is zero if the player is inactive, that is, the initial value of � � is zero and � � is reset to zero whenever
the adversary calls

��� ' leave
�
. The adversary calls update operations only for the active player. In

particular, if the adversary calls
��� ' update

�
then player

�
can set � � to any positive value. At any

given time, we define the share of bandwidth � � that player
�

receives by � � ���)� if � � ��� �� � � ,
and & otherwise. Thus, the share of bandwidth of all players is zero when the system is overloaded.
(For analogous models see, e.g., [KKPS00].)

A fair and efficient allocation protocol aims to set the rates in such a way that all players in the system
get almost the same share of bandwidth and the unused bandwidth is as small as possible.

It turns out that a very simple protocol, called Virtual Player Protocol (VPP), suffices to achieve
fairness: Suppose player � performs an update operation. Let �� � � ��� � � � � � ��� � � '1& � denote the
unused bandwidth immediately before the update operation. Then player � sets ��� � � �

� 

� � � � � �� � .
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For � � �
we show that in a closed system period, where the same ! players participate, after some��� ! � ����� � ! � � � phases, all allocated bandwidth are almost equal, i.e. � 
� �

� �
� � , while the residual

bandwidth is at most
��� � � � ! � � �

(Actually we state a more general theorem for all ��� & ). Note
that a phase is a set of contiguous rounds where each of the ! players performs at least one update
operation.

� We generalize the above adversarial model to general networks. The network is modeled by a
(hyper)graph - � � � '�	 �

. Edges represent buses, routers, or other shared resources of limited
bandwidth. The bandwidth capacity of edge � is denoted by � � � � . Each player comes with a set of
edges constituting a simple path (i.e., a path in which every edge appears at most once). For player� � � , let ��� � � ��� � denote the player’s path, and for an edge � � 	 let � � � � � � denote the set of
those players whose paths contain � .
As before, an adversary determines when players enter and leave the system and when they can
update their rates. For the time being, we assume that update operations are performed atomically,
i.e., an update operation is not performed by the adversary until the previous one has become effective
on all edges of the respective path. We generalize the VPP as follows. Here, player � sets � � � ��
� 

� � � � � � ��� ������� �
	 � � � � �� � � � � � where � � �

denotes a global parameter.

For every 0 � & , the network is in a state of 0 -max-min fairness if it is impossible to increase the rate
� of any player by more than a factor of

� �
� 0

�
without exceeding the edge capacities in ��� � � ��� � or

decreasing the rate of players whose rate is at most
� �
� 0

� � .
The VPP converges against

�
� -max-min fairness, if for each member of a same finite set of players

arbitrary often updates occur. We call such a phase a closed system period.

� It is an open question how fast the general VPP converges. Therefore we present a discrete variant of
this protocol, where the convergence can be determined depending on the dilation � and the conges-
tion � . The dilation is the maximum length of a path (of participating players) and the congestion is
the maximum number of paths containing the same edge.

We show that for every 0 � & , there is a discrete variant of the VPP that approaches a 0 -max-min
fair state in any closed system phase. This state is reached after

��� � � � � � � ������� � � � 0 � � phases.

� Furthermore, as a lower bound we prove for the single bus model that there is no protocol achieving
full utilization and fairness in the limit, if an adversary determines the order of rate update events
and one cannot distinguish between slow and stalled players.

2.7 Tree Network Design for the Cost-Distance-Model (Chapter 9)

Given
	

terminal points in the Euclidean space we investigate the problem of constructing a network with
small cost and short distances. This research is motivated by a number of practical problems arising in
network design for traffic in communication networks as well as real traffic in street or railway networks.
If one minimizes only the network size, i.e. the sum of all edge lengths, some distances between terminals
must be considerably increased. On the other hand if we minimize the distances between all terminals we
face a complete network with large costs. These effects are described by the weight cost-distance measure,
defined by

WCD 
 �  � � � ������#����� �
� � � � ��  � ���#����� �

� � '�� � � � � �*' � � '

where � � � � denotes the length of an edge and � � � �*' � � the length of the shortest path from � to � in the
network


.

We investigate the following problems:

� WEIGHTED COST-DISTANCE NETWORK PROBLEM (CDN): Given a set of sites
�

in Euclidean
space and a weighting � � � � ���� � 
 , find a network

 � � � ' 	 �
that optimizes the weighted

cost-distance WCD 
 �  �
.
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� WEIGHTED COST-DISTANCE TREE PROBLEM (CDT): Given
�

and � � � � � �� � 
 , find a tree� � � � ' 	 �
that optimizes the weighted cost-distance WCD 
 � � � .

It turns out that the optimal solution of CDN can contain Steiner points as well as cycles. Furthermore,
there are instances where the optimal solution contains crossings. We present the following results.

� For a node set
�

in
���

CDN can be approximated by a constant factor within time
����	 ����� 	��

, where
 �  � 	

.

� In
� �

CDN can be approximated in polynomial time by a factor of
� � ��� ����� .

� In
�#�

a polynomial time algorithm approximates CDT by a factor of
��� � � � 	��

. Moreover, this tree
approximates the optimal solution of CDN within the same factor

��� � � � 	��
.

� Trees cannot approximate optimal cost-distance networks better than
��� � � � 	��

. In particular, for
every spanning tree � of the

	 � 	
-grid, where � � � '�� � � �

if � and � are neighbored nodes and� � � '�� � � & elsewhere, the weighted Cost-Distance is at least � � 	 � ����� 	�� , while the optimal Cost-
Distance network has cost and weighted distance

����	 � �
.

A preliminary version of this chapter was presented at the International Symposium on Algorithms and
Computation (ISAAC’01) [SW01].

2.8 Energy, Congestion and Dilation in Wireless Networks
(Chapter 10)

We investigate the problem of path selection in radio networks for a given set of sites in two-dimensional
space. We consider a set

�	�
� �
of

	
radio stations, featuring both transmitters and receivers, called sites

or nodes, in 2-dimensional Euclidean space. Let � � � ��� �  � ���  � '��  denote the geometric diameter of
�

.
Each node � � �

can adjust its transmission radius to some � � & for sending a packet to a neighbor � � �
in range � . Then, the communication network

 � � � ' 	 �
has the edge � �*' � � , where  �*' �  � � . Note

that for adjusting the transmission power nodes exchanging packets must interact during the transmission.
In our model we simplify this interaction by assuming that the sending and acknowledging part of this
interaction may interfere with any other such bi-directional connection if the distance is too small.

In particular, this means: To acknowledge this packet the receiving site adjusts its transmission radius
to the same radius � as the sending radius. The transmission needs a unit time step and the area covered
by sending and acknowledging a packet along � � � �*' � � � 	 is � � � � � ��� � � ��� ��� � � � , where ��� � � �
denotes a disk with center � and radius � . Of course edges only interfere when the routing protocol tries
to send a packet at the same time and if � � ��+ � contains � or � . We expand the notion of interferences to
edges: Edge

� � '�� � interferes with edge � + if � or � is in the area � � � + � , which defines the set of interfering
edges by Int

� � � � � � ��+�� 	 �  �  � + interferes with � � .
We contribute to modeling wireless communication networks with the following definitions.

� Note that sending a packet along � is successful only if no edge from Int
� � � sends concurrently.

These interferences of network


describe the directed interference graph - Int
�� �

. Its node set
are all edges of


and its edges describe all interferences, i.e.

� � ' � � � 	 � - Int
�  � �

iff � � Int
� � � .

The interference graph can be interpreted as an additional constraint for routing. An edge of the radio
network can only be used for sending a packet in a time unit if all interfering edges remain silent.

� The number of this interfering edges is given by the in-degree of an edge in the interference graph
and is called the interference number of a communication link. The maximum interference number
of a site � is the maximum interference number of all edges with receiving site � . The interference
number of the network is the maximum interference number of all edges.

Now consider a routing problem � � � � � �
	
, where � � �*' � � packets have to be sent from � to� . The problem arises how to choose a path system
�

in the graph on
�

. This is a set of paths � � from
source to destination for the packets � in the graph on

�
. The union of all edges 	�� of this path system

gives the links of communication network
 � � � ' 	� � .
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� We denote by the dilation ��� � � �
the length of a longest path in

�
, also known as the hop-distance.

� We distinguish two energy models. In the first model, called unit energy model, we assume that
maintaining a communication link � is proportional to

���  �  � � , where  �  denotes its Euclidean
length. Therefore the unit energy U-Energy used by radio network


is given by

U-Energy�
� � � � � �������� � � �  � 

�
�

� The flow energy model reflects the energy actually consumed by transmitting all packets. Here, the
power consumption of a communication link is weighted by the actual load � � � � on an edge � :

F-Energy�
� � � � � ��"����� ����� � � � �  �  � �

� We show that energy optimal path selection for radio networks can be computed in polynomial time.
Particularly, the minimal spanning tree describes an optimal path system for the unit energy and a
sub-graph of the Gabriel Graph contains an optimal path system for the flow energy.

� A main result of this chapter is that a spanner-graph construction as a communication network allows
to approximate the congestion optimal communication network by a factor of

��������� �  �  � (under the
condition

�����	��
 ��� �  � � ���� ����
 ��� �  � � � �  �  � � � �
).

One major insight is the fact that trade-offs are unavoidable: Minimizing one measure is only possible
at the cost of enlarging another one. We show trade-offs lower-bounding congestion � delay and delay �
energy.

� There exists a node set - � such that for every path system
�

the following trade-off between delay
� � � - � � and congestion � � � - � � can be observed: � � � - � � ��� � � - � � � � � � �

.

� There exists a node set � � with diameter � such that for every path system
�

the following trade-offs
between delay � and unit energy U-Energy (resp. flow energy F-Energy) occurs:

� � � � � � � U-Energy �
� � � � � � � � � � '

� � � � � � � F-Energy �
� � � � � � � � � � � �

� For congestion and energy the situation is even worse. It is only possible to find a reasonable ap-
proximation for either congestion or energy minimization, while the other parameter is at least a
polynomial factor worse than in the optimal network: There exists a node set

�
with minimal con-

gestion �%& , minimal unit energy by U-Energy & , and minimal flow energy by F-Energy & such that for
any path system

�
on this node set

�
it holds:

� � � � � � � � 	 � � � � & � or U-Energy�
� � � � � ��	 � � � U-Energy & � '

� � � � � � � � 	 � � � � & � or F-Energy�
� � � � � ��	 � � � F-Energy & � �

A preliminary version of this chapter has been published as a technical report [MSVG01].



Chapter 3

Notations

In this chapter, we introduce some basic notations and mathematical concepts used throughout this thesis.
This is not an introduction, but a presentation of basic definitions and fundamental results relevant to the
results and discussion presented in the other chapters of this thesis.

3.1 Set Theory

The empty set is denoted by � . We denote by � � � � � � '���' � '�������' � the set of integers, and � � � � � � � � � &�' � .
For any � � � � the set

� � � represents the set � � '������ ' ��� . �
denotes the set of reals,

� 
 is the set of all
positive numbers, i.e.

� 
 � � � ( � �  ( � & � . � 
� � � � 
 � � & � . For two real numbers ( � � we denote
the intervals by

� (*' � � � � ���	� �  ( � � ��� � � ( ' � � � � ��� � � �( � � � � �� (*' � � � � ���	� �  ( ��� � � � � ( ' � � � � ��� � � �( ��� ��� �
Given sets � ' � in a domain � :

� � � � � � � (  ( � � or ( � � � denotes the union of � and � ,

� � � � � � � (  ( � � and ( � � � denotes the intersection of � and � ,

� ��� � � � � (  ( � � and (	�� � � is called the difference of � and � ,

� � � � � ( � �  (
������ � ��� � is called the complement of � .

� If � � � , then � is a subset of � , i.e. for all ( � � we have ( � � .

� By �� � we denote that � is a proper subset of � , i.e. � � � and ���� � .

� We denote the power set of � by � � � � � � � �  � � ��� .
� Two sets � , � are disjoint if � � � ��� , where � � � � denotes the empty set.

3.2 Combinatorics

We use the natural logarithm
� � (�� ����� � ( as logarithm to the base of ��� � ��� ��� � � ��� � � ����� . By

����� (������� � 	 we denote the logarithm to the base 2.
� � � � 	

means
������� 	�� �

;
� � ��� ��� 	

denotes the ! -times iterated
logarithm.

The factorial of
	

is written as
	�� � � � � � � � ����� � 	 . By definition & � � �

. The binomial � � ��� is defined
for & � ! � 	

as � 	
!! �

	��
��	
� ! �"� ! � �

19
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For functions � '�� � � 
 � � 
 and a class of functions � of such functions we define:

� � � � � ����� � 	 � � � � 	 � 	 � � � � 	��� � ��	�� �

��� � � � � � � �� ! � � � � � � ! �)� � '� � � � � � � �  � ! � � 
 ! � � � � � � � '
	 � � � � � � �  � ! � � 
 ! �)� � � � � � '� � � � � � � � �� ! � � � � � � ! � � � '
� � � � � � ��� � � � � � � � �

��� � � � �
	� ��� ��� � � ' � � � � � �
	� ��� � � � � '
� � � � � � 	� ��� � � � � ' 	 � � � � � 	� ��� 	 � � � '
� � � � � �	� ��� � � � � �

For a class � of functions we denote by � � � , that there is a function � ��� such that� � � .
Table 3.1: The O-notations.

For every ( � �
we have

��� ���� � " � (
�� � � ��� � � � � � ( � ���� � " �

�
� � � � 4 � ( �� �

We will use the fact that
� � � ���

�
� � � � � 	�� � � � � � and particularly we have for all

	 � � � :�
� �

�
	  � � �

� �
�
� �

�
	  � 4 � �

We will use Stirling’s formula:

	�� � � � 	�� � � � 	 � 	 � � � where � � 	�� � � � ' � � � � � � � �

Asymptotics

To compare the asymptotic behavior of functions we use the so-called
�

-notations, see table 3.1.
We denote by pol the set of all polynomial functions, i.e. pol � � � � ����	 � �

. Similarly, we denote by
polylog � � � � ��������� � 	��

.

3.3 Graph Theory

A graph - consists of a set of nodes (also known as vertices)
�

and an edge set 	 . The order of - is
defined as the number of nodes  �  , while the size is given by  	  . We denote the node set of - by

� � - � ,
and analogously the edges set of - by 	 � - � . We distinguish directed and undirected graphs. The edge set
of a directed graphs consists of pairs

� � ' � � for vertices � �� � , � '�� � �
. In undirected graphs the edges

set consists of subsets of
�

of cardinality 2, i.e. 	 � � � � '����  � ' � � � � . The degree of an undirected
graph is the maximum number of edges incident to a node.



3.4. PROBABILITY THEORY 21

A graph - + is a sub-graph of a graph - if
� � -3+ � � � � - � and 	 � - + � � 	 � - � . A path � from node � �

to node ��� of a directed graph is a sub-graph with nodes
� � � '������ ' ��� � such that 	 �

�
� � � � ���)' ��� 
 �

�  � �� � � � � � and 	 �
�
� � � � � ����' � � 
 � � 

� � � � � ��� � in the case of an undirected graph. If
� + � � � - � then

the induced sub-graph of
� + of - is the sub-graph of - with node set

� + and maximum number of edges.
A cycle is a path with at least one edge and the starting and ending node. A directed acyclic graph

(DAG) is a directed graph, where no cycle can be found.
A connected component of an undirected graph is a sub-graph - + where for all nodes � '�� in - + there is

a path from � to � . All graphs can be separated into connected components of maximum size. The number
of these sub-graphs is called the number of connected components of an undirected graph.

3.4 Probability Theory

We denote the probability of an event � by P
� � � and the condition probability of an event by

P
� �  � � � � P

� � � � �

P
� � � �

Two events � and � are independent if and only if

P
� �  � � � P

� � � �

If this is not the case, then � and � are correlated. � and � are called
� negatively correlated, if P

� �  � � � P
� � � and

� positively correlated, if P
� �  � � � P

� � � .

and the expectation of a random variable � by

E
� � � � � �

� ���
( � P � � � ( � �

Basic properties of the expectation are
� E

� � ��� � � � � E � � � .
� E

� � �
� � � E

� � � � E
� � �

.

� If two random variables � and
�

are independent, i.e. for (*' � � �
: P
� � � (  � � � � � P

� � � ( � ,
then E

� � � � � � E
� � � � E � � � .

The conditional expectation of a random variable
�

with respect to an event � is defined by

E
� �  � � � � �+ ��� � � P � � � �  � � �

A fundamental property of the conditional expectation is that for any random variables � ' � :

E
� � � � E

�
E
� � �� � � �

Variance The em variance of a random variable � , denoted by
� � � � , is defined by

� � � � � � E
� � � � 	 � � � �

� � �

The number � �
	 � � � � is called the standard deviation of � .

Markov Inequality Let � be a non-negative random variable. Then for any ! � & ,
P
� � � ! � � E

� � �

! �
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Chebyshev Inequality Let � be an arbitrary random variable. Then, for every ! � & ,
P
�  � � E

�
� �  � ! � �

� �
� �

! � �

Basic probability distributions A random variable � is uniformly distributed over a finite set � � �
if for all ( ��� :

P
�
� � ( � �

�
 �  �

A random variable � is a binomial distribution � �  � if for a � � � &�' ��� and
	 � � � we have

P
�
� � ! � �

� 	
!  � � � � � � � � 4 � �

For its expectation and variance we have

E
�
� � � 	 � � � �

� � � 	 � � � � � � � �

A random variable � is geometrically distributed if there is a parameter � � � &�' � � such that for all! � � �
P
� � � ! � � � � � � � � 4 � � �

Chernoff Bound If � � '�������' � � are independent binary random variables, then it holds for all 0 � & for� � � � � � � � � � � and
# � E

� � � � that

P
� � � � � �

� 0
� # � � � 4 � ������ ,�� �
	 �
� � � 4 ��� ����  � ����� � � �

and for & � 0 � �
that

P
� � � � � � � 0 � # � � � 4�� � �� �

Martingales A sequence of random variables � � ' � � '������ is a martingale if for all
� � �

E
� � �  � � ' � � '�������' � � 4 � � � � � 4 � �

Azuma Inequality Let � � ' � � '������ be a martingale satisfying the property that  � � � � � 4 �  � � � for all� � �
. Then for any � � & ,

P
� � � � � � � � � � � � ������ 
�� , � � 
 � �

and

P
� � � � � � � � � � � � �� � �
�� , � � 
 � � �

3.5 Geometry

We use in the ! -dimensional Euclidean space
� �

the standard norm

  � '��   � �  � � �  �
� �
� � " � � � � � ��� � ���

,
�

and the absolute norm (Hamming distance)

  � '��   � �
�

� � " �  � � � � �  �
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The � -skeleton [KR85, Vel92] of a set of points is a graph, defined to contain exactly those edges (a,b)
such that no point c forms an angle � � � � � ' � � � � greater than �)��� 4 � ��� � (if ��� �

) or � � �1� � 4 � � � � (if
��� �

). Equivalently, if ��� �
, the � -skeleton can be defined in terms of the union U of two circles, each

having
� � ' � � as a chord and having diameter �	  � '� � � . Edge

� � '� � is included in this graph exactly when
U contains no points other than � and � .

If � � �
, an edge

� � ' � � is included in the � -skeleton exactly when the circle having ab as diameter
contains no points other than a and b. The 1-skeleton is also known as the Gabriel graph [GS69].

For a node set
�

in
���

and a path � � � � � '�������' � � � the stretch-factor of � is for � � �� � � defined
by ��� � � � ' � � � � � � � ' � � � � , where ��� � � � ' � � � � ��� � 4 �� " �   ���)' � � 
 � � � . In a graph � is called the minimum
path if for given � '�� it minimizes ��� � � '�� � . A graph has a stretch factor � if for all nodes � , � there is a
connecting path with stretch factor of at most � . We call such graphs � -spanners.

The minimum spanning tree (MST) of a given graph - is a spanning graph of - where the cost, i.e. the
sum of all edge lengths, is minimized. Such graphs can be very efficiently constructed by the algorithms
of Prim and Kruskal.

3.6 Computational Complexity

We follow the notations of [Pap94] and [Rei90] for a short description of some important models of com-
putational complexity.

3.6.1 Machine Models

We give a rough overview over machine models relevant to this dissertation. In general one distinguishes
between sequential machine models and parallel machine models. The machine model describing mod-
ern computing devices most accurately is the random access machine. Whenever we describe an algorithm
we measure time and space behavior by this sequential machine model. Apart from this machine model
we will also use the (non-deterministic) Turing machine to describe an algorithm. We now give a short
overview of these models.

The deterministic Turing machine (DTM)

This sequential machine model was introduced by Alan Turing for the investigation of the principle com-
patibility of problems. Every computing step of the Turing machine involves only some symbols of an
alphabet, which are positioned on one or several constant number of tapes. A tape is a non-ending string
of a discrete symbol set, called alphabet. The Turing machine may access only the symbol at a special
position, called head position, and after performing a computational step the Turing machine may move its
head one step to the left or the right.

Every state of the DTM determines the computation. The Turing machine is completely described by��� '�� '
	 '
� � '
�� � . The DTM has a finite number of states
�

. Special states are the starting state � � and
the final state ��� . After changing the symbols at the head positions and moving the heads, the Turing
machine may switch to a new state (depending on the symbols read on the tapes). More formally, the
complete behavior of such a ! -tape Turing machine can be described by a so-called transition function
	 � � ��� � � � ��� � � ��� '���' � � � , where

�
describes the set of states, � the alphabet, and � '���' �

the motion direction of the head on a tape. Inputs are given on the first tape. At the beginning all tapes are
empty, i.e. they are filled with the same symbol.

The output is written on the last tape. If the Turing machine computes only a predicate, we call the
machine an acceptor.

The non-deterministic Turing machine (NTM)

Here, we replace the transition function of a DTM with a transition relation 	 � � ��� � � � ��� � � ���
'���' � � � . For each state-symbol combination, there may be more than one appropriate next step—or none
at all.
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A non-deterministic Turing machine accepts an input if there exists a valid sequence of transitions such
that the Turing machine transits from the input configuration to accepting configuration. This interpretation
of the output behavior of the NTM makes it difficult to predict the output using other models: In every round
the number of possible configurations may grow exponentially.

The Random Access Machine (RAM)

The data structure of the random access machine (RAM) is an array of registers, each capable of containing
an arbitrarily large integer. RAM instructions resemble the instruction set of actual computers, including
direct and indirect addressing of the registers, addition, multiplication, and if-then-else. The program is a
sequence of elementary commands. Loops can be implemented using gotos. Recursive programs are not
available, but can be easily implemented in machine model without any additional time.

The RAM gives a more realistic model of a computer having random access to memory. However, if a
RAM computes a solution in time � using the

�
contiguous memory cells having maximal bit length � ,

then a Turing can perform the same calculation in time � � � � � and space
� � � . Hence, when we consider

polynomial complexity classes for which it does not matter whether the underlying sequential machine
model is a deterministic Turing machine or a RAM.

When we speak about the running time of algorithms we refer to the running time of an implementation
on a RAM, if not stated otherwise.

The Parallel Random Access Machine (PRAM)

In this thesis we will also present some efficient parallel algorithms. The underlying machine model is a
parallel random access machine (PRAM). It consists of an (unbounded) series of parallel processors based
on the RAM model. Every processor can use local as well as global memory, which both are randomly
accessible series of registers. Furthermore, each processor has access to its index number. All processors
use the same program and work synchronously after being started at the same time.

Of course the access to the global memory can lead to conflicts if more than one processor tries to
change the entry of a global register. Therefore the following models are considered:

1. exclusive read (ER): Only algorithms are valid where processors do not read same global register in
the same round.

2. concurrent read (CR): Arbitrary many processors can simultaneously read a memory cell.

3. owner write (OW): For each memory cell there exists a dedicated owner, who alone may write into
this cell. Other processors are allowed to read this cell.

4. exclusive write (EW): Only PRAM algorithms are valid where write-memory conflicts do not appear.

5. concurrent write (CW): No restrictions apply for the write-access to memory.

The following models describe the conflict solution, if collisions occur, i.e. two processors try to
write to the same memory cell.

(a) common: Only simultaneous writes are valid, if all conflicting processors try to write the same
value.

(b) collision: If more than one processor writes to a register, a special conflict symbol will be
written.

(c) priority: According to some ranking, the processor with the highest priority writes its value
into the register.

Whenever we refer to PRAMs in this thesis we talk about the CRCW-PRAM-model where write con-
flicts are solved in the common model (5a).
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Boolean Circuits

In computational complexity Boolean circuits are also a method of describing parallel algorithms. Depth
and size are the most often investigated complexity measures of Boolean circuits. Let � � denote the set of
Boolean functions � ��� &�' � � � � � &�' � � .

A circuit is a directed acyclic graph (DAG) where the sources constitute the inputs ( � '�������')( � and the
sinks represent the outputs

� � '������ ' � � .
Circuits will be defined over the standard basis of AND, OR and NOT gates. AND and OR-gates are nodes

with an in-degree 2 while the NOT-gate has in-degree 1. The computation of an � -ary Boolean function
follows straight-forward by applying the designated function of the node to the input values. The result of
the output of the circuit � on input ( is called � ����� � ( � .

Because Boolean circuits have a fixed input size, one considers families of Boolean circuits. Such a
family of circuits is called uniform, if a deterministic Turing machine can output the circuit for

	
input

bits using only space
���������
	��

(The output tape cannot be read and thus is not accounted for the space
complexity).

3.6.2 Complexity Classes

Traditionally, complexity classes are defined for decision problems, which solve predicates (e.g. given a
graph does there exists a Hamiltonian cycle). Furthermore, these predicates are described by the set of
inputs given a positive output, where the inputs are given as words over an alphabet � . Theses input sets
are called languages � � � & and a machine that can decide whether a word of such a language is given as
input, accepts the language. However, it just computes the binary output of a predicate defined over strings.

For a function � � � � � � � a machine decides a language with resource � , if there is a machine of that
machine model for every input of length

	
, at most � ��	�� of this resource is used. We need the following

basic complexity classes:
The class of languages (predicates) that can be decided

� � � DTime
� � � : � can be decided by a deterministic Turing machine in time � ��	��

� � � NTime
� � � : � can be decided by a non-deterministic Turing machine in time � ��	��

� � � Space
� � � : � can be decided by a deterministic Turing machine in time � ��	��

� � � ��� � : There exists a uniform circuit family � � '�� � '������ ' such that for all
	

and ( ��� & ' � � � :
res � � � ( � �
� � ( � and the depth of circuit � � is bounded by

��������� � 	��
and the size of circuit � � is

polynomial.

Important complexity classes derivated from this definition are
� � � DTime

�
POL

�
and
��� � �

NTime
�
POL

�
.

For an intuition
�

can be seen as the class of problems efficiently solvable by a sequential machine,
while the class

��� � � � � ��� � describes the class of problems which can be solved very efficiently by
parallel computers. For this note that any problem in

��� �
can be solved by a CRCW-PRAM in time��������� � 	��

with a polynomial number of processors.
In the area of computational complexity very few problems are known where one can actually show

that it is computationally infeasible to solve them. At least it is possible to show for a number of problems
that they are

���
-hard: If an

���
-hard problem can be solved in polynomial time on a sequential machine

model (like DTM or RAM), then
���

collapses to
�

i.e.
��� � � . This is one of the most important

open question in computer science, and most of the researching community believes that such a collapse is
not the case.

The technique to show such relative results relies on polynomial time reductions and is excellently
presented in [GJ79]. A problem � � (also known as language, predicate) can be reduced to � � in polynomial
time, denoted by � �

�
pol � � , if there is a function � computable in polynomial time such that for all inputs

( : � �
� ( � � � �

� � � ( � � , in language notation: ( � � � ��� � � ( � � � � .
A problem is

���
-hard, if every problem of

���
can be reduced to this problem. An

���
-hard problem

is
���

-complete, if it is in
���

. There are numerous natural
���

-complete problems and if one of these
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problems is in
�

, then
��� � � , which is (if we recall the difference between the underlying machine

models) absolutely contra-intuitive.



Chapter 4

Broadcasting in Planar and
Decomposable Graphs

4.1 Introduction

Broadcasting in processor networks means disseminating a single piece of information, which is originally
known only to some nodes, called the sources, to all members of the network. This is done in a sequence
of rounds by pairwise message exchange over the communication lines of the network. In one round each
processor can send a message to at most one of its neighbors. The goal is to inform everybody using as
few rounds as possible. This number is called the minimum broadcasting time of the network. This short
description constitutes the telephone model for broadcasting in undirected graphs.

Broadcasting is a basic task for multiprocessor systems that should be supported by the topology of
the network. This problem has been studied extensively, mostly in the case of a single source – for an
overview see [HHL88, HKMP96]. In several papers the broadcast capabilities of well known families of
graphs like hypercubes, cube-connected-cycles, shuffle exchange graphs or de Bruijn graphs have been
investigated and compared. In [MJ90] Hromkovič, Jeschke and Monien have studied the relation between
the broadcasting time and the time for solving the related gossiping problem for special families of graphs.

On the other hand, one has tried to find optimal topologies for networks with a given number of nodes
such that the broadcasting time is best possible. Here the worst case over all nodes as the single source
should be minimized. The problem gets more complicated when restricting to graphs of bounded degree.
In [LP88] Liestman and Peters have studied several classes of bounded degree graphs in this respect, see
also [BHLP92]. Balanced binary trees already achieve a broadcasting time of logarithmic order, therefore
the question is the optimal constant factor in front of the logarithm.

In this chapter we will investigate the optimization problem for arbitrary networks. That means, given
a graph and a subset of nodes as sources, determine its specific broadcast time or more general find a
broadcast schedule of minimal length. This problem in general is

���
-complete. We will show that this

property remains even if one restricts to planar graphs of bounded degree or constant broadcast time.
Furthermore, the problem cannot be solved approximately with an arbitrary precision unless

� � ��� .
On the other hand, we will investigate for which classes of graphs this problem can be solved effi-

ciently. All that seems to be known is that broadcasting is easy for trees as shown by Slater, Cockayne,
and Hedetniemi in [SCH81]. Many combinatorial optimization problems for graphs have been shown to be
solvable in polynomial sequential time and even in poly-logarithmic parallel time for more general classes
of graphs: graphs of bounded tree-width (see for example the paper by Arnborg, Lagergren and Seese
[ALS91]) and graphs of small connectivity ([Rei91a]) – an overview can be found in [Rei91b].

The broadcasting problem seems to be more difficult in this respect since it does not have the finite-
state-property or a bounded number of equivalence classes. Thus the methods of [ALS91] and [Rei91a]
are not directly applicable. Still, modifying the framework developed in [Rei91a] we can show that broad-
casting becomes easy for graphs with good decomposition properties. For this purpose we have to extend
the notion of graph decomposition to measure its properties more exactly. A careful inspection of the pos-

27
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sibilities how information can flow within a component and between different components of a graph will
be required. For the internal flow components that are connected behave most favorably, but in general
connectivity cannot always be achieved by a tree decomposition into small components. The algorithm
even works for a more general version of the broadcasting problem. Furthermore, it can be parallelized
efficiently to yield

���
-solutions.

As a conclusion we can say that combining these new negative and positive results the parameters that
make broadcasting difficult are determined quite precisely. The complexity of this problem jumps from

�

to
���

depending on the internal structure of the networks.

4.2 Definitions and Previous Results

We state a formal definition of the BROADCASTING DECISION PROBLEM [GJ79], which is also known as
Broadcasting in the Telephone Model and the single-port interconnection architecture [Rav94].

Definition 1 Let - � � � '�	 �
be a (directed) graph with a distinguished subset of vertices

� � ���
, the

sources, and � & � � � be a deadline. The task is to decide whether there exists a broadcast schedule, that
is a sequence of subsets of edges

	 � ' 	 � '�������'�	 ! ( 4 � '�	 ! (
with the property

� ! ( � �
, where for

� � & we define
� � � � � � 4 � � � �  � �*' � � � 	 � and � � � � 4 � �

and require

	 � � � � �*' � � � 	 �� � � � 4 � � � � � � � � � � 4 � �  	 � � � � � � � � �  � � �

Let us distinguish between the MULTIPLE SOURCES BROADCASTING PROBLEM MB and the restricted
version with only a single source: the SINGLE SOURCE BROADCASTING PROBLEM SB. �

The meaning of the sets 	�� and
� � is the following:

� � denotes the set of nodes that have received the
broadcast information by round

�
. For
� � & this is just the set of sources. By the deadline � & the set

� ! (
should include all nodes of the network. 	 � is the set of edges that are used to send information in round

�
,

where each processor � � � � 4 � can use at most one of its outgoing edges.
MB (denoted ND49 in [GJ79]) has shown to be

���
-complete.

Theorem 1 [SCH81] MB for graphs with unbounded degree is
���

-complete, even if restricted to a fixed
deadline � & � � .

For a fixed deadline the number of sources obviously has to grow linearly in the size of the whole graph.
But even the single source problem is difficult, in this case the deadline has to grow at least logarithmically.

Theorem 2 [SCH81] SB for graphs with unbounded degree is
���

-complete.

The proofs of both results were published by Slater, Cockayne, and Hedetniemi ([SCH81]). For the
second result, their reduction of the 3-dimensional matching problem to SB requires a deadline of order�	  �  for the broadcast problem. Furthermore, in the same paper it is shown:

Theorem 3 [SCH81] SB can be solved in linear time for trees. This also holds for the constructive version
of this problem finding an optimal broadcast schedule.

Previous results concerning the approximation of the broadcasting problem can be found in the next
chapter.

4.3 New Results

All theorems above can be improved significantly. For the lower bounds it suffices to consider undirected
graphs, the upper bounds given below also hold for the more general case of directed graphs.
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4.3.1 Lower Bounds

Designing more complicated reductions from the 3-dimensional matching problem and the 3-SAT problem
we can show:

Theorem 4 MB restricted to planar graphs with degree at most
�

and a fixed deadline � & at least � is���
-complete.

After a preliminary representation of Theorem 4 Middendorf was able to improve it to degree 3 and deadline
2 [Mid93].

The broadcasting problem with a single source does not become substantially easier, even for bounded
degree graphs with a logarithmic diameter.

Theorem 5 SB restricted to graphs - � � � ' 	 �
with degree at most � is

���
-complete, even if the deadline

grows at most logarithmically in the size of the graph.

Also planarity does not make things much simpler as the following result shows.

Theorem 6 SB restricted to planar graphs - � � � ' 	 �
of degree � is

���
-complete (in this case the

deadline grows like
	
 �  ).

4.3.2 Upper Bounds

On the positive side, we will extend the classes of graphs for which the broadcasting problem can be solved
fast. For this purpose, different ways on how a graph can be decomposed into smaller components will be
considered: by removing edges (edge separators) or by removing nodes (node separators). The concept of
graph decomposition based on the ! -connected components of a graph is developed in [Hoh90] and [HR89]
and is strongly related to the notion of tree-width introduced by Robertson and Seymour [RS83, RS86].

In [Hoh90] and [HR89] only node separators have been considered. For the broadcasting problem a
slightly different notion of graph decomposition seems to be better suited. Furthermore, the weaker notion
of edge separation is of interest because the analysis in this case is slightly less complicated and yields
better bounds. For efficiency reasons an important point is to get good bounds on the round numbers, when
nodes may receive the broadcast information. Things are easy if all components of the graph decomposition
are connected, which in general cannot be assumed.

Here we restrict only to decompositions that generate a tree of components. Using more complicated
techniques other decomposition graphs can also be handled. For the purpose of decomposing a graph - it
suffices to consider only the case of undirected graphs. Thus, if - is directed in the following definition
we simply mean the corresponding undirected graph.

Definition 2 A graph
� � � � � ' 	 � � is an edge decomposition graph of a graph - � � � '�	 �

if the
following conditions hold:

� The nodes - � of
� �

represent induced subgraphs - � � � � � '�	 � � of - such that the
� � are pairwise

disjoint and
� � � � 
 ��� � � � .

� � - � ' -������ 	 � iff there is an edge between a node of - � and a node of -�� �
�

is called an edge decomposition tree of - if
�

is a tree. Define the cut of an edge � - �)'1- � � , the cut
of a node -�� , and the cut of

�
as those edges of - that connect - � and - � , resp. connect -�� to other

components or connect any pair of components:

cut
� - � '1-�� � � � ��� �*' � ��� 	  � � � � � ��� � � � � � for

� �� � '
cut

� -�� � � � 	� ��
  � ��� ��� � cut
� -��)' - � � and cut

� � � � � 	� 
 ���)� cut
� -�� � �

The border of a node -�� are the nodes of other components that have connections to - � :
border

� - � � � � � � '� �*' � ��� cut
� - � � � ��� � � � � � �
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V1

m

n

V V V V2 3 4 m

Figure 4.1: A (2n,n,1)-edge decomposition of the � � 	
-grid

Figure 4.2: A (4,2,2)-edge decomposition of a cycle

A graph - � � � '�	 �
is �(���)�����&� –edge decomposable if there exists an edge decomposition graph

� �� � � ' 	 � � such that for all - � � � � �
 cut

� -�� �  � ! '  � �	 � #
and %&% � -�� �� � '

where %&% � - � � denotes the number of connected components of - � . In this case cut
� � �

will be called a
������������ –edge separator of - . �

Note that the decomposition process partitions a graph into different components. Each component - �
itself may be connected or fall into several connected components. For example, a � � 	 -grid is

� � 	 ' 	 ' � � –
edge decomposable into a tree, see Figure 4.1. For a cycle of length

	
the parameters are

� � '���'�� � , see
Figure 4.2. Taking the number of connected components within each component into consideration will
allow us to bound the algorithmic effort to solve the broadcasting problem in a nontrivial way.

Other approaches have been proposed how to decompose a graph into smaller components, based on
the notions of tree-width ([RS83], [RS86]), see for example [ALS91],[BK91],[Lag90]. It is known that
graphs with small tree-width allow the efficient solution of otherwise infeasible problems like Hamiltonian
circuit or Independent set. For an overview see [Bod93]. However, it is an open problem whether this is
also the case for the broadcasting problem.

In the following we assume that an edge decomposition of the network is given and are not bothered
how to obtain such a decomposition.
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Theorem 7 For a graph - � � � '�	 �
of maximal degree � with a given

� ! ' # ' � � –edge decomposition tree
MB can be solved in time � � ��� 
 � 
 �  �  � 
 � � ! � #��

� 
 � 
 �
�
�
�

 	 
 �   �  

� # ��!
� �

�	� � � �  �  �
� !
� � � � ����� � ! � #��

�
# � ����� � � �

The algorithm we have designed actually works for a more general version of the broadcasting prob-
lem, in which the sources may receive the broadcast information in different rounds and each node of the
network may have its individual deadline. Let us call this the general broadcasting problem GB (A formal
definition can be found on page 43).

The time bound becomes polynomial for classes of graphs that can be decomposed into smaller com-
ponents using not too large separators.

Corollary 1 Restricted to graphs - � � � ' 	 �
with

�
� � � 	 ��� �	 ���	 ��� � � ' � � 	 �� �	 ���	 ��� � � ' � � � � � –edge decomposition trees or

� to graphs with bounded degree and
� � � 	 �� �	 ���	 ��� � � ' � ������� 	�� ' � � � � � –edge decomposition trees

MB (and even GB) can be solved in polynomial time.

So far, we have only considered the decision version of MB, resp. the task to determine the minimal
length of a broadcast schedule. But applying ideas similar to the one in [Rei91a] one can also design an
algorithm for constructing an optimal broadcast schedule by using the same techniques as for the decision
problem.

Theorem 8 Constructing an optimal broadcast schedule can be done in the same time bounds as stated
for the decision problem in Theorem 7.

Using the machinery developed in [Rei91a] we can also derive a fast and processor efficient parallel
algorithm. Even if the decomposition tree is not nicely balanced using path compression techniques the
problem can be solved with a logarithmic number of iterations (with respect to the number of components).
The basic task one has to solve is how a chain of two components can be replaced by a single component
that externally behaves identically with respect to broadcasting.

Theorem 9 For a graph - � � � '�	 �
of maximal degree � with a given

� ! ' # ' � � –edge decomposition tree
MB can be solved on the PRAM model in parallel time

� � �����  �  � � � � � � �  �  �
� !
� � � � � � � � ! � #��

�
# � � � � � � �

with a processor bound of # ��! �
�
�	� � � �  �  �

� !
� � � � ����� � ! � #��

�
# � ����� � � �

For nicely decomposable classes of graphs these bounds put the MB-problem into
���

.

Corollary 2 Restricted to graphs - � � � ' 	 �
with

�
� � � 	 ��� �	 ���	 ��� � � ' � � 	 �� �	 ���	 ��� � � ' � � � � � –edge decomposition trees or

� to graphs with bounded degree and
� � � 	 �� �	 ���	 ��� � � ' � ������� 	�� ' � � � � � –edge decomposition trees

MB is in
��� �

.

Furthermore, we consider a decomposition of graphs which is more closely related to the notion of
tree-width.

Definition 3 A graph
� � � � � ' 	 � � is a node decomposition graph of a graph - � � � '�	 �

if
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Figure 4.3: A (8,8,3)-node decomposition tree of an example graph

� the nodes - � of
� �

represent subgraphs - � � � � � ' 	 � � of - such that
� � � ��
 ���� � � and 	 �

� � 
 ���)� 	 � ,
� for each node � holds: if � � � � � � � then

�
contains a path � from

� � to
� � such that � belongs to

every node
���

in � .
�

is called a node decomposition tree of - if
�

is a tree. Figure 4.3 gives an example of a node
decomposition tree.

Similarly to above, we define the cut of an edge � - �1'1- � � , of a node -�� , and of
�

as cut
� -��1'1- � � � �� � � � � , resp.

cut
� - � � � � 	� ��
  � ��� ��� � cut

� - � ' -�� � ' cut
� � � � � 	� 
 ��� � cut

� - � � �

The border of a node -�� are the nodes of other components - � that are connected to cut
� - � �

border
� - � � � � � � �� � � �� � � cut

� - � � � ��� � � '�� ��� 	 � �

A graph - � � � ' 	 �
is called ���������)�&� –node decomposable if there exists a node decomposition graph� � � � � ' 	 � � such that for all -�� � � �

holds:

 cut
� - � �  � ! '  � �  � # ' and %'% � - � �� � �

In this case cut
� � �

is a �(���)������ –node separator of - . �

Theorem 10 Given a graph - � � � ' 	 �
of maximal degree � with a

� ! ' # ' � � –node decomposition tree
MB can be solved in time� �

 �  � 
 � � � � � � � � � ! � #��
� 
 � � � � � � � � 
 � �

� � � � �
� �

� # ��!
� �

� � �����  �  �
! � ����� � � � ! � #��

�
� #
�
! � � � � � � � � � �

Similarly, we get in the parallel case:

Theorem 11 For graphs of maximal degree � with a
� ! ' # ' � � –node decomposition tree MB has a parallel

solution of time complexity� � �����  �  � � � � � � �  �  �
! � � � � � � � ! � #��

�
� #
�
! � � � � ����� � � �

and processor complexity #���!
� �

� � � � �  �  �
! � � � � � � � ! � #��

�
� #
�
! � � � � � � � � � �

As in the case of edge separators for nicely node-decomposable graphs we get:
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Corollary 3 Restricted to graphs - � � � ' 	 �
with

�
� � � � � ' � � 	 �� �	 ����	 �� � � ' ��� � � �

–node decomposition trees, or

� with maximal degree � � � � 	 ����	 �� �	 ����	 ���	 ��� � � and
� � � 	 ��� �	 ����	 �� � � ' � � 	 ��� �	 ���	 ����	 �� � � ' � � � � � –node decomposi-

tion trees, or

� with constant degree and
� � � 	 �� �	 ���	 ��� � � ' � ������� 	�� ' � � � � � –node decomposition trees

MB can be solved in polynomial time, even in
��� �

.

All these bounds apply to the General broadcasting problem (GB) as well as the constructive variant to
determine a broadcasting schedule.

The remaining part of this chapter is organized as follows. In the next section the
���

-completeness
of multiple source broadcasting in planar, bounded degree graphs is proven (Theorem 4). Section 4.5 de-
scribes a set of basic building blocks that are used in the lower bound proofs for single source broadcasting.
In the following two sections we give the main ideas of the reductions that yield Theorem 5 and 6. Efficient
algorithms for edge-, resp. node-decomposable graphs are described in the last two sections of this chapter.

4.4 MB with Deadline 4 is
���

–Complete

Let us first observe how a nondeterministic Turing machine can solve the Multiple source broadcasting
problem (MB).

Lemma 1 MB can be solved by a NTM in time
� �  �  � � � � �  �  � .

Proof: For a graph - � � � ' 	 �
with maximal degree � specified by adjacency lists, a set of sources

� � ,
and deadline � & �  �  we can solve MB by the following nondeterministic strategy:

Step 1: For each node � �� � � choose one edge
� ��+/' � � � 	 with the interpretation that � receives the

broadcast information from its neighbor ��+ ( � � ��+ means that � does not receive the information
from somebody else).

Step 2: Let
.

be the subgraph of - consisting of the edges chosen in step 1. Verify that
.

has no directed
cycle. If this condition holds

.
is a forest of rooted trees with edges pointing away from their roots.

Step 3: Solve the broadcasting problem for the trees constructed in step 1. Analyzing the time complexity
of the strategy in [SCH81] for broadcasting in trees one can show that a RAM can solve this step in
time

� �  �  � . Hence, a Turing machine can solve it in time
� �  �  � � � �  �  � .

The correctness follows from the fact that each broadcasting schedule can be described by a directed
forest, in which the edges are labeled by the round, the broadcast information is sent across this edge. Step 1
guesses such a forest and step 3 checks whether it is possible to inform this forest within the deadline � & .

�
The
���

-hardness of MB will be proved by a reduction of 3-DIMENSIONAL MATCHING (3DM [GJ79]):

Definition 4 3DM Given a set � � � � � � � , and � , � and � are disjoint sets having the same number
� of elements, decide whether � contains a matching, i. e., a subset � + � � such that  � + �� � and no
two elements of � + agree in any coordinate. �

The graph - + � - � �3' � '�� '�� �
of an instance

� � '�� '�� '�� �
with � � � � � � � of the 3DM problem

is defined as follows: Each element of the sets � , � and � and each triple of � is represented by a vertex.
The membership relation between set elements and triples defines the edges between these vertices.

- + � � � � + '�	 + � with
� $ � � � � �  ( � ��� ' ��� � � � � �  ( � � � '� � � � ��� � �( � � � ' ��� � � � # +  � � � � ' � + � � � $ � � � � � � � ��� '

	 + � � � � # + ' � � �  � � � '%� � � � $ � �	� � � � � ��� ( � � �
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The reduction will use a restricted version of the 3DM problem, which is still
���

-complete [DF86]. For an
instance

� � ' � '�� '�� �
of RESTRICTED PLANAR 3-DIMENSIONAL MATCHING the following properties

are required:

� - � � '�� '�� '�� �
is planar.

� For each element ( of � � � � � there are at most 3 triples in � containing ( (thus,  �  is bounded
by � � where � � �  � ��  � ��  �  ).

Proof of Theorem 4: Let
� � ' � '�� '�� �

be an instance of 3DM with  �  � � and let -3+ � - � �3' � '�� '�� �

be the matching graph. The corresponding broadcasting graph - is obtained by replacing each node � � �� � of - + by a chain � �  � , � �  � and � �  � of length 3 (see Figure 4.4). The other nodes and edges remain
unchanged.

� $  � is chosen as the set of sources, and the deadline is set to � .

- � � '�� '�� '�� � � � � � ' 	 �
with

� � � � $  � � � $  � � � $  � � �	� � � � � � � '
	 � � � � # + '�� � �  � ��� ' � � � � $ � �	� � � � � ��� ( � � �

� � � � �  � ' � �  � � ' � � �  � ' � �  �
�  � � � � �

The node sets
��� ' � � ' � $  � ' � $  � ' � $  � ' and

� �
are defined as follows.

�	� � � � � �  ( � � � ' � � � � � � � �( � � � '� $  � � � � � �  �  � � ��� ' � $  � � � � � �  �  � � ��� '� $  � � � � � �  � 
� � ��� ' � � � � � # +  � � � � �

A, 1V     :

CV   :BV   :

αi,1

αi,2

αi,3βj γk

rµMV    :

G :

Figure 4.4: The broadcasting graph corresponding to an instance of the 3DM problem

Observe that - � � '�� '�� '�� �
has degree 4 and is planar if -3+ is planar.

Lemma 2 - � �3' � '�� '�� �
has a broadcast schedule of length 3 iff � has a matching.

Proof: Let � + � � be a matching for � , � and � . Then the following strategy informs all nodes of
- � �3' � '�� '�� �

within 3 rounds:

Round 1: The � sources in
� $  � send the information to the nodes of

� �
� � � � # � �� � � + � which

represent the triples of � + , hence
� � � � � � � ���

� .

Round 2: The � sources inform the nodes in
� $  � . The � nodes of

� �
� informed in round 1 inform the

nodes of
� �

, that means
� � � � � � � � $  � � � �

.

Round 3: The nodes of
� $  � send the information to the nodes in

� $  � , the nodes in
� �

� to the nodes of� � , and the nodes in
� $  � and

���
to the nodes of

� � � � �
� , that is

�
� � � � � � � $  � � � � � � � � �� �

�

� � �
.
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Since � + is a matching for � , � and � , the nodes in
� �

� can inform all nodes in
���

in round 2, and all
nodes in

� � in round 3.
It is also possible to inform the nodes in

� � � ���
� in round 3, because they can be matched with the

nodes in
� $  � � � �

. This can be seen as follows: Each node of
� � � ��� � is connected to one node of

� $  �
and one node of

� �
, whereas each node of

� $  � and each node of
� �

is connected to at most two nodes of� � � � �
� . Thus each subset

� + + of
� � � � �

� is connected to a subset of
� $  � � ���

of at least size  � + +  .
Therefore there exists a matching of

� � � � �
� with

� $  � � ���
.

For the other direction observe that each node � �  � � � $  � has to inform � �  � in the first or second
round. Thus it is only possible to inform � nodes

� + of
� �

by round 1 or round 2. These � nodes have
to send the information to the ��� nodes of

���
and

� � . Thus the neighborhood of
� + contains all nodes of� $  � , ���

and
� � . Since nodes in

� + have degree 3, the triples corresponding to
� + establish a matching� + of � ' � '�� . �

�

4.5 Modular Construction of Difficult Broadcast Networks

For the single source problem the reduction to show
���

–hardness is much more complicated. We will give
a modular description by first constructing a series of some basic graphs with special broadcast properties.

Definition 5 Let a graph - � � � ' 	 �
and a broadcast schedule

� � 	 � ' 	 � '������ for - be given. The first
round in which a node � gets the information is called its starting round ��� � � � . If � sends the information
to a neighbor in round � we call � active in that round. Let ��� � � � be the first round by which all neighbors
of � are informed. A node � is busy in

�
if it is active in all rounds ��� � � � � � '������ ' � � � � � � � is busy if all

nodes are busy. �

Observe that each broadcast schedule can easily be transformed into a busy broadcast schedule of the
same or smaller length. Therefore we will only consider busy broadcast schedules in the following.

The proof of Theorem 6 is based on an intricate construction of a special broadcast network - . This
section precedes with an analysis of some special subgraphs that will be used as basic building blocks.
Each such subgraph - + has a designated set of input and output ports. Subgraphs will be connected over
these ports only. If output ports of - + are connected to input ports of another subgraph - + + we call - + + a
successor of - + , and - + a predecessor of - + + .

If the broadcast information is sent over such a connecting edge we say that the edge is used in the
corresponding round. Obviously, each edge does not have to be used more than once. The final network -
will be built in such a way that in an optimal schedule the input and output edges of a subgraph - + have to
be used at specific times.

Definition 6 Let, for a given schedule of - , the input edges � � ' � � '������ ' � � of a subgraph - + be used in
rounds � � ' � � '������ ' � � . Then the vector � ��� � � ' � � '������ ' � ��� is called an input time table of - + . The set of
all possible time tables is called the input time sheet 	 � -3+ � of - + . Analogously, we define output time
tables and output time sheets. �

The broadcast network we are going to construct has the property that in optimal schedule all input
edges of a subgraph have to be used within a time interval of length at most 2, that means optimal input
time tables are rather restricted.

Definition 7 For a subgraph - + and an input time table � �
� � � ' � � '�������' � ��� of - + let �������� � - + '�� � denote
the minimal time that elapses between the round the broadcast information enters - + (that is the minimal
� � ) and the first round an output edge of -3+ is used. �

A lower bound for the time when an input edge � of -3+ can be used is obtained by adding up all delays
on the shortest path from � to a source.
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Definition 8 Let � � be the unique source of the broadcast network - , and let path
� � � '1- + � be the set of all

paths from � � to the subgraph - + of - . Then define

�  ��� � - + � � � � � �� � path � ���  � � � �
� crosses � � ���" � �

� � �� �
	 � � � � � rm delay
� - + + ' � � �

If a node of a subgraph - + is informed in round � we call � � dawn
� - + � the relative round this node is

informed. �

Although edges between subgraphs are undirected and thus could be used in either direction we want
to ensure that information enters a subgraph only at its input ports. A ghost message is a message that
enters a subgraph - + through one of its output ports. To prevent ghost messages the following properties
are helpful:

1. All successors of a subgraph -3+ have the same dawn.

2. All input ports of - + can be used in round dawn
� - � � � at the latest.

3. Let the minimal number of rounds the information needs to reach an input port of - + starting at
another input port of - + and using only edges of - + be the ghost time of - + . The ghost time of all
subgraphs will be at least 3.

Let us call the mapping from the input time tables of a subgraph - + to its output time tables the broadcast
relation � of - + , or more formally:

Definition 9 For the set of graphs � described below the broadcast relation

� � � � � � � � � � � � � � � � � ���
is given by

� � � '�������' � � � � � � - + '�� & ' � � ����� � � � if the following two conditions hold:

� � � � � � '������ ' � � � is an input time table for - + ,
� if the � input edges of - + are used according to � then the

	
output edges of - + can be used according

to the output time table �
� � '�������' � � � and all nodes of - + can be informed within the deadline � & .
� � - +/'�� &�' � � '�������' � � � � �

iff it is not possible to inform all nodes of -3+ within the deadline � & using the
input time table � . �

Obviously, � � - + '�� & '�� � describes the information flow properties of - + .

4.5.1 Basic Broadcast Networks

Now we will analyze the functionality of the broadcast networks described in Figure 4.5, 4.7, 4.6 and 4.8.
The first subgraph �����
	 �� � is called initializer (see Figure 4.5). If we choose the parameter � �� &�� dawn

� ����� 	 �� � � with � � � � � � 	 � �
the input node � has to send the information to � � in round

dawn
� ����� 	 �� � � �

�
. Otherwise the last nodes of the chain cannot receive the information within the dead-

line. Hence, � � and � � can inform their successors using the edges
�
��	 � and

�
��	 � simultaneously in

relative round � . The initializer transmits the information simultaneously over all its
	

output edges, i.e.
rm delay

� �����
	��� � ' dawn
� ��� �
	��� � � � � � � � � 	 and

� � �����
	 �� � '�� & ' � + � �
� � � � � � � � 	 '�������' � ����� 	� ��� �

�

� � if ��+ � dawn
� ����� 	 �� � � '�

if � + � dawn
� ����� 	 �� � � �

The following subgraphs model a binary coding system. The two possible values correspond to a
receiving the broadcast information at relative rounds & , resp. � .
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Figure 4.5: The recursive construction of the initializer ����� 	��� �
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The guess–graph ��������	 � (see Figure 4.6) with � � � & � dawn
� �������)	 � � and � ��� is used to generate

this encoding. It holds rm delay
� � �����)	 � ' 0 � ��� and

� � �������)	 � ' � + � ��� � � 0 ��� ' 0 ��� � ' � 0 ��� '10 ��� � � if ��+ � 0 '�
if � + � 0 '

with 0 � dawn
� ��������	 � � . Note that after informing � the broadcast strategy has to decide whether � sends

the information to � � or � � first. We will interpret this decision as setting a Boolean variable.
The subgraph duplicator �%��! � (see Figure 4.7) with � � � & � dawn

� � ��! �
�

and � ��� will be used to
duplicate this binary encoding. The input edges ��� � and ��� � inform � � and � � in round dawn

� � ��! �
�
. For

0 � dawn
� �%� !
	 � it holds rm delay

� �%� !�	�'10�' 0�'10 � � � and

� � �%� !
	 '� & '10�')	 + '10 � � � � � 0 � ��' 0 � � � � if ��+ � 0 '
� � 0 � ��' 0 � � � � if ��+ � 0 � � �

To combine two binary encodings we use the max–graph (see 4.6) ����� � with � ��� & � dawn
� ��� ��� �

and the min–graph ��� � . It is easy to see that rm delay
� ��� �*' �1+ � � � . If � � � � � � ' � � � � � & � � we

get � � ��� � '�� &�' � � ' � � � � � � ��� � � � ' � � � � ��� , and else � � ��� �,' � & ' � � ' � � � � �
. The max–graph does

not simulate the computation of the maximum of two input rounds precisely. If both input edges are
used later than dawn

� ����� � � at least one node � � ��� � � does not receive the information within the
deadline. Note that we have to guarantee that � receives the information before dawn

� ����� � � �
�
. So we

get rm delay
� ����� � ' dawn

� ����� � � ' dawn
� ����� � � � � � and

� � ����� � '�� & ' � � ' � � � �
� � � dawn

� � ����� � � ��� if � � � � � � dawn
� ��� ��� � '

� dawn
� � ����� � � �&� if  � � �  � � � dawn

� ������� � ' � � � � '���� �  � � '�
if � � ' � � � dawn

� � ����� � �
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The subgraph separator (see Figure 4.7) "�#�! � with � � � & � dawn
� "�# ! �

�
and � � � realizes a threshold

function. It separates the set of all input constellations where ��� � is used at dawn
� "�# ! �

�
into two groups:

� � "�# ! � ' � & ' dawn
� "�#�! �

� ' � + � ��� � dawn
� "�# ! �

�
�
� � if ��+ � dawn

� "�#�! �
�
�
� '

� dawn
� "�# ! �

�
� �&� if ��+ � dawn

� "�#�! �
�
� � �

1

α2

α1

tXing   :

Out

t-4

Out2

In2

In1

2

1β

β

t-6
t-4

t-6

Figure 4.8: The planar crossing graph $%��� � �

Furthermore, the crossing graph $%��� � � with � ��� & � dawn
� $ � � � �

�
and � � � realizes switching the

location of incoming information. In particular, if both inputs are activated at dawn the same holds for the
outputs. If one input is late, i.e. information arrives at dawn

� $%��� � �
�
� � , only the opposite output is late.

Observe that rm delay
� $ � � � � ' dawn

� $%��� � �
� ' dawn

� $%��� � �
� � ��� and

� � $ � � � � '�� & ' � � ' � � � � � � � � � � ��' � � � � � � if � � � dawn
�
�
� �

or � � � dawn
�
�
� � '�

else,

where � � ' � � � � dawn
� $ � � � �

� ' dawn
� $%��� � �

�
� �&� . An extended complete analysis of these graphs and a

description of other elementary broadcasting subnetworks are given in [JRS94].
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Figure 4.9: The construction of the planar duplicator

Using this crossing-graph we can substitute the duplicator by a planar duplicator as shown in Fig-
ure 4.9.

4.5.2 An Exact Encoding for Planar Crossings

The crossing graph $%��� � � does not simulate a crossing of two broadcast signals exactly. If both input
edges are used late, that means at dawn

� $ � � � �
�
� � , then there are some nodes � � $ � � � � which cannot

received the information within the deadline. In the following we describe how to construct the crossing
graph ��� � �1� � that overcomes this difficulty. Two techniques are applied for this purpose.

1. The binary encoding of input rounds is made redundant by using pairs of inputs: dawn
� ��� � �1� � � and

dawn
� ��� � � � � � � � . Such a pair can be generated by a guess-graph ��������	 � � . We say a schedule uses an

input edge
� �*' � � of a subgraph -3+ in time (I) if � receives the information from � in round dawn

� - � .
If � receives the information from � in round dawn

� - � � � , the schedule uses
� �*' � � late (L).

2. The crossing of two pairs
� ( ')( + � ' ��� ' � + � � � ��� ' � � ' � � ' � � � will be realized by the following strategy:

We first convert both pairs into an unary coding

� � (*')( + � ' ��� ' � + � � � � � �
� ��� � � '�� � �  � � � �  � � � ����� � � � +  + � � � �

This can be done by using several planar duplicators, min–graphs and crossings as shown in Fig-
ure 4.10. In a second step we decode this unary notation to the two binary exchanged pairs by using
duplicators, crossings and max–graphs as shown in Figure 4.11. Note that the unary encoding con-
tains always a permutation of

� � '1& '1& '1& � . Hence, an arbitrary permutation of the positions of this
unary encoding can be realized by using crossing–graphs $ � � � � � � . The dawns of subgraphs used in
the construction above are synchronized by additional chains.

The complete crossing graph ��� � �1�1� with � � � & � dawn
� ��� � �1��� � and � � ��� & can be constructed

such that rm delay
� ��� � �1�1� ' 0 � � � � � and

� � ��� � � � � '�� & '10 � ( '10 � � � (*'10 � � ' 0 � � � � � � � � 0 � � � � � � '10 � � � � � � � � '
0 � ( � � � � '10 � � � ( � � � � � �

with (*' � � � &�' �&� and � � dawn
� ��� � �1� � � �

Combining some duplicators and some crossing-graphs $ � � � � it is possible to construct a graph that
duplicates the pairs

��� ' � ' � � and
��� ' � ' � � as shown in Figures 4.12. We call such a graph a multiplicator

��� � 	��� � where � � � & � dawn
� ��� � 	��� � � and

	
denotes the number of output pairs. This graph can be

constructed such that rm delay
� ��� � 	��� � � � �	� ����� 	 and

� � ��� � 	 �� � ' � & ' 0 � (*'10 � � � ( � � � � � 0 � �
� ����� 	 � (*'10 � �
� ����� 	 � � � ( � � � �
with ( � � & '��&� and 0 � � dawn

� ��� � 	��� � � . All these graphs can easily be transformed into bipartite graphs
with the same functionality.
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4.6 Single Source Broadcasting is
���

–Complete

The
���

–hardness of the SB problem for graphs with bounded degree will be proved by a reduction of a
restricted version of 3DM problem, where for each element ( of � � � � � there are exactly three triples
in � containing ( [Bun84]. The main idea is similar to the reduction in the proof of Theorem 4.

Consider the tree ����� 	��  � in Figure 4.5 with its root as the only source and � outgoing edges � � , where
� � � � ����� ��� . It has the following properties:

� With a delay of 0 � � � � ����� ��� � �
rounds this tree can reach a state such that in the next round 0 �

�
the information of the source can be propagated simultaneously over all outgoing edges � � .

� If a broadcast schedule for ����� 	 �  � finishes by round � then none of these edges can propagate the
information before round 0 �

�
.

Connect each leaf of the tree with a node of
� $  � of the graph - defined above. Let ��� � � � ����� ��� � � and

connect the root of ����� 	��  � with the source � � . Then this new graph - + has a broadcast schedule of length at
most � ����� � �

�
iff � contains a matching. The resulting graph has degree � , but is not necessarily planar

since edges from
� $  � to

� �
may have to be crossed by the edges leaving ����� 	 �  � . By additional effort - +

can be modified to decrease the node degree to � .
Observe that a graph - � � � '�	 �

with a single source cannot be informed within less then
� � �  � 

rounds. Our construction yields that the problem to find a minimal broadcast schedul is
���

-complete for
logarithmic deadlines.
Proof of Theorem 5: Let � ' � '�� '�� be an instance of 3DM with  �  � � . The corresponding graph -
with unique source � consists of 4 levels (see Figure 4.13):

The first level consists of the source � connected with the root of an initializer that duplicates the number
of sources. The second level consists of some subgraphs � � simulate the nodes of

� $  � and
���

in the proof
of Theorem 4. The third level consists of the edges connecting a leaf of the subgraph ��� with an input node
of the subgraph � � and an input node of � � iff

��� '�� '�! � � � . This means that the leaves of the subgraphs
� � simulate the nodes of

� �
. The fourth level consists of some subgraphs � � and � � which simulate the

nodes of
� �

and
� � . The deadline is chosen as � & � � � & � � �

����� � . Observe that - has maximum degree
3.

Lemma 3 Let
� - � � � ' 	 � ' � � '�� & � represent an instance � � � � � � � of the restricted 3DM-problem.

Then - can be informed within � & rounds iff � contains a matching.

Proof: Let
� + � � � � � � � � " � � �	� 
 � � � 
 � � and - + � � � � +/' 	 + � with 	3+ � � � � � '�� � � 	  � '�� � � + � .

Then for each schedule
� + for - + with deadline � & it holds: At most one leaf of each � � receives the
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Figure 4.13: A broadcast graph corresponding to an instance of the 3DM problem

information in round � & � � and at least two leaves in a round � & � � or later. So the claim follows similar
to the proof of Lemma 2. �

This proves Theorem 5. �

4.7 SB of Planar Graphs is
���

–Complete

To achieve planarity in the single source case we construct a direct reduction of 3SAT. The reduction will
use the following restricted version of the satisfiability problem: Let

.
be a Boolean formula such that for

each variable ( ��� � there are at most 5 clauses in
.

that contain either (�� or ( � and each clause � ��� .
satisfies  ��� �� � . This restricted version of 3SAT remains

���
–complete [GJ79].

Proof of Theorem 6: We reduce a given instance
.

of the restricted version of 3SAT with clauses
� � ������� � and variables ( � �����1( � to a graph consisting of 5 levels (Figure 4.14).

1. The first level consists of the source � connected with the root of an initializer ����� 	��� � with � � �� & � �
.

2. The leaves of the initializer are connected with the inputs of
	

parallel guess–graphs ��������	 � � with
��+ � � � & � � � � � 	 . Let - � be the subgraph consisting of the source, the initializer and the guess–
graphs. Let

�
be an arbitrary schedule for - � achieving the deadline such that the output edges�

��	 � and
�
��	 � of the guess–graphs (Figure 4.6) can be used without artificial delay. Then one of

the edges
�
��	 � '

�
��	 � can be used in round � ����� 	 � � and the other one in round � � � � 	 � � . We

will denote this behavior by the time tuples
� &�' � � or

� ��' & � relative to the dawn of the successors, and
interpret these pairs as codings for true and false setting of the corresponding variable.

3. The third level consists of
	

parallel multiplicators ��� � 	 �  �
� � , which are used to increase the number

of binary encodings chosen in level � .
4. On this level we send these binary encodings to the subgraphs of the last level which represent the

clauses � � '������ '�� � . In this network we will use a special coding and decoding network to realize a
crossing of the relative time tuples

� &�'�� � and
� ��'1& � . We call a pair of coding and decoding networks
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a double crossing. These components are combined in an allocation network depth � � � � � � 	�� and
size

��� 	 � �
.

5. Finally, we connect the output nodes of the allocation network to the OR–graphs � � .
s
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Figure 4.14: A planar broadcasting graph corresponding to an instance of the restricted version of 3SAT

For the resulting graph - with source � the deadline is set to dawn
� � � � �

�
, i.e.� & � � � � � � 	 � �

� �	� � � � � � � � � � � � � �
Lemma 4 Let

� - ' � � '�� & � represent an instance
.

of the restricted version of 3SAT. Then - can be finished
within � & rounds iff there is a satisfying truth assignment for

.
.

Proof: The claim follows from the fact that a schedule can only achieve the deadline iff for each subgraph
� � there exists at least one input node � that is connected to an inner node of � � and � receives the
information in round � & � � . �

This completes the proof of theorem 6. �

4.8 Efficient Algorithms for Decomposable Graphs

We start with a generalization of the broadcast problem. So far, each source node has got the broadcast
information in round 0. In the more general case, a source � may get the information in an arbitrary round
� � � � � & . Furthermore, for each node � there is an individual deadline �

� � � instead of a global deadline� & identical for all nodes. This generalization may be of less interest with respect to practical applications.
Nevertheless, it is necessary in order to apply an approach based on graph decompositions, as it has been
for several other graph theoretical decision and optimization problems.

Definition 10 GENERAL BROADCAST PROBLEM [GB]:
Given a graph - � � � ' 	 �

and two partial functions � '�� � � � � � , decide whether there exists a
broadcast schedule 	 � ' 	 � '�������' with� � � � � 4 � � � �  � � '�� � � 	 � � ��� � � � � 4 � � � � � � �  � � � � � � � '

	 � � � � �*' � � � 	 �� � � � 4 � � and
� � � � � 4 � �  	 � � � � � � � � �  � �
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such that
� � � � � � � ��� � � � if �

� � � is defined. �

The set of sources
� � is given by the domain of � � The GB–problem can be solved similarly to the

strategy of Lemma 1. Note that this problem is also
���

–complete. If we restrict the GB–problem to
graphs - � � � '�	 �

with maximal degree � the number of different choices of step 1 is bounded by

�
� ��� � � �

� � �  	 + 
 �    �  � � � � � �  � 

where ��� denotes the degree of � � �
in -3+ . Thus for a graph - � � � '�	 �

the GB–problem can be solved

in time
� �

 �  � �
� � �  �  
  �  �  �  �  � � Let

� + denote the set of nodes of degree 1 in - , then restricted to a

node � � � + we can simplify step 1 of the algorithm given in the proof of Lemma 1 as follows: if � is a
source with � � � � � �

� � � we choose the edge � ��+/'�� � , and � � '���+ ��� 	 else. Thus, there are at most

�
� ����� � �

0 + � � � �
� � �  	  �  �  �  � + 

 �  �  � +    �  4  �
�  � � � � � �	 �  4  � � 

different choices.

Lemma 5 Let
� + denote the set of nodes of - of degree 1. Then the GB–problem for - can be solved in

time � �
 �  � �

� � �  �  
  �  4  � � 
 �  4  � �  �  �  4  � �  � �

The strategy above can be parallelized in a simple way.

Lemma 6 The GB–problem restricted to graphs - � � � '�	 �
with maximum degree � can be solved by a

CRCW–PRAM with O
� � � � �  	  �  �  � �  �  �  �  � processors in time O

�  �  � � �

These strategies will be used as basic routines for the components of a graph.
Proof of Theorem 7: Let

� � � � � '�	 � � be a
� ! ' # ' � � –edge decomposition tree of a graph - � � � ' 	 �

with
� � � � - � '������ '1- � � � Figure 4.15 shows such a component - � which is connected to three compo-

nents - � , - � and - � . A component generated by
�

may fall into several connected subgraphs which we
will call subcomponents.
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Let � � � � � - �� '�������'1- � 
� � with ���� � � � �� ' 	 �� � be the set of subcomponents of the component - �
and define cut

� - �� � as the set of edges of cut
� -�� � with one endpoint in - �� . Define

cut
� - �� ' -�� � � � cut

� - � ' -�� � � cut
� - �� � � ���

cut
� - �� ' - �� � � � cut

� - �� '1-�� � � cut
� - �� � � ���

border
� - �� � � � � � '� �*' � ��� cut

� - �� � and � � � �� � �

To describe a broadcasting schedule
�

of - , each edge � �*' � � of - is labeled by
� � � � '�� � '�� � � '�� � � � The

first value � � �*' � � denotes the round this edge is used and the second � � � '�� � the direction (
� � � � � or� � � � � ). If this edge is not used we set � � � '�� � � � �

� �
If we restrict

�
to cut

� - �� � we consider as the first round �������� � when a node of - �� gets the broadcast
information. For each edge � �*' � � with � � � '�� � � & the relative round����	� ��
 � � � � � � '�� � � � � - �� � �

If the edge � �*' � � is not used we set
�� � � '�� � � � �

� � Let ������� ������ � be the first round an edge of

cut
� - �� '1- �� � is used. If no edge in cut

� - �� ' - �� � is used � � - �� '1- �� � � � �
�
. Similarly define

��������� ������ �
� � � � - �� '1- �� � � � � - �� �

if � � - �� '1- �� � � &�' else let
�� � - �� ' - �� � � � � � �

The following two lemmata show that with the help of the concept of relative rounds
�� the number of

possible protocols of information exchange between two components can be bounded quite substantially.
This property will be basic for the time efficiency of the algorithm.

Lemma 7 If
�

is a busy broadcast schedule then for all � �*' � ��� cut
� - �� '1- �� � holds:

the numbers
�� � �*' � � and

�� � - �� '1- �� � are smaller than  cut
� - �� �  �  � ��  � � � !

�
#
� � �

Proof: Let - +� � � � �� � border
� - �� � '�	 �� � cut

� - �� � � be the extended component of - �� � � � �� '�	 �� � �
Note that the number of nodes of -3+� is bounded by

!
�
# � Hence, the minimal broadcasting time of - +� is

trivially bounded by
!
�
#
� � �

The claim follows from the fact that
�� � - �� ' - �� � � �� � � '�� � denotes the delay between the first node of

- �� being informed and the round when the information is sent across � �*' � � � �
For neighboring components - � ' -�� define a relative state as a tuple

� ��� � � � � � �� � � � ' � � � � �  � � cut
� - � '1-�� ���

Figure 4.16 illustrates a complex information flow between a component and its neighbors.
The relative surface ������ � is the set of all possible relative states � �  � of busy broadcast schedules. A

state
� �  � between two neighbors -�� and - � is a vector consisting of a relative state � �  � and a starting

round � � - �� � for all subcomponents of -�� with cut
� - �� '1- � � ��� . Let � ��� � be the set of all possible states� �  � that may appear in busy schedules. A state

� � of a component -�� is a vector consisting of the starting
round � � - �� � for all subcomponents of -�� and tuples ���  � for all neighboring components of - � � As above,
let � � be the set of all possible states

� � that may appear in busy schedules.

Lemma 8 For a component - � with cut-size  cut
� - � �  � ! � , size  � �  � # � and � � � %'% � - � � subcompo-

nents, the size of � � is bounded by

� � ! � ' # � ' � � � � �  �  � 
 � � � � ! � � # � � � � 
 �
Proof:  � �  ��� ���
 ��� 
  �  � � cut � ��
  � � � �" � !� �  �  �  �  � 
 � � � � ! � � # � � � � 
 � �

Note that  � �  �  �  � �  �
The following strategy solves the minimum broadcasting time problem for graphs - � � � '�	 �

with
a given

� ! ' # ' � � –edge decomposition tree
� � � � � ' 	 � � � Let " ��� � �$# � � denote the minimal schedule

length of the local broadcast problem for the graph - � and external information exchange as specified by
state
� � ( �&% if there is no schedule for state

� � ). Observe that this value is independent of the structure
of - outside of - � .
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Step 1: For each component - � � � � � ' 	 � � and each state
� � �� � determine 	 � - � ' � � � .

For each edge � � ' ��� � cut
� - � � with � ���- � and

�� � � ' � � � & generate a new node � � � � and a new
edge � � � � � '�� � , where � is the only neighbor of � � � � . Define

� � � � � as the set of these new nodes � � � �
and 	 � � � � as the set of new edges � � � � � ' � � . We define a local GB-problem with respect to - � and� � as follows:

- +� � � � � � � � �2� � � ' 	 � � 	 � � � � �
� � � � � � � � � � � � � '�� � � �

if
� � � � � '�� � � � � � � � '

� � � � � � � � � � � � � '�� � if
� � � � � '�� � � � � � � � �

For � � � � define � � � � � � � � � � � and � � � � � � � �
� � � .

The construction of - +� for the example given in Figure 4.16 is illustrated in Figure 4.17.

Step 2: Let - �  � '�������'1- �  4 
 denote the neighbors of - � �
Choose an arbitrary component - � and declare - � as the root of

�
. Let - �  � be the father of - � in�

according to the orientation with respect to - � . Let - &� denote the subgraph of - containing - �
and all its descendents. Evaluate the function 	 � - &� ' � �  � � for all - � and

� �  � starting with the leaf
components of

�
.

Lemma 9 Let -��  � '�������'1-��  4 
 denote the sons of -�� and let
� �  � be a state connecting -�� and -��  � . The

minimal deadline for the general broadcast problem for - &� with respect to external information exchange� �  � can be computed as

	 � - &� ' � �  � � � � ���� 
 " � � , /././.  � � � ��� 
 � �� 
 
 � /././.  � 
 
 � 
 � ��� 
� � 	
	 � 
 
 ��� � 

� ��� � � � � �� � 
 
 ��� � 
 
 � � 
 �	 � - &�  � ' � �  � �  � � � � ������ � � �

� � 	 � - � ' � � � � �
with

���1 � � � � � � � � ��� � � - ��  � � � � � � �� � - �� '1- ��1 � � � �� � - ��  � ' - �� �  cut
� - �� '1- ��  � � �� ��� '� � �� � � � � �� � - �� ' - ��1 � � � �� � - ��1 � '1- �� � ' � � � � �  � � cut

� - �� ' - ��1 � � and� �� � � � '�� � � � � � ���  � � � � �

Proof: This property can be shown by induction on the depth of the subgraphs - � �
If - � is a leaf of

�
then
� � � � �  � thus 	 � - &� ' � �  � � � 	 � - � ' � � � � The claim follows directly from

the definition of 	 � - � ' � � � �
Let

� � be the depth of the subgraphs - � � Assume that the claim holds for each subtree of depth less
than

� � and each state of these subtrees, in particular for each son - �  � of - � and each state
� �  � �

Given a state
� � � � � � '������ '�� � � � ��
 � ' ���  � '������ ' �&�  4 
 � � ��� of -�� then � �1 � � � � � denotes the set of corre-

sponding state
� �  � � Thus 	 � - &� ' � �  � � denotes the minimal deadline of - &� with respect to external infor-

mation exchange
� �1 � and

� ��� �
� � �� � � � ./. � 
 � � � ���� � 
 
 ��� � 
 
 � � 
 � 	 � - &�  � ' � �1 � � � � � 	 � - � ' � � � � �

the minimal deadline of - &� with respect to external information exchange
� � �

The claim of the lemma follows since we minimize over all possible states of - � that may appear in
busy schedules. �

Therefore, 	 � - &� � � 	 � - &� '�� � denotes the minimal schedule length for the graph - itself.
The correctness of step 1 follows directly from the definition of a surface and the definition of the

general broadcast problem. The correctness of step 2 follows from Lemma 9.
According to Lemma 5 the computation of 	 � - �)' � � � requires at most O

� � # � � ! � � � � � � � �  	  �
 �  � �  �  � � 
 � steps. From Lemma 8 it follows that step 1 can be executed in time

� � 
 �
� ! � ' # � ' � � � �

� � � #
�
! � � �

� � �  �  
  �  �  � � � � � �
 �  � � � � � ! � #�� �

� � � # � ! � � �
� � �  �  
  �  �  � � � �
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The computation of 	 � - &� ' � �  � � is independent of the remaining structure of - . Note that given
� ��� � - �� '1- �� � � � � � ��� cut � ���
  ���� � �� � � � ' so  � �  � �2� � �  � � #

�
! � �

. Thus given all values 	 � - �1' � � � and

	 � - &�  � ' � �1 � � , the computation of all 	 � - &� ' � �  � � can be executed in time� � � � ! ��' # �1' � � � � � � � � # � ! � � � � � � �

Summing up over all - � gives the bound

� ��

� � � � ! � ' # � ' � � � �)� � � � # � ! � � � � � � � � �

� � ! ' # ' � � � � # � ! � � � � � � � ��
 � � �
� � �  	  � � � ! ' # ' � � � � # � ! � � � � � � �

This finishes the proof of Theorem 7 and 8. �
By using tree contraction methods the evaluation of the 	 -function can also be done in parallel requir-

ing only a logarithmic number of iterations which yields Theorem 9. The details are described in [Rei91a].

4.9 Node Separation

The same technique with a slightly worse time bound due to a larger number of states also works for node
decompositions of graphs.
Proof of Theorem 10: Let

� � � � � ' 	 � � be a
� ! ' # ' � � –node decomposition tree of the graph - �� � ' 	 �

with
� � � � - � '�������' - � � � Figure 4.18 shows a component - � which is connected to three other

components - � ' - � ' and - � �

G3

G4

G1

G2

Figure 4.18: A node - � of an
edge decomposition tree and its
neighbors

G2extended

G3

G4

G1

G2

Figure 4.19: The extended com-
ponent of - �

G3

G4

G1

G2

G2shrinked

Figure 4.20: The minimum dead-
line of the general broadcast prob-
lem of this graph is used to calcu-
late the minimum broadcast time
for the graph above.

Let � � � � � - �� '������ '1- � 
� � with ���� � � � �� '�	 �� � be the set of subcomponents of the - � and define
cut

� - �� � as the set of nodes of
� �� � cut

� -�� � �
cut

� - �� '1-�� � � � cut
� - � '1-�� � � cut

� - �� � � ���
cut

� - �� '1- �� � � � cut
� - �� ' -�� � � cut

� - �� � � ���
border

� - �� � � � � � �� � �� '� � ' ����� 	 � ��� � � cut
� - �� � � �

For a node � � �
let � � � � be the round � gets the information, and for an edge � � � 	 let � � � � � the

round when � � is used. To describe a broadcasting schedule of a graph - , each node � of - is labeled
by a vector of rounds ��� � � � � � � � ' �� � � � � '������ ' �� � ��� ��� � � � ' where � � '�������' ��� ��� � denote the edges which are
incident to � and

�� ���
	�� � � � � � � � � � � � � � Note that the values
�� � � � � are bounded by � � � � will be called

the state of � . The surface � � of a node � � �
is the set of all possible states of � that may appear in busy

broadcast schedules. Note that for a fixed � � � �  � �  is bounded by
� � � � � �

�
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For a node � � � �� let
������ � � � � � � � � � � - �� � where � � - �� � denotes the first round a node of

� ��
receives the information.

Lemma 10 For a busy broadcast schedule
�� � � � is bounded by

� � � � � � ! � #
�
� �

Proof: For a component - �� � � � �� ' 	 �� � with  � ��  � � let - +� � � � �� � border
� - �� � ' 	 �� � � � � '�� � �

	  � � cut
� - �� � � � be the extended component of - �� (see Figure 4.19). Note that the number of nodes

of - +� � � � +� ' 	 +� � is bounded by
� � � � � � ! � # � Thus the minimum broadcast time of - +� is bounded by� � � � � � ! � #

�
� �

Let � and � be two nodes of a subcomponent of a component of - . Then the difference between the
rounds when the two nodes � and � are informed is at most

� � � � � � ! � #
�
� � �

A state � ��� � between two neighbors - � and -�� is a vector of states � � ' one for each node of cut
� - � ' -�� � �

The surface � ��� � of a cut
� - � ' -�� � is the set of all possible states � �  � that may appear in busy broadcast

schedules. A state # � of a component - � is a vector of states � � , one for each node of cut
� - � � � The surface� � of a component - � is the set of all possible states

� � that may appear in busy schedules.

Lemma 11 For a component - � with cut-size  cut
� -�� �  � ! � , size  � �  � # � and � � � %&% � -�� � subcompo-

nents, the size of � � is bounded by � � ! � ' # � ' � � � � �  �  � 
 � � � � � � � � � ! � � # � � � � � � � � � �
�


.

Proof: Define the relative state � �� � � � �� � � � ' �� � � � � '�������' �� � ��� ��� � � � and the relative surface � �� as the
set of all possible relative states � �� that may appear in busy broadcast schedules. Then the state � � between
two neighbors -�� and - � is a vector

� � � � � � � - �� � �- �� � � � � ' � � ��  � � cut
� - � � � �

The surface � � of cut
� -�� � is the set of all possible states � � that may appear in busy broadcast schedules.

Note that  ��� ��  � �  and  ���  �  �  � �  . Hence,

 � �  � �
� �
 ��� 
 

�  �
�

� � cut � ���
 � !�
��  �  �  � 
 � � � � � � � � � ! � � # � � � � � � � � � �

�


�

�
The following strategy solves the minimum broadcasting time problem for graphs - � � � '�	 �

with
a given

� ! ' # ' � � –node decomposition tree
� � � ��� '�	 � � � Let " ��� � �!# � � denote the minimal schedule

length of the local broadcast problem for the graph - � and external information exchange as specified by
state
� � ( � % if there is no schedule for state

� � ). Again this value is independent of the structure of -
outside of - � .

Step 1: For each component - � � � � � ' 	 � � and each state
� � �� � determine 	 � - � ' � � � .

Let - +� � � � � � � cut
� - � � ' 	 � � � � �*' � �  � � cut

� - � � � � be the shrunken component of - � �
For each edge � � ' ��� � 	 � with � � cut

� - � � generate a new node � � � � and a new edge � � � � � '�� � ,
such that � is the only neighbor of � � � � . Define

� � � � � as the set of these new nodes � � � � , and 	 � � � �
the set of new edges � � � � � '�� � . We define a local GB–problem with respect to - � and

� � as follows:

- + +� � � � � +� � � � � � � ' 	 +� � 	 �2� � � � '
� � � � � � � � � � � � � '�� � � �

if � 
 � � � �� � � '�� � � & '
� � � � � � � � � � � � � � if � � � � � �� � � '�� � � & �

For � � � +� define � � � � � � � � � � � and � � � � � � � �
� � � .

Note that  � + +�  � # � � � � � � � � ! � . The construction of - + +� is illustrated in Figure 4.20.

Step 2: Let -��  � '�������'1-��  4 
 denote the neighbors of -�� �
Choose an arbitrary component - � and declare - � as the root of

�
. Let - �  � be the father of - � in�

according to the orientation with respect to - � . Let - &� denote the subgraph of - containing - �
and all its descendants. Evaluate the function 	 � - &� ' � �  � � for all - � and

� �  � starting with the leaf
components of

�
.
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Lemma 12 Let - �  � '������ '1- �  4 
 denote the sons of - � and let
� �  � be a state connecting - � and - �  � . The

minimal deadline for the general broadcast problem for - &� with respect to external information exchange� �  � can be computed as

	 � - &� ' � �  � � � � � �� 
 " � � � "� � cut � � 
&� � � � 

� � 	 	 � 
 
 � � � 


� ��� � � 	 � - &�  � ' � �1 � ���� � � � � ������ � ��� � � 	 � - � ' � � � ���
with
� �1 � � � � � �  � � cut

� - � ' - �  � � � � � � �
The proof is almost identical to the one of Lemma 9. �

As in the case of edge-decomposition 	 � - &� � � 	 � - &� '�� � denotes the minimal schedule length for
the graph - itself.

The correctness of step 1 follows directly from the definition of a surface and the correctness of step 2
from Lemma 12. According to Lemma 5 the computation of 	 � - � ' � � � requires at most O

� � � ��� � � � ! � �# � � � � � � � � � � 
 �
steps. From Lemma 11 follows that step 1 can be executed in time

� � 
 �
� ! � ' # � ' � � � �

� � � � � � � � � ! � #�� � � � � � � � � � � � �
 �  � � � � � � � � � ! � #��

� 
 � � � � � � � � 
 � �
� � �

The computation of 	 � - &� ' � �  � � is independent of the remaining structure of - . Note that for fixed
� �  � the

number for
� �  � that may appear in a busy broadcast schedule is bounded by � � � 4 � � �

� . Thus given all values
	 � -��1' � � � and 	 � - &�  � ' � �  � � the computation of all 	 � - &� ' � �  � � can be executed in time

� � � � ! �)' # �1' � � � �� � � � � � 4 � � �
�
� � Summing up over all -�� gives the bound

� � 

� � � � ! � ' # � ' � � � �-� � � � � �

� � ! ' # ' � � � � � 
 � � � � � �  �  � � � � 4 � � �
� � � � ! ' # ' � � � �

All together, we get a total time of� �
 �  � 


� � � � � � � � � ! � #��
� 
 � � � � � � � � 
 � �

� � � � �
� � �

�
Again the evaluation of the 	 -function can also be done in parallel with a logarithmic number of

iterations, which gives Theorem 11.

4.10 Conclusions

We have shown that the single source broadcasting problem remains hard for planar networks of bounded
degree if the internal connectivity is high, that means there is no edge- or node-decomposition with compo-
nents of small size. On the other hand, even a much more general version with many sinks and individual
deadlines can be solved efficiently on graphs that can be decomposed nicely.

Thus one can conclude that generating optimal broadcast schedules is a difficult task in general. The
intuition that this must be due to a complex structure of the network which gives a lot of freedom designing
a schedule has been verified by a rigorous proof. Most interestingly, such structures can already occur in
bounded degree planar graphs.
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Chapter 5

On the Inapproximability of
Broadcasting

5.1 Introduction

We have seen that the exact solution of the Broadcasting problem is combinatorically infeasible, if
� �����

. In this chapter we discuss the computational complexity of approximating broadcasting time. An
approximation algorithm for broadcasting is an algorithm that on input

� - ' � � � of a graph - and a set
of sources outputs a broadcasting schedule

�
. For the performance quality we distinguish additive and

multiplicative approximation schemes.

If an polynomial time algorithm approximates a problem by an additive term � ��	�� , then the perfor-
mance �

� ( � (broadcasting time � � � - ' � �
) of the output of an instance x (a graph - and a source set

�
) of

size
	

(the number of nodes in - ) differs from the optimal solution Opt
� ( � � � � - ' � � at most by � � 	�� , i.e.

 � � ( � � Opt
� ( �  � 	

. The approximation algorithm achieves a multiplicative approximation by � ��	��
,

if � � ( � � � ��	��
Opt

� ( � for all
	

and all instances of size
	

.

Thus, the
���

-hardness results of Theorem 6 can be translated to an inapproximability result: Consider
the set of graphs resulting from the reduction described in Theorem 6. The broadcasting time of these
instances is either

�
or � . The Theorem proves that it is

���
-hard to distinguish between these two sets of

instances. Hence, if an polynomial time approximation algorithm for broadcasting with multiple sources
exists with multiplicative approximation ratio

�
�
� � for � � & , then it could make this distinction and� � ��� would follow. This inapproximability factor increases to �� � � when we apply the result of

[Mid93].

Such a direct transfer of lower bounds from decision problems to inapproximability results is an un-
usual proof technique. Recall that this trick does not work with single source broadcasting, since here
broadcasting time increases by the size of the graph. For a comparison the same technique only implies a
trivial constant additive inapproximability bound of

� ��� for � � & .
In this chapter we will concentrate on additive and multiplicative inapproximability bounds for single

source broadcasting (SB) and additive bounds for multiple source broadcasting (MB). This chapter is or-
ganized as follows. In the next section we will present previous work and state the main results of this
chapter. In section 5.3 we repeat some notation of the last chapter and introduce the sub-graphs used in this
chapter. In section 5.4 we prove the multiplicative inapproximability of �� � � for SB. Then, in section 5.5
we present a tight lower additive approximation bound for SB. We will show in section 5.6 additive inap-
proximability bounds for multiple and single source broadcasting in ternary graphs. In the last section of
this chapter we will conclude these results.
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5.2 Previous Work

Broadcasting is the task of disseminating information from one or many sources to all members of a com-
munication network. We envisage a static network where it makes sense to compute broadcast strategies
offline. We already introduced the telephone model as one of the simplest timing models in Definition 1.
A straight-forward generalization, the postal model [BNGNS98, BNK94], modifies the edge delay of an
edge and switching time of a node. The edge delay delays the information of a node along this edge. The
switching time is the time span a node needs to start the the next transmission to a neighbor. Again nodes
can participate in only one call at each time. In heterogeneous networks every node and edge may have
different timing behavior unlike in homogeneous networks where the ratio between the network’s edge
delay and switching time describes the latency of the network. Choosing a latency of 1 leads back to the
telephone model. An interesting special case is the open-path model where the edge delay is zero and the
switching time is 1. Clearly, if broadcasting with respect to one of the simplest communication models, the
telephone model, is infeasible then the situation for the heterogeneous model cannot be better.

5.2.1 Approximation algorithms

In [Rav94] it is shown that broadcast time in the telephone model can be approximated within a factor
of

��� 	 ��� � �	 ���	 �� � � given a network of
	

nodes. Bar-Noy et al. [BNGNS98] improve these techniques and
present a polynomial-time approximation algorithm for the single source broadcasting problem with an
approximation factor of

��� � � � 	��
for the more general postal model.

For graphs with bounded tree-width with respect to the standard tree decomposition the broadcast time
can be even approximated within

��� 	 �� �	 ���	 ��� � � [MRS 
 98].
For broadcast time in the telephone model there exists an additive

��� � 	�� -approximation algorithm
[KP95]. In particular there is a polynomial time bounded algorithm that for a graph with

	
nodes and

broadcast time � � - � constructs a broadcast schedule of length � � - � � ��� � 	�� .
5.2.2 Inapproximability results

In [BNGNS98] heterogeneous networks in the postal model were considered. For this timing model it is
not possible to approximate the broadcast time within a factor of � � � for any � � & unless

� �� ��� . The
proof uses a reduction from set-cover using a latency varying from & to

��� � � � � .
Allowing multiple sources can reduce the broadcast time to a constant. Yet for deadline 2 the decision

problem is still
���

-complete even for planar graphs of small degree [Mid93]. As we already have dis-
cussed this

���
-completeness result for broadcasting in the telephone model implies an inapproximability

factor of �� . Note that this does not imply that graphs of higher broadcast time � � � cannot be distinguished
from graphs with broadcast time �� � .
5.2.3 New results

In this paper we investigate inapproximability bounds for the broadcast time in the telephone model for
undirected communication networks. The lower bounds refer to the length of the optimal broadcast sched-
ule and not necessarily to its computation. Clearly, computing good broadcast schedules is at least as hard
as approximating the optimal length of valid broadcast schedules.

We solve the open problem recently addressed by [BNGNS98] whether there is a polynomial time
algorithm approximating broadcasting by an additive constant. We state an inapproximability factor of
������ for any � � & using a polynomial time reduction from set-cover.

Theorem 12 For every � � & there exist graphs with
	

nodes with broadcast time at most � such that it is���
-hard to distinguish those from graphs with broadcast time of at least

�
�� ���

� � .
Then, we concentrate on the lower additive approximability bound. We prove that the approximation

algorithm of Kortsartz et al. [KP95] is best possible up to a constant factor of the additive term. Unless� � ��� broadcasting cannot be approximated by a polynomial time bounded algorithm within an additive
term of � � 	 for some constant � . In particular we prove:
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Figure 5.1: The chain and its symbol.
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Figure 5.2: The star and a broadcast schedule.

Theorem 13 For every ��� & there exist graphs - with
	

nodes and broadcast time at most � � � � � 	��
such that it is

���
-hard to distinguish those from graphs with broadcast time at least

� ���� �
� �

� � .
The proofs of these theorems use graphs with large degree. In the last chapter we have seen that there

are situations where low degree simplifies the complexity of broadcasting to some extent. We show how
to transfer these techniques to ternary graphs, which are undirected graphs with a degree of at most three.
For ternary graphs and multiple sources we prove an additive lower bound of � � � � � 	��

.

Theorem 14 It is
���

�
� ����� to distinguish ternary graphs - � � � '�	 �

with multiple sources and broad-
cast time ��� � �������  �  � from those with broadcast time � � � � � for any constant � .

These indistinguishable ternary graphs have a polynomial number of information sources. We are also
interested in the case of a single information source and ternary graphs. Modifying the proof of Theorem 14
we can state a lower additive inapproximability bound of � � � ����� 	�� :
Theorem 15 It is

���
-hard to distinguish ternary graphs - � � � ' 	 �

with single sources and broadcast
time ��� � � 	  �  � from those with broadcast time � � � � ����� � for some constant � .

5.3 Notations and Basic Techniques

For a self-contained representation within this chapter we repeat Definition 1. Let - � � � ' 	 �
be an

undirected graph with a set of nodes
� � � �

, called the sources. The task is to compute the broadcast time� ��� �����&� , the minimum length � of a broadcast schedule
�

. This is a sequence of sets of directed edges� � � 	 � ' 	 � ' 	 � '������ ' 	 ! � . Their nodes are in the sets
� � ' � � ' � � ����� ' � ! � �

, where for
� � & we define� � � � � � 4 � � � �  � � '�� � � 	���� . A broadcast schedule

�
induces a directed spanning forest with the

sources as roots, and directed edges describing the information flow.
�

fulfills the properties

1. 	 � � � � � '�� � �� � � � 4 � ' � �*' � ��� 	 � and

2.
� � � � ' � � �  	 � � � � ��� � � �  � � �

We define the broadcast time of a graph - with sources
� � ,

� ��� ��� � � , to be the minimum time required
to complete broadcasting from nodes

� � . Let
�

be a broadcast schedule for
� - ' � � � , where - � � � '�	 �

.
The broadcast time of a node � � �

is defined as � � � � � � � � � � �  � � � � � �
Furthermore, as we have already discussed in the last chapter we can restrict our considerations to

busy broadcast schedules. Here every processor tries to inform a neighbor in every step starting from the
moment it is informed. When this fails it stops. By this time, all its neighbors are informed. Furthermore,
every node is informed only once. Every broadcast schedule can be transformed into a busy schedule
within polynomial time without increasing the broadcast time of any node. For a detailed proof we refer
to [Sch00a]. From now on, every schedule is considered to be busy. In [BNGNS98] this argument is
generalized to the postal model (the authors call busy schedules not lazy).
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Figure 5.3: The ternary pyramid and a broadcast
schedule.
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Figure 5.4: A complete binary tree and a broadcast
schedule.

5.3.1 Sub-Graphs

As a basic tool we consider a chain (in the preceding chapter called timer, see Figure 5.1)

� � � � '�� � � � � � � � � ' � � ����� ' � � ' � � � � 
 � � ' � � � � '�� � 
 � � � �
starting at node � and ending at � with � interior nodes that are not incident to any other edge of the
super-graph. A star consists of a central node � and

	
ray nodes �'� (Figure 5.2)� � � � � � '�� � '�������'�� � � ' � � ��' ��� � � � �

In Figure 5.3 a pyramid is shown. A pyramid consists of a honeycomb structure where the top node has
equal distance to the base nodes � � '������ '�� � .

The broadcasting behavior of these sub-graphs is the following (For simplicity we assume that the
sources inform nodes of the sub-graph at first).

Lemma 13 Let the ends � and � of a chain � � � � '�� � be informed in time � � and � 
 , where � 
 � ! � � � �� 
 . Then, the total chain is informed in time
� � � � � � 
 � ! � � � � .

The center of star
� � can use

	��
different busy broadcast schedules to inform all ray nodes. Their

broadcast times can describe any permutations of � � '�������' 	 � .
The root of a complete binary tree of depth � informs � �

� � leaves in time � � � .
For a pyramid with

	
base nodes the top node informs all but one base nodes in time � 	 � � . The last

base node is informed in time � 	 � � .
5.4 Inapproximability by a Factor of � ��� �
In this section we show that the lower multiplicative inapproximability bound of �� � � . The proof consists
of a reduction to the set-cover problem.

Definition 11 (Set-cover) Let
�

be a set of
	

elements and
. � � � � '������ ' � � � a collection of subsets of�

. Set-cover is the problem of selecting as few as possible subsets from � such that every point in
�

is
contained in at least one of the selected subsets.

Feige [Fei98] proved the following hardness result.

Theorem 16 ([Fei98]) Unless
��� � � � � � � ��	 � � 	 ��� 	 �� � � � , the set-cover problem cannot be approxi-

mated by a factor which is better than
� � 	 .

Here, we will only use a constant lower multiplicative inapproximability bound for set-cover.

Theorem 17 ([Hoc97]) Unless
� � ��� , the set-cover problem cannot be approximated by any constant

factor.
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Figure 5.5: The reduction graph - �/. '10 � .

Proof of Theorem 12:
Given an instance of set-cover with

. � � � � '�������' � � � and � elements the reduction constructs a graph
- � . ' 0 � ( 0 � � � will be chosen later on):

� The single source � � is the center of a star with ray nodes � � '�������' � � .
� For all

�
the node �)� is the root of a binary balanced tree with  � �  leaves. Each leaf is the starting

point of a chain of length 0 which ends at a leaf of a binary balanced tree with a root named ( � if� � � � for � � � � '������ ')� � .
� These nodes ( � represent the ground set � � '�������')� � . Their trees have � � � � � �  � �  ( � � � � �  leaves,

each leaf is connected to only one of the above mentioned chains.

An example of this graph is shown in Figure 5.5. Note that the number of nodes of this graph is bounded
by

��� 0 � � � �
� �

. Let � � � �����
� � � � �  � � 
'� ��� � � be the maximum depth of the balanced binary sub-trees.

Lemma 14 A set-cover for
.

of size � implies � � - �/. '10 � � � � � � 0 � � � .
Proof: We present a broadcast schedule for - �/. '10 � . The source � � informs the � set nodes � � corre-
sponding to the minimum set-cover. According to Lemma 13 all element nodes ( � are informed in time
� � � � � 0 .

Now all nodes will be informed by nodes ( � '������ '1( � . They inform their trees in time � � and all set
nodes ��� in additional time 0 � � . Then all nodes are informed. �

Lemma 15 If any set-cover of
.

has at least size � 0 � �
then � � - � . ' 0 � � � � 0 .

Proof: We will show that there is an element node ( � which cannot be informed in time � 0 . Fix a broadcast
schedule

�
. In every step the source can only inform one neighbor ��� . Let

� � � � �)� , '������ ' �)� � � � be those
neighbors informed in the first � 0 steps. Note that every path disjoint from the source between � � and � � is
longer than � 0 . Therefore no further set node can be informed by this time.

We pick an element � from the set � � '������ ' 	 � � � � � , � ������' � � � � � � which is non-empty since there is no
set-cover of size � 0 . The distance from the corresponding node ( � to any node in

�
is larger than � 0 , since

none of the leaves of the
�

’s trees is directly connected to the leaves of ( � ’s tree.
If (�� was informed by a node in

�
then � � � (�� � � � 0 . On the other hand, if ( � was informed by a set

node not in
�

, then this set node was informed in time � 0 � �
at the earliest. This set node has distance of

at least 0 to (�� , which results in a broadcast time � � � ( � � � � 0 . �
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We continue the proof of Theorem 12. For any ! � �
it is possible to describe a set

�
of set-cover

instances either having a set-cover of size at most � or having one of at least size ! � . Since this proof is
constructive, the decision of this property in

�
is
���

-hard even with the knowledge of � [Hoc97].
For our reduction we want to ensure that � � � � � . This property can be easily guaranteed: Consider

the ground set
��� '2� � for

� � � � '������ ' 	 � and � � � � '�������'"� � � � 	 � and for ! � � � '�������' �'� let
��� '2� � � � +�  �

iff
� � � � . This padding increases every set-cover of size � to ��+ � � � � � � 	 , but does not increase � . Since� � ����� 	

, we have then � � � + � � � � � � � 	 .
We reduce this set

�
to a graph - by the construction above with the choice 0 � � �� . Lemma 14 implies

for a set-cover of at most � a broadcast time of at most
� � � � � � 0 , while Lemma 15 implies for a set-cover

instance of at least ! � a minimum broadcast time of � 0 .
This completes the proof. For � � �� � 
 � we have constructed a set of graphs for which it is

���
-hard

to distinguish whether the broadcast time is smaller than � � � � � � � � 0 or larger than
�
�� ���

� � . �

5.5 A Tight Additive Bound

Now we present the proof for an lower additive bound that matches the bound of a polynomial time approx-
imation algorithm presented in [KP95]. We use a polynomial time reduction from E3-SAT which denotes
the satisfiability problem of Boolean CNF-formulas with exactly three literals in each clause.

Theorem 18 [Hås97] For any � � & it is
���

-hard to distinguish satisfiable E3-SAT formulas from E3-
SAT formulas for which only a fraction � � � � � of the clauses can be satisfied, unless

� � ��� .

Let
.

be a 3-CNF with � clauses � � '������ ' � � and variables ( � '������ '1( � . Let � ��� � denote the number of
occurrences of the positive literal ( � in

.
. In the proof of Theorem 18 Håstad uses a variant of E3-SAT

where every variable occurs equally often as positive and negative clause in
.

. Let 0 � � � � � + , where
� + � ��� �� " � � ��� � with � being a large number to be chosen later on. Note that � � �

�
� + .

The formula
.

is reduced to an undirected graph - 2  4 (see Figure 5.6) as follows.

� The source � � is the center of a star
� � with 0 rays ( ��  �1 � , for � � � & ' � � , � � � � '�������' 	 � , � �

� � '�������' � ��� � � , and ! � � � '������ '�� � .
� We call the nodes ( ��  �1 � literal nodes. They belong to � disjoint isomorphic sub-graphs - � '������ '1- 4 .

A sub-graph - � contains literal nodes ( ��  �1 � , representing the literal ( �� ( (
�� � ( � , ( � � � ( � ).

� Between the literal nodes corresponding with a variable ( � in - � we insert chains � � � ( � �  �1 � '1( ��  � �  � �
for all

� � � � '������ ' 	 � and � '�� + � � � '������ ' � ��� � � .
� For every clause ��� � ( � ,� , � ( � �� � � ( � �� � we insert clause nodes ���  � which we connect via the

three chains � � � � � ���  � ')( ����
�
 �
�
 � � for � � � � '���' ��� of length 0 � � to their corresponding literal nodes

( � ,� ,  � ,  � '1( � �� �  � �  � '1( � �� �  � �  � . This way, every literal node is connected to one clause node.

The underlying idea of this construction is that the assignment of a variable ( � corresponds to the time
when the corresponding literal nodes will be informed. For the upper bound we can use the satisfying
assignment of

.
to construct a fast broadcast schedule.

Lemma 16 If
.

is satisfiable, then � � - 2  4 ' � � �� 0 � ��� + � � .
Proof: The schedule

�
informs all literal nodes directly by � � . Let � � '������ ' � � be a satisfying assignment

of
.

. The literal nodes (
� 
�  �  � of graph - � are informed within the time period

� ! � � � ��+ � � '������ '�!�� + .
The literal nodes ( �'
�  �1 � are informed within the time period 0 � !���+ � � '������ ' 0 � � ! � � � � + .

Note that � + is a trivial upper bound for the degree at a literal node. So, the chains between two literal
nodes can be informed in time 0 � � ��+ � �

. A clause node can be informed in time !���+ � 0 � � � �
by an

assigned literal node of the first type, which always exists since � � '������ ' � � satisfies
.

. Note that all literal
nodes corresponding to the second type are informed within 0 � � ! � � � � + . So the chains between those
and the clause node are informed in time 0 � � ��+ � � . �
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Figure 5.6: The reduction graph - 2  4 .

Lemma 17 Let
�

be a busy broadcast schedule for -32  4 . Then,

1. every literal node will be informed directly from the source � � , and

2. for � �  � � ( � ,� ,  � ,  � � (
� �� �  � �  � � (

� �� �  � �  � : � � � � �  � � � �
� � � ��� � � � � � ( � ��

�
 �
�
 � � � .

Proof:

1. Every path between two literal nodes that avoids � � has at least length 0 �
�
. By Lemma 13 even the

first informed literal node has no way to inform any other literal node before time point 0 , which is
the last time a literal node is going to be informed by � � .

2. follows by 1.

�
If only one clause per Boolean formula is not satisfied, this lemma implies that if

.
is not satisfiable,

then � � - 2  4 ' � � � � � � 0 � � . A better bound can be achieved if the inapproximability result of Theorem 18
is applied. A busy schedule

�
for graph - 2  4 defines an assignment for

.
. Then, we will categorize every

literal node as high, low or neutral, describing whether its broadcast time corresponds to the assignment
and whether it is delayed. Clause nodes are classified either as high or neutral. Every unsatisfied clause of
the E3-SAT-formula

.
will increase the number of high literals. Besides this, high and low literal nodes

come in pairs, yet possibly in different subgraphs - � and - � � . The overall number of the high nodes will
be larger than those of the low nodes.
Proof of Theorem 13: Consider an unsatisfiable E3-SAT-formula

.
, the above described graph - 2  4 and a

busy broadcast schedule
�

on it. The schedule defines for each subgraph - � an assignment ( �  � '������ ')( �� � �
� & ' � � � as follows. Assign the variable ( �  � � � if the number of delayed literal nodes with � � � ( ��  �  � � �
0 � � is smaller than those with � � � ( ��  �1 � � � 0 � � . If both numbers are equal, w.l.o.g. let ( �  � � & .

1. A literal node ( ��  �1 � is coherently assigned, iff � � � ( ��  �1 � � � 0 � ��� ( �  � � � . We also call
coherently assigned literal nodes neutral.
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Figure 5.7: The circle denote literal nodes. Literal nodes in a rectangle belong to the same variable. A
given broadcast schedule informs literal nodes early or delayed. This timing defines the assignment of
variables and whether nodes are low, high or neutral

2. A literal node ( ��  �  � is high if it is delayed and not coherently assigned, i.e., ( �  � � � and � � � ( ��  �  � � �
0 � � .

3. A literal node ( ��  �  � is low if it is not delayed and not coherently assigned, i.e., ( �  � � � and� � � ( ��  �1 � �� 0 � � .
4. A clause node ���  � is high, if all of its three connected literal nodes are neutral and delayed, i.e.,�

� � � � ' ��' ��� � � � ( � 
�
�
 �
�
 � � � 0 � � .

5. All other clause nodes are neutral.

Every high literal node ( ��  �1 � with broadcast time 0 � � � � � for � � � & can be matched to a neutral delayed
literal node ( ��  � �  � with broadcast time � � � ( ��  � �  � � � 0 � � � � � for � � � & . Lemma 13 shows that the chain
between both of them can be informed in time 0 �

� , 
 � �� at the earliest.
For a high clause node with literal nodes (

� 
�
�
 �
�
 � and broadcast times � � � ( � 
�

�
 �
�
 � � � 0 � � � � � with

� � ' � � ' � � � & , Lemma 17 shows that this high clause node gets the information not earlier than 0 �
� � � � � � ' � � ' � � � . So, the chain to the most delayed literal node will be informed at 0 �

�
� ��� � � � ' � � ' � � � �� ����� � � ' � � ' � � �

� � � at the earliest.

Lemma 18 Let � be the number of low literal nodes, � the number of high literal nodes, and � + the number
of high clause nodes. Then the following holds:

1. � � � ,
2. � � � - 2  4 '�� � � � 0 � � ,

3. � � � - 2  4 '�� � � � 0 �
� � � � � +

� � � .
Proof:

1. Consider the set of nodes ( ��  �1 � , for � � � � '�������' � ��� � � and � � � & ' � � . For this set let � �  � be
the number of high nodes, � �  � the number of low nodes and � �  � the number of nodes with time
greater than 0 � � . By the definition of high and low nodes the following holds for all

� � � � '������ ' 	 � ,! � � � '�������'�� � :
� �  � � � �  � � � �  � � � ��� � �

Lemma 13 and Lemma 17 show that half of the literal nodes are informed within 0 � � and the rest
later on: �

�  � � �  � � 0
� � � �

�  � � ��� � '
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It then follows that:
� � � � �

�  �
� ��  � � � �  � � ��  � � � ��� � � � & �

2. Note that we can match each of the � high (delayed) literal node ( ��  �  � to a neutral delayed literal
node ( ��  � �  � . Furthermore, these nodes have to inform a chain of length 0 . If the latest of the high
nodes and its partners is informed at time 0 � � � � , then Lemma 13 shows that the chain cannot be
informed earlier than 0 � �

� � .
The broadcast times of all literal nodes are pairwise distinct. Therefore it holds � � � � , proving� � � - 2  4 '�� � � � 0 � � .

3. Every high clause node is connected to three neutral delayed literal nodes. The task to inform all
chains to the three literal nodes is done at time 0 � � +

� � at the earliest, if 0 � � � � + is the broadcast time
of the latest literal node. For � + high clause nodes, there are ��� + corresponding neutral delayed literal
nodes. Furthermore, there are � delayed high literal nodes (whose matched partners may intersect
with the ��� + neutral literal nodes). Nevertheless, the latest high literal node with broadcast time
0 � � � � + + causes a broadcast time on the chain to a neutral delayed literal node of at least 0 � ��+ +

� � .
From both groups consider the most delayed literal node � ��� � . Since every literal node has a different
broadcast time it holds that ��+ + � � � + � � , and thus � � � � ����� � � 0 � � � � + � � � � � .

�
Suppose all clauses are satisfiable. Then Lemma 16 gives an upper bound for the optimal broadcast

time of � � - 2  4 ' � � � � 0 � � � + � � .
Let us assume that at least

! � of the � clauses are unsatisfied for every assignment. Consider a clause
node that represents an unsatisfied clause with respect to the assignment which is induced by the broadcast
schedule. Then at least one of the following cases can be observed:

� The clause node is high, i.e., its three literal nodes are coherently assigned.

� The clause node is neutral and one of its three literal nodes is low.

� The clause node is neutral and one of its three literal nodes is high.

Since each literal node is chained to one clause node only, this implies

! � � � � + � � � � � � + � � � �

The case � � � � + implies � � �
�
� � � � � + � . Then it holds for the broadcast time of any busy schedule

�
:

� � � - 2  4 ' � � � � 0 � � � 0 � ��
� � � � � + � �

Otherwise, if � � � � + , then
�
�
� � � ��� +

� � �
�
� � � � � + � and

� � � - 2  4 '�� � � � 0 �
�
�
� � � � � +

� � 0 � ��
� � � � � + � �

Note that 0 � � � � . Combining both cases, it follows that

� � � - 2  4 '�� � � � 0 � ��
! � � � 0 � � � �� ! � �

For any � � & this gives, choosing ��� � � � �
for sufficient large �

� � � - 2  4 '�� � �� � - 2  4 '�� � � �
�
�
�
�
!

�
�
� � �


 �� � �
�
�
�
!
� � �

Theorem 18 states
! � �� � � + + for any � + + � & which implies claimed lower bound of ���� �

� �� for any
�� � & .

Note that the number of nodes of - 2  4 is in � � �
� �

and 0 � � � � � � . �
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Figure 5.8: The reduction graph -3+2  4 .

5.6 Lower Bounds for Ternary Graphs

The previous reduction uses graphs -32  4 with a large degree at the source node. To address ternary graphs
with multiple sources we modify this reduction as follows.

The proof uses a reduction from the E3-SAT-6 problem: a CNF formula with n variables and � � 	 � �
clauses is given. Every clause contains exactly three literals and every variable appears three times positive
and three times negative, but does not appear in a clause more than once. The output is the maximum
number of clauses that can be satisfied simultaneously by some assignment to the variables.

Lemma 19 For some ��� & , it is
���

-hard to distinguish between satisfiable 3CNF-6 formulas, and
3CNF-6 formulas in which at most a

� � ��� � -fraction of the clauses can be satisfied simultaneously.

Proof: Similar as Proposition 2.1.2 in [Fei98]. Here, every second occurrence of a variable is replaced
with a fresh variable when reducing from E3-SAT. This way the number of positive and negative literals
remains equally high. �

How can the star at the source be replaced by a ternary sub-graph that produces high differences be-
tween the broadcast times of the literal nodes? It turns out that a good way to generate such differences in
a very symmetric setting is a complete binary tree. Using trees instead of a star complicates the situation.
A busy broadcast schedule informs � �

� � leaves in time � � � where in the star graph only one was informed
in time � . This is the reason for the decrease of the inapproximability bound.

The ternary reduction graph - +2  4 , given a 3CNF-6-formula
.

and a number � to be chosen later,
consists of the following sub-graphs (see Figure 5.8).

1. The sources � � '������ '�� � are roots of complete binary trees � � '������ ' � � with depth 0 � ����� � � � � � and
leaves � �� '������ '�� �� � . The number � will be chosen such that 0 is an even number.

A constant fraction of the leaves of � � are the literal nodes ( ��  �  � of a subgraph - � . The rest of them,
� ��  �

is connected in pairs via 0 -chains. For an accurate description we introduce the functions

� � � � � �
� � � 
 ��
� " � � � 
 �

�
0 �  

and � � ( � � � � � � � �  � � � � � (�� .
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Figure 5.9: A ring of
	

nodes as replacement of a star-sub-graph.

Lemma 20 1. For � � � � '�������' � 0'� :
�� &
� �� 0 � � � � �� � � �� 0 �

2. For ( � � &�' � �� � � :
(
� 0� � � � � ( �� � & ( � 0� � �

Proof: Note that Stirling’s formula implies � �� � � � � � �� � and � �� � � 
 � � � � � �� � � � . Since the series� � � � ' � �� 
 � � '������ decreases for
� � 0 � � this implies the claim. �

Every node of � � is labeled by a binary string given by the path from the root, i.e., for the root �
label ��� � is the empty string � ; two successing nodes � � ' � � of a node � are labeled by label ��� ��� and
label ��� ��� . We call two leaves ( ' � are opposite if label

� ( � can be derived from label
��� �

by negating
every bit. For a binary string let 	 � � � � �  	 � � � � �
	 � � � �  be the difference of occurrences of 1 and 0 in � .
Consider an indexing � �� '������ ' � �� � of the leaves of � � such that for all � � � � '�������' � � � � � � 	 �

label
� � �� � ��

	 �
label

� � �� 
 �
� �

, and � �� and � �� � 4 � 
 � have opposite labels for all � � � � '�������'�� � � .
2. For every binary tree � � according to these indices the literal nodes of - � are defined by (

� �  �1 � �
� �� ��� , 
 � � � 4 � � 
 � and (

��  �  � � � �� ��� , 4 � � � 4 � � 4 � 
 � for � � � � '�������' ��� , and ! � � � '�������'�� � .
3. The other leaves of � � are connected pairwise by chains of length 0 such that opposite leaves of a

tree represent free literal nodes
� ��  � and

� ��  � . These nodes are not part of any sub-graph - � .

4. The sub-graphs - � for ! � � � '�������'�! � described in the previous section have a degree 5 at the literal
nodes. These nodes are replaced with rings of size 5 to achieve degree 3 (see Figure 5.9).

Proof of Theorem 14: If
.

is satisfiable, then there is a coherently assigning broadcast schedule with� � - +2  4 �� � 0 � � .
An analogous observation to Lemma 17 for a busy broadcast schedule

�
for - +2  4 is the following

1. Every literal node will be informed directly from the source of its tree;

2. For all
� � � � '������ ' 	 � and for all � � � & '������ ' 0'� it holds

 �)� � � � '������ '�� � �  � � � � �� � � � � 0'�  �
�
0
�" �

3. For ���  � � ( � ,� ,  � ,  � � ( � �� �  � �  � � ( � �� �  � �  � :

� � � � �  � � � 0� � � � �� � � � � ( � ��
�
 �
�
 � � � � ��� � � �

Again literal nodes are defined to be either low, high, or neutral. Clause nodes are either high or neutral.
For the number � of low literals, � of high literals, and �,+ the number of high clauses it holds � � � . There
are � � , resp. ��� + nodes in different chains that are informed later than � 0 � �

. Therefore there is a tree � �
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that informs at least � � � 	 , resp. ��� + � 	 delayed nodes. Using � � it is possible to describe a lower bound of
the time delay caused by � � as follows:

� � � - 2  4 � � � 0 � �
�

�� � ��� � � � � � �	  '�� � � � � +	  �
�

Let us assume that at least
! � clauses are unsatisfied for every assignment. The constant fraction of�

-leaves of trees � � can be seen as an additional set of unused literal nodes. Now consider a clause node that
represents an unsatisfied clause with respect to the assignment which is induced by the broadcast schedule.
Then there is at least a high clause node, a neutral clause node connected to a low literal node, or a neutral
clause node connected to a high literal node.

Since each literal node is chained to at most one clause node, this implies

! � � � � + � � � � � � + � � � �

Note that � � � � � � . These observation combind with Lemma 20 now imply

� � � - +2  4 ' � � � '������ '�� � � � � � 0 � �
�

�� � �
� ! � �� 	  � � 0 � � � 0

for some � � & . Since for the set of nodes
�

of -3+2  4 it holds  �  � � � � � ����� � � it is sufficient to choose �
as a non constant polynomial of � . �

Proof of Theorem 15: We start to combine the reduction graph of the preceding theorem with a ternary
pyramid (see Fig 5.3). The single source � � is the top of the pyramid. The

	
base nodes have been

previously the sources � � '�������' � � . Note that the additional amount of broadcast time in a pyramid is� 	 � � for
	
� �

nodes and � 	 � �
for one node for any busy broadcast schedule. Thus, the former sources

are informed nearly at the same time.
For the choice � � � � �	 �� � �

the number of nodes of the new graph is bounded by � � � � � . The broadcast

time increases from � � � � � � �
of - +2  4 to � � � �

and the indistinguishable difference remains � � � ����� � �
.

�

5.7 Conclusions

The complexity of broadcast time is a key for understanding the obstacles to efficient communication in
networks. This article answers the open question stated recently by [BNGNS98], whether single source
broadcasting in the Telephone model can be approximated within any constant factor. At the moment, the
best upper bound approximation ratio for broadcast time is known

���������  �  � [BNGNS98] and as a lower
bound we state a factor of �� � � . For this problem of the multiplicative approximation is still wide open
and there is a new unpublished result of Elken and Kortsartz [EK01] which improves this bound to � � �
under the assumption

��� �
DTime

� 	 � � 	 ��� � � � .
Theorem 13 closes the gap for the additive approximation. In [KP95] an additive

��� � 	�� -approximation
algorithm was presented for general graphs with

	
nodes. Here, we present a lower additive bound of� � � 	�� .

It is possible to transfer this result to bounded degree graphs. But the reconstruction of sub-graphs with
large degree decreases the lower bound dramatically. Nevertheless, for ternary graphs with a single source
this paper improves the inapproximability difference from

�
[JRS98] up to � ����� 	 . For the approximation

factor of such graphs little is known so far. The upper bound is a constant factor and Theorem 15 implies a

lower bound of
�
� �

��	 �� �� � � . So matching upper and lower bounds remain unknown.

From a practical point of view, network structures are often uncertain because of dynamic and unpre-
dictable changes. And if the network is static, it is hardly ever possible to determine the ratio between
switching time on a single processor and the delay on communication links. But even if these parameters
are known as constants like in telephone model of broadcasting, these results show that developing a good
broadcast strategy is a computationally infeasible task.



Chapter 6

Randomized Rumor Spreading

6.1 Introduction

In this chapter we investigate the problem of broadcasting information in a processor network from a
different view. Unlike as in the preceding chapters an interconnection network allows arbitrary point-to-
point communication. The message to be passed will be called rumor to emphasize the specifics of this
communication model. We investigate the problem of spreading rumors in a distributed environment using
randomized communication. Suppose

	
players exchange information in parallel communication rounds

over an indefinite time. In each round � , the players are connected by a communication graph - � generated
by random phone calls as follows: each player � selects a communication partner � at random and � calls� ; two players � and � are connected by an edge in - � if � calls � in round � . Rumors can be started in any
round by any player and can be transmitted in both directions along the edges in the graph - � in round � .
The goal is to spread the rumor among all participating players using a small number of rounds and a small
number of transmissions.

The motivation for using randomized communication is that it naturally provides robustness, simplicity,
and scalability. For example, consider the following so-called push algorithm. Starting with the round in
which a rumor is generated, each player that holds the rumor forwards it to a communication partner
selected independently and uniformly at random. The distribution of the rumor is terminated after some
fixed number of

��������� 	��
rounds. At this time all players are informed with high probability. The term

with high probability (w.h.p.) means with probability at least
� � ��� 	 4 � � for an arbitrary constant � � & .

Clearly, one can also inform all players in
��������� 	��

rounds using a deterministic interconnection of
constant degree, e.g., a shuffle network (For an overview of deterministic information dissemination we
refer to [HHL88] or [HKMP96]). The advantage of the randomized push algorithm, however, is its inherent
robustness against several kinds of failures compared to deterministic schemes that either need substantially
more time [GP96] or can tolerate only a relatively small number of faults [LMS92]. For example, consider
node failures in which a player (different from the player starting the rumor) fails to communicate or simply
crashes and forgets its rumors. Obviously, when using a sparse deterministic network, even a single node
failure can result in a large fraction of players not receiving the rumor. When using the randomized push
algorithm, however, the effects of node failures are very limited. In fact, it is not difficult to prove that.

node failures (specified by an oblivious adversary) result in only
���/. �

uninformed players with high
probability.

Unfortunately, the push algorithm produces a large communication overhead. In fact, it needs to for-
ward each individual rumor � ��	 ����� 	��

times before all players are informed, in comparison to a determin-
istic scheme which requires only

	
� �

transmissions. It seems that the large number of transmissions is
the price for the robustness. This gives rise to the question whether this additional communication effort is
a special property of the above push algorithm or is inherent to rumor spreading using random phone calls
in general.

63
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6.1.1 Background

The rumor spreading model is originated in the mathematical modeling to the spread of an infectious
disease. In 1926 McKendrick developed the first stochastic theory in 1926. An overview over such models
is presented in [Bai75]. Standard mathematical models of viral infection characterize individuals by a
small number of states, e.g. infected, uninfected, immune, etc. The push model considers uninfected and
infected individuals. In the first round one individual is infected. Every infected individual contacts a
random partner of the whole group (possibly being already infected) and transmits the disease.In 1987
Pittel [Pit87] analyzed for this model that the expected number of rounds � � to infect all

	
participants is

bounded by �,� � ����� 	
�
� � 	 �

��� � �

with probability converging to
�
.

Demers et al. [DGH 
 87] introduced the idea of using so-called epidemic algorithms for the lazy update
of data objects in a data base replicated at many sites, e.g., yellow pages, name servers, or server directories.
In particular, they propose the following two concepts:

� Anti-entropy: Every site regularly chooses another site at random and resolves all differences by
exchanging the complete data base contents.

� Rumor mongering: When a site receives a new update it becomes a “hot rumor”. While a site holds
a “hot rumor”, it periodically chooses another site at random and sends the rumor to the other site.

It turns out that anti-entropy is extremely reliable but produces such an enormous amount of communication
that it cannot be used too frequently. The idea of rumor mongering is to exchange only recent updates,
thereby reducing the communication overhead significantly. In practice one might use a combination of
both concepts, that is, using rumor mongering frequently and anti-entropy very rarely in order to ensure
that all updates are recognized by all sites. In this paper, we solely investigate algorithms implementing the
rumor mongering concept.

The original idea for rumor spreading was to send rumors only from the caller to the called player
(push transmission) [DGH 
 87]. Several termination mechanisms deciding when a rumor becomes “cold”
so that it transmission is stopped were investigated. All these algorithms share the same phenomenon:
the fraction � of players that do not know a particular rumor decreases exponentially with the number of
transmissions � (i.e., messages that contain this rumor). So-called mean field equations (implicitly assuming
that � is sharply concentrated around its mean value E

� � � ) lead to the conjecture that � � # ��! � � � � 	�� for
all variants of the push algorithm that have been investigated. In other words, a push algorithm needs
� ��	 ����� 	��

transmissions for sending a rumor to all players.
A further idea introduced in [DGH 
 87] is to send rumors from the called to the calling player (pull

transmission). It was observed that the number of uninformed players decreases much faster using a pull
scheme instead of a push scheme. This kind of transmission makes sense if updates occur frequently so
that (almost) every player places a random call in each round anyway. Mean field equations lead to the
conjecture that � � #���! � � � � � for pull schemes. Clearly, this double exponential behavior implies that only
� ��	 � � � ����� 	��

transmissions are needed if the distribution of the rumor can be stopped at the right time.
Such a termination mechanism, however, is not presented. Instead, the authors predict that � ��	 �� ����� 	��
transmissions are sufficient for some other specific termination mechanisms.

The work of Demers et al. initiated an enormous amount of experimental and conceptual study of
epidemic algorithms. For example, there is a variety of research issues like consistency, correctness, data
structures, and efficiency [AAS97, GL91, GPP93, LLSG92, RGK96]. Recent theoretical work concentrates
on the robustness against Byzantine failures [MMR99]. In this paper, we concentrate only on the efficiency
of these randomized algorithms. In particular, we study their time and communication complexity using a
simple model for the underlying randomized communication.

6.1.2 The Random Phone Call Model

Let
�

denote the set of players. The communication graph -3� � � � '�	 � � � � � �
of round � � �

is
obtained by a distributed, randomized process. In each round, each player � chooses a communication
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partner � from
�

at random and � calls � . Unless otherwise stated, we assume that all players choose their
communication partners independently and uniformly at random from

�
.

Even though we envisage an application (such as the lazy transmission of updates to distributed copies
of a database) in which rumors are constantly generated by different players, our analysis is concerned
with the distribution of a single rumor only. We focus on the lifetime of the rumor and the number of
transmissions rather than the number of connections established because the latter cost is amortized over
all the rumors using that connection.

In round � , the rumor and other information can be exchanged in both directions along the edges of - � .
Whenever a connection is established between two players, each one of them (if holding the rumor) has
to decide whether to transmit the rumor to the other player, typically without knowing whether this player
has received the rumor already. Regarding the flow of information, we distinguish between push and pull
transmissions. Assume player � calls player � .

� The rumor is pushed If � tells � the rumor.

� The rumor is pulled if � tells � the rumor.

We do not limit the size of the information exchanged in any way. Each information exchange between
neighboring players in a round is counted as a single transmission (We point out that our algorithms only
add small counter values to rumors, whereas our lower bounds hold even for algorithms in which players
exchange their complete history whenever the rumor is sent in either direction). Communication inside
each round, however, is assumed to proceed in parallel, that is, any information received in a round cannot
be forwarded to another player in the same round.

The major issue that has to be specified by a rumor spreading algorithm is how players decide whether
the rumor shall be forwarded to a communication partner. An algorithm is called distributed if players
make these decisions using only local knowledge. In other words, the decision whether a player sends
a message to a communication partner in round � depends only on the player’s state in that round. The
initial state of a player is defined by the player’s address, the number of players, and possibly a random bit
string. The state of a player in round � � �

is a function of its initial state, the addresses of its neighbors in
the communication graphs - � '������ '1- � , and the information received in rounds

�
to � � �

. (For our lower
bounds we allow the state to depend in addition on a globally known round number and the birth date of
the rumor considered.)

Finally, an algorithm is called address-oblivious if a player’s state in round � does not depend on the
addresses of the neighbors in - � but only on the number of neighbors in - � . (The state can still depend on
the addresses of neighbors in - � '�������' - ��4 � .) We point out that all rumor spreading algorithms proposed
by Demers et al. [DGH 
 87] are address-oblivious.

6.1.3 New Results

We prove that the number of transmissions can be reduced significantly when the rumor is sent in both
directions, that is, when using push and pull rather than only push operations. We introduce a simple
push&pull algorithm spreading the rumor to all players in

��������� 	��
rounds using only

����	 ����� � � � 	��

transmissions in comparison to � ��	 ����� 	��
as used by the push algorithm. For this analysis it is necessary

to analyze the performance of the plain push algorithm and pull algorithm step by step. It turns out that
these algorithms need � � 	 ����� 	��

message to inform all players with high probability, i.e., with probability� � 	 4 � for some constant � � �
. Both algorithms need time � ������� 	��

.

Theorem 19 The simple push&pull-scheme informs all players in time
� � �
�
	
�
��� � � � ����� 	��

using����	 ����� � � � 	��
messages with high probability.

The drawback of the simple push&pull-algorithm is that its success heavily relies on a very exact,
global estimation of the right termination time. This mechanism is very sensitive to any kind of errors that
influence the expansion of the set of informed players.

Scott Shenker proposed a distributed termination mechanism using a counter indicating indirectly the
spread of the rumor. We show that this min-counter algorithm performs as well as the push&-pull algo-
rithm:
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Theorem 20 The min-counter algorithm informs all players in time
� � �
�
	
�
��������� ����� 	��

using����	 ����� � � � 	��
messages with high probability.

In order to improve the robustness, we devise a distributed termination scheme, called the median-
counter algorithm, that is provably robust against adversarial node failures as well as stochastic inaccura-
cies in establishing the random connections.

In particular, we show that the efficiency of the algorithm does not rely on the fact that players choose
their communication partners uniformly from the set of all players. We show that the median-counter
algorithm takes

��� � � � 	��
rounds and needs only

��� 	 ����� ����� 	��
transmissions regardless of the probability

distribution used for establishing the random connections as long as all players act independently and each
player uses the same distribution � � � � � & ' ��� to select its communication partner. For example, this
allows sampling from an arbitrary address directory (possibly with redundant addresses and some non-
listed players as in a telephone book). In other words, the algorithm can be executed even without global
knowledge about the set of players.

Theorem 21 Assuming an arbitrary distribution � and up to
.

node failures as described above, the
median-counter algorithms informs all but

���/. �
players in

����� � 	�� rounds using
����	 ����� � � � 	��

trans-
missions with high probability.

In addition, we provide lower bounds assuming that the communication partners are selected using
the uniform probability distribution. Both the simple push&pull algorithm as well as the median-counter
algorithm are address-oblivious and use only

��� 	 ����� � � � 	��
transmissions. We prove a corresponding

lower bound showing that any address-oblivious algorithm needs to perform � � 	 � � � ����� 	��
transmissions

in order to inform all players. We point out that this bound holds independently of the number of rounds
executed.

Theorem 22 Any address-oblivious algorithm guaranteeing that all but a fraction � of the players receive
the rumor with constant probability needs to perform � ��	 ����� ����� �

�
�

transmissions in expectation.

The situation changes substantially when considering general (i.e., possibly non-address-oblivious) al-
gorithms. Allowing � � 	 ����� 	��

rounds, an algorithm that exploits the addresses of communication partners
can spread the rumor using only

	
� �

transmissions. Here is a simple example. The player initiating the
rumor simply waits until each other player appears as communication partner for the first time and then
forwards the rumor to this player. Clearly, this is not a practical algorithm as it takes too many rounds.
Nevertheless, it illustrates the additional possibilities when the addresses of communication partners can
be exploited.

The above example leads to the question of whether general epidemic algorithms can spread a rumor
in a small number of rounds while using only a linear number of transmissions. We give a lower bound
answering this question negatively. In particular, we show that any randomized rumor spreading algorithm
running for

���������
	��
rounds requires 	 � 	�� transmissions.

Theorem 23 Any distributed rumor spreading algorithm guaranteeing that all but a fraction � � � � of the
players receive the rumor within

����� � 	�� rounds with constant probability needs to perform 	 ��	�� trans-
missions in expectation.

This lower bound holds regardless of the amount of information that can be attached to the rumors.
For example, players might always exchange their complete communication history whenever the rumor
is transmitted in either direction. Thus, there is a fundamental gap between rumor spreading algorithms
based on random interconnections and deterministic broadcasting schemes.

The rest of this chapter is organized as follows. We start in the next section with an extensive analysis
of the push, pull, push&pull-algorithm. In section 6.3 we present the min-counter and in section 6.4 the
med-counter algorithms. Then, in section 6.5 we prove the lower bound for the number of transmission in
the case of oblivious communication. In the last section of this chapter we present the general lower bound
for number of transmissions in this communication model.
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Push algorithm for player � and rumor �
begin

for each round � do
if � knows � and age

� � � � � � � � 	 then
age

� � � �
age

� � � �
�

� � �
call

� � ' � �
Send the rumor to � � (i.e., � pushes the rumor)

fi
od

end.

Figure 6.1: The push algorithm.

6.2 The Advantage of Push&Pull

First, let us explain the differences in the propagation of the rumor obtained by push transmissions on the
one hand and pull transmissions on the other hand.

6.2.1 The Push Scheme

Consider a push scheme in which every informed player, in every round, forwards the rumor to the player
it calls until all players are informed. We identify the players by the numbers

� 	 � � � � � '�������' 	 � . Let
call

�
� ' � � be the player that � calls in round � . Wlog. player

�
is informed at the beginning. We attached

to the rumor the age of the rumor and denote this by age
� � � . When the rumor emerges its age is set to & .

Figure 6.1 exemplifies the push algorithm and Figure 6.2 shows how the push scheme spreads a rumor.
Pittel [Pit87] proved that for � � �

�
� � � with probability 1 all players will be informed. We will show

that a constant choice of � suffices to ensure high probability, i.e., probability
� � 	 4 � �

for some constant
� + .

Let the random variable � � denote the number of informed players in round � . Before the first round
we have � � � �

. Formally the random variables � � ' � � ' � � '������ describe a Markov process: there is a finite
set of states

� 	 �
and the transition probability � push

� � ' � � is the same for each round. � push
� � '� � denotes the

probability that � players are informed in the next round under the assumption � players are informed in
this round. We can compute this probability � push

� � ' � � using the equality

� push
� � ' � � � � � � � '� � � ' � � if � � �

& else �

The term � � � ' � ' � � denotes the probability that � informed player hit � uninformed players with
�

calls.
The following recursion for ��� � 	 � , � � � � �

and
� � �

describes this term.

� � � '1& '1& � � � ' � � � ' � '1& � � &3' � � � '1& ' � � � �
	 � � � � ' &�' � � � � '

� � � ' � ' � � �
	
� � � � � �

	 � � � � ' � � � ' � � � �
�
� � �
	 � � � � ' &�' � � � � �

Given this Markov process for each given
	

the speed of convergence can be computed accurately using
standard techniques as described in [Sin92]. But this approach does not have an obvious generalization for
all

	
and in fact we use a different approach.

It turns out that the behavior of � � can rather accurately described if we divide the information spreading
process into the following phases (An overview can be found in Figure 6.3).

1. Startup: � � � ! ����� 	
We want to estimate the number of rounds necessary to leave this phase with high probability. We
will use the following Lemma.
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Figure 6.2: A 16 processor network spreading a rumor using the push scheme.
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Figure 6.3: The growth of the number of informed players in the push scheme.

Lemma 21 If all � � ! ����� 	 informed players only push their information for � subsequent rounds,
then there are at least � new informed players after with probability

� � ����	 4 � � �
, for � � � 
 �

�



�

� 4 � .

Proof: Each of the � players calls � addresses. We neglect the information spreading impact of
newly informed players during these � rounds.

For each round we observe one of the following possibilities for each player.

(a) He can address one of the � originally informed player. This occurs with probability � � 	 .

(b) He tries to push to the same player as another informed player. The probability of this event is
at most � � 	 .

(c) He hits a player that was informed in a preceding round. Since the phase ends with � additional
informed players, this probability is bounded by � � 	 , too.

Therefore it holds, that in every round a player successfully informs a new one with probability of at
least

� � � � � 	 . The probability that at least
� � � � � � pushes fail is therefore at most

� �
�� " � � 4 �

�
� ��  � � �	  � � � � � �	  � � 4 � � � � � � � � � � � � �	  � � 4 �

� � ! ����� 	 � � � � � � � � �	  � � 4 �
� � ! ����� 	 � � � � � ! ����� 	�� � � 4 �

	 � � 4 � 4 � �
� � ! ����� 	 � � � � � ! ����� 	�� � � 4 � 
 �	 � �



�

� �
� �
	 � �  

�
Hence, the number of informed players doubles after every � rounds with probability

� � ����	 4 � � �
.

Therefore after � ����� ����� 	 � � � � � ! rounds the phase is passed with probability
� � ����	 4 � �



� �

.
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2. Exponential growth: ! ����� 	 � � � � � �
It turns out that in every round the number of informed players increases nearly by a factor two with
high probability. In particular we can prove the following lemma.

Lemma 22 If �	� � ! � � � 	 '������ ' 	 � � � players are informed in a round of the push algorithm, then
for all � � & there are at least � new informed players in the next round with probability

�
�
��� 	 4 � �

if ! � ��� � �
, where

(a) if � � 	 � � �
we have � � � � � � � �	 ��� � �

(b) and otherwise we have � � � � � � �
� �� 
 � �

�
� � ����� 	 � �� � � � � � � 	 .

Proof: The probability that one of the � players will push to an uninformed player and no other
player pushes to this player in the same round is at least

�
�
� �� . Hence, the probability that a push

succeeds independently from the behavior of all other players is at least this probability
�
�
� �� .

Hence, we can use a binomial distribution to estimate the probability that more than � � � players fail
to inform new players. Therefore an upper bound of this probability is given by the following term.

�
�� " � 4 4

�
� �  � � �	  � � � � � �	  � 4 �

(a) If � � � 	 , let � � � � � � �	 ��� � � it holds

�
�
� " � 4 4

�
� �  � � �	  � � � � � �	  � 4 � � �

�
� " � 4 4

�
� �  � � �	  �

� � � � � � �	  � 4 4
� � � � 4 ,� 	 ��� � � � 4 4 �� � � 4 ,� �� ��� 	 4 � � � 
 � �

(b) For ��� � 	 , let � ��� � � � � � � � � � �� � � � � � � �� � � 4 � . Let ��+ � � � � � ����� 	 � � �
� � �
� 
 � � . Now

observe for all
� � � � � + � � �� 
 � � :

� ��� � � �� ��� � �
� � � � � � �

���
�
� � ��	 � � � �

� � � � � � � �� � 	
�	� � �

�
� � �

� � �� 
 � �
� � �� � �� 
 � �

��	
� � � �

� � 	 � �	� � � � � �� � � ��	 � � � � � ��
Note that � � � � � + � � �

and therefore � � � � � � � � � � � �� � .

�
�
� " � 4 4

�
� �  � � �	  � � � � � �	  � 4 � � ��

� " � 4 4 � ��� � � � 	 4 �
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�

Until � � �	 ��� � players are informed, the basis of the exponential growth is two. For this note that
for � � � � 	 :

� � 
 � � ���
� � � � � �	

� � � �  � � � � � 	

� � �
� � � �

� � � 	
�
�	 �� � � � ����� 	

� �
�

� ���
� � � �

� � � 	
�
�	 �� � � � ����� � 	

	
�

� � � � �
� � � �

����� 	  
Here the first inequality holds with high probability, while the last inequality holds almost every-
where, i.e., for all

	 � 	 � for some
	 � . Now observe that applying this recursion for

� � � 	
rounds

yields:

� � 

	 ��� � �

� � � ������ 	  
	 ��� �

� �

�
�
� � �� � � � 	  

	 ��� � 	 � �
� � 4 �� 	 � �

Of course this number of informed players is larger than the precondition allows for the inequality.
However it is guaranteed that after

����� 	
steps at least �	 ��� � players are informed with high probabil-

ity.

In the following rounds we can the second bound of Lemma 22

� � 
 � �
�
� � � � � � ����� 	 � � � �� � � �

and after some
��������� ����� 	��

rounds at least � � players are informed with high probability.

3. Saturation phase: � � � � � � 	

At about this time the exponential growth of the set of informed players stops. Let us consider the
set of uninformed players � � � � 	

� ��� . Once a constant portion of the players are informed, this set
shrinks by a constant factor in each round. At the end of the rumor spreading process this factor is
about

� � � � # since the fraction of players that do not receive a call in a round is given by � � � �� � �
and thus quickly converging to

��� # . Thus, the shrinking of the uninformed players takes at least
� � 	

rounds. Pittel [Pit87] showed that this bound can be achieved with probability 1. But if we want to
ensure a higher probability of

� � 	 4 � for some � � �
and consider the case that all but one players

are informed, then a straight-forward calculation shows that we need at least � � � 	 rounds for this
simple task.

For an upper bound, note that if � � players are informed every uninformed player is informed in
a round with probability

�
� . Hence, the probability of remaining uninformed after � � � 	 rounds

is bounded by � �� � � 	 �� � � 	 4 � 	 ��� � � �
�
�
. Clearly, all players are then informed with probability� � 	 4 � 	 �� � � �

�
� 4 � .
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Pull algorithm for player � and rumor �
begin

for each round � do
if � knows � and age

� � � � � ����� 	 then
age

� � � �
age

� � � �
�

for all � +�� called � �*' � � do
Send the rumor to � + (i.e., � + pulls the rumor)

od
fi

od
end.

Figure 6.4: The pull algorithm.

6.2.2 The Pull Scheme

Now consider a pull scheme in which only called players send the rumor towards the calling players. Let
called

�
� ' � � be the set of player that call � in round � . Again player

�
is informed at the beginning and

we attach the rumor’s age to the transmitted message starting with & when the rumor emerges. The pull
algorithm is shown in Figure 6.4 and in Figure 6.5 a rumor is spread by this algorithm.

Again we denote by � � the number of informed players in round � . Again we describe the corresponding
Markov process with its transition probability � pull

� � '� � , i.e., the probability that if � players are informed
in round � � �

under the condition � were informed in round � . We have

� pull
� � '� � �

� � � 	
� �� � �  �

� �
	 � � 4 � � � � � �

	 � � 4 � if � � �
& else �

We can derive the following Lemmas directly from this equation.

Lemma 23 If � players are informed and all � � � 	
� � uninformed players only pull their information in

a round, then for all � � � � , � � & there are at least
� �
�
� � ��� � � � new informed players in the next round

with probability
� � � � 4 � ���

� .

Proof: An uninformed player calls an informed player with probability � � 	 . The number of new informed
players can be described by a binomial distribution � � � ' � � 	�� . Therefore the probability that at most �
players will be informed is exactly

4
� � " �

�
� �  � �	 � � 4 � � �	 � �

Let � ��� � � � � � � � � �� � � 4 � � �� � � . Then it holds

� ��� � � �� ��� � � � � � � � �
� ��� � � �
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Figure 6.5: A 16 processor network spreading a rumor using the pull scheme.
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Let
� � � � � � �� � � ��� � � �

. Then it follows� ��� � � �� ��� � � � � � � � � � � � �
� � � � � �

� � ��	 � � � � � � ��� � �
� � � � � � � �

�
	
� � � � � � �
� � � ��� �

�
�
� � ���
���

�
�

�
���

Therefore � � � � � � � � �
� �

� � and we get:

4�4 �

� � " � � ��� � � � �
� �

� �

�

�

Lemma 24 For ! � & , if all � � 	 4 � uninformed players only pull their information for some � rounds,
then all players are informed with probability

� � 	 4 � � 4 � � � .

Proof: The probability that an uninformed player makes � continuous calls to uninformed players is
	 4 � � .

So the overall probability that any player remains uninformed after � rounds is at most
	 � 	 4 � � �

Again we observe that the rumor spreading process can be accurately described by three phases.

1. Startup: � � � ����� � 	 .

Note that there is a constant probability of
� � � ��

� � � �� that a player receives no call by another
player in a round. Therefore, we need some � ������� 	��

rounds to guarantee that a second player
receives the rumor. Further note that the standard deviation is at least � ������� 	��

, too. The Chebyshev
inequality implies that the startup phase must last at least some � ����� 	 rounds.

Now we prove that
���������
	��

rounds suffice to leave this phase with high probability.

If � � ����� � 	 players are informed, then the probability that an uninformed player calls this player is� � 	 . This happens independently from the calling patterns of the other informed players. Therefore
the probability that at most � players fail to call this set

�
of � informed players within some 0 ��

�
	 � ���� rounds is given by the following term.� 4 �

� � " �
� � � �	 � � � 4 � � �	 � � � �	 0  � � � � � � �	 � � � 4'� � �	 � � � �	 0  

� � � � � � �	 � � � ��� � 4 � �� � � �	 � � ��	 0 � �
� �

	 � � 4�� � 
 � �� 
 � 	 � � 4�� 	 � � 
 � 	 � � 
 � 	 � �
� � �

	 � � 4�� � 
 � �� 
 � 	 � � 
 � 	 � �
� � 4�� � � � 	 � � 
 � �� 
 � 	 � � 4'� 	 � � 
 � 	 � � 
 � 	 ���� � 4 ��� � �� � 	 4 � � �

The last inequality follows since � � � � � � �� � � � � � �*� � � 	 � � � � 	 � � � � 0 � � � � 	 and ��0 � � � � � 	 .

The reason why
���������
	��

rounds suffice to leave this phase is the following. To inform two players
we need � � � 	 rounds with high probability. The next four players are informed within

� 	 � �� rounds,
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then eight players within
� 	 � �� rounds, and so forth. Hence the overall number of rounds is � � � � 	

with probability
�
�
	 4 � � � 
 � .

2. Exponential growth:
�����
�
	 � � � � �� 	

Until some
	 � � � � 	

players are informed the growth is exponential to the basis 2. Then it slows
down a little bit. From Lemma 23 it follows that in every round additional ��� � � 4 � � ��

� �
� �

�
� �

players are informed with probability
�
�

� � 4 � � �
� . We choose � � �	 ��� � and � � � � � � � 	 yielding the

probability

�
�

� �
���

� �

�
� �

�
� �
�
�	 �� � � � 	 �� � ��	 �� � � �

� � 4 � 	 �� � � � � 	 � �
�
	 4 � � 	 � � 
 � �

With this probability the number � � of informed players increases as follows.

� If � � � �	 ��� �
� � 
 � � � � � � �

� �
�

���
	 � � � ��� � � � � � � � � � � �

����� 	  �

From the same argument as in the exponential growth phase of the push algorithm it follows
that this sub-phase lasts at most

� � � 	
�
��� � �

rounds.
� If

�	 �� � � � � �� 	

� � 
 � � � � � � �
� � � ���	 � � � ��� � � � � �� � �

�
� � ������ 	  �

Hence, this sub-phase requires at most
��������� ����� 	��

rounds.

3. Quadratic shrinking: � � � �� 	

From this time on, the pull algorithm has an advantage against the push algorithm as the fraction
of uninformed players roughly squares from round to round. This is because in a round starting
with � � � 	

� � � uninformed players, each individual player has probability
� � �,� � 	 to receive

the rumor. Here the probability of staying uninformed is �,� � 	 , resulting in an expected number of� � � � 	�� � 	 uninformed players at the end of the round. Thus, we can expect that the shrinking phase
only takes � ������� ����� 	��

rounds so that only � ��	 ����� ����� 	��
messages are sent during this phase.

We can prove this estimation in two steps:

� � � � � 	 ����� � 	 :
We apply Lemma 23 and choose � � �� � and � � � � 	 � � � 	 and get with probability

� �
� � ��� � �

�
� � � � 	 � � � �

� 	  �
� � 	 ��� �

� � � 	 4 � � 	 � � 
 ,�
the following inequality

� � 

� � � � � � � � � � � �	 � � � ��� � � �

� � �
� � �	 � � � �

� �	 � � �
� � � � � �	

�
�
�

�
����� � 	 �

�� � � 	  
� � � � � � � � �	

Note that
� � � � ,� � � � � �� � � . Hence, after

� � � ����� 	
rounds the number of uninformed players is

smaller than � 	 ����� � 	 .
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Figure 6.6: The growth of the number of informed players in the pull scheme

Push&Pull algorithm for player � and rumor �
begin

for each round � do
if � knows � and age

� � � � � ����� then
age

� � � �
age

� � � �
�

for all � + � called � �*' � � � � call � � ' � � � do
Send the rumor to � + (i.e., � + pushes and pulls the rumor)

od
fi

od
end.

Figure 6.7: The push&pull algorithm.

� � � � � 	 ����� � 	 :

Lemma 24 shows that here some constant rounds suffice to inform all players with high proba-
bility.

Informing all players does not necessarily mean that the pull algorithm stops. Recall that because of
the uncertain startup the exponential growth starts within a time range � � ������� 	��

. If we want to ensure
that all players are informed after the third phase we have to leave with a fourth phase of length � ������� 	��

where possibly all players are informed and rumors are still being told.

6.2.3 Push and Pull

In order to combine the predictability of the push scheme with the quadratic-shrinking property of the pull
scheme, we simply send the rumor in both directions whenever possible. In detail, our push&pull scheme
works as follows. The creator of the rumor initiates a time-counter with & representing the age of the rumor.
The age is incremented in each round and distributed with the rumor. In every round every informed player
pushes and pulls unless the age of the rumor is higher than � ����� � � � �

�
	
�
���������
� � � 	��

. Figure 6.7 shows
the algorithm.

To prove Theorem 19 we need the following Lemma.
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Lemma 25 If � informed players push and pull their information in a round, then for all ��� & with
probability

�
�
����	 4 � � there are at most � � � �� � � � � � 	 new informed players who are informed via push

and pull, if � was the number of uninformed players getting information from a pull.

Proof: The probability that an informed player pushes to one of the � players is �� . The probability that�
players out of the � players get a call from the � informed players is smaller than the probability that �

informed players can call
�

addresses of � , since some calls can produce the same address. The probability
that more � of the � players get a push is smaller than�

�
� " 4

� � �  � �	 � � � � � �
	 � � 4 � �

Let � ��� � � � � � � � � �� � � � � � �� � � 4 � and
� ��� � � � � �� � �

. Then it holds� ��� � � �� ��� � � � � � � � � � ����
�
� � ��	 � � �

� � � � � � � � �� � � � � ��	 � � �
� � � � � � �� � �� � �� ��	 � � �
� 	

�	� �� ��	 � � �
� �� �

Therefore � � � � � � � � 4 � and thus�
�

� " 4 
 � 	 ��� �
� � �  � �	 � � � � � �	 � � 4 � � � 	 4 � �

�
Now we prove Theorem 19 which states:

Theorem 19 The simple push&pull-scheme informs all players in time
�����
�
	
�
���������
� � � 	��

using
��� 	 � � � ����� 	��

messages with high probability.

Proof: We combine the arguments used for the push-algorithm and the pull-algorithm. Let
� � be the

set of informed players and � � the set of uninformed players at the end of round � . Define � � �  � �  and
� � �  � �  . We distinguish the following phases.

1. The startup phase starts in the round in which the rumor is created and ends with the first round
after the execution of which there are at least

����� � 	 informed players for the first time. At the
beginning of the first round only one player holds the rumor. Alone the push-communication ensures
that we need at most some

��� � � � ����� 	��
rounds to inform

� � � � 	 players with high probability. This
follows directly from the analysis of the startup phase and the exponential growth phase of the push
algorithm.

2. The exponential-growth phase ends when at least �	 ��� � � players are informed, using the effect of
pushing and pulling. From Lemma 23 it follows that in each round additional

� � � �� � � � � � � �
players are informed with probability

� � � � 4 � � �
� from a pull only. We choose � � � �	 ��� � and � � �

� � � �
� � � � � 	

. So, the number of informed players by a pull is at least
� � � �� � � � � � � � � � � � � � �	 ��� � � .

Let ��� be the number of players informed by pulls. If � � � � � � then the number of players has tripled
and the performance of this phase follows easily. We will now assume � � � � � � :

(a) � �� � 	

Lemma 22 predicts that the number of players informed by pull-operations is at least ��� � � ��	 ��� � � with sufficiently high probability. From Lemma 25 it follows that the number ��� 
 � of
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Figure 6.8: The growth of the number of informed players in the push&pull scheme

players informed by a push and a pull-operation can be bounded by is � � � � �� � � ����� 	 �
� � �� � � � � �	 ��� � � � � � �� � � �

� � �	 ��� � � . Hence, the overall number of informed players in the next round
can be estimated by

� � 
 � � � � � � �
�
� � ������ 	  � � �

�
� �

�
����� 	  � � ���� 	 � � ���

����� � 	 � � � �
�
� � ������ 	  �

(b) � �� � 	

From Lemma 23 it follows that the number of players informed by pull-operations is at least

� �
� � � � � �� 
 � � � � � � ����� 	 with sufficient high probability. From Lemma 25 the following bound

holds for the number nodes informed by push and pull: � � � � �� � � ����� 	 � � � ��� � � ����� 	 and
therefore

� � 
 � � � � � � �
�
� � �

����� 	  � � �
�
� �

� � �	
� � � �  � � � ��	 � � � � � 	 � � �

�
� � �

����� 	  �

For termination mechanism based on the counter it is important to ensure that this growth phase is
not faster than

� � �
�
	
� � ������� ����� 	��

. Clearly, in every round at most � � additional players can be
informed by push-communication. Now we estimate the number � � of players calling a player in� � . The probability is independently given by � � � 	 , describing a binomial distribution � � � � ' � � � 	�� .
Therefore we can use the Chernoff bound to estimate the following probability for � � � � � � � 	

:

P

� � � � �
�
�

�
����� 	  � ��� � �

4 � �� � ��� � � � , � ,� � ��� � � � � 4 ,� 	 �� � � � 	 4 � �
The upper bound of

� � �
�
	
�
���������
� � � 	��

on the number of rounds follows immediately.

3. Between the exponential growth and the quadratic shrinkage phase we introduce a short intermedi-
ate phase which ends when at least �� 	 are informed. We consider only the influence of pulls. Since
the pull algorithm is still in its exponential growth phase this phase lasts some

��� � � � ����� 	��
rounds

with high probability.
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4. The quadratic-shrinking phase ends with the round after the execution of which there are at least� 	 ����� � 	 uninformed players for the last time. Even if we only take into account pull transmissions
we obtain (by following the arguments explaining the general properties of pull algorithms) that

E
� � �	 � � � � ��4 �	 � � �

Now from the analysis of the quadratic-shrinking phase of the pull algorithm we already know that
we need

���������
� � � 	��
rounds until the number of uninformed players drops from

�� 	 to � 	 ����� � 	
with high probability.

5. In the final phase, we inform the few remaining uninformed players. Since the number of informed
players in this phase is guaranteed to be larger than

	
� � 	 ����� � 	 , each uninformed player has at

least probability 	
� � 	 ����� � 		 � �

�
����� � 	

� 	
to receive a rumor due to a pull transmission in each round of this phase. Consequently, we need
only a constant number of rounds until all players are informed with high probability.

For a round � a simple upper bound for the number of messages caused by push-communication is � � , while
a straight-forward upper bound for the number caused by pull-communication is � � 
 � . Note that in phases
2 and 3 the number of informed players � � increases exponentially, bounding the number of messages by����	��

. The quadratic shrinking phase starts in round
� � �
� � � ������� ����� 	��

. In this phase and in the final
phase the maximum number of messages of � � 	��

per round needs to be sent. Because we can accurately
pin down the starting point of these phases we can ensure with high probability that these last two phases
need at most

��� � � � ����� 	��
rounds and therefore

��� 	 � � � ����� 	��
messages. This completes the proof of

Theorem 19. �

6.3 The Min-Counter Algorithm

The push&pull algorithm relies heavily on a very exact estimation of the expansion of the set of informed
players. The algorithm has to be executed for exactly

� � �
�
	
� � ������� ����� 	��

rounds. For example, a
constant fraction of players remains uninformed if the algorithm terminates after

� � � � � ����� �
	

rounds, and
the algorithm uses � ��	 � � 	�� transmissions when terminating after

� �
� �

� � � �
�
	

rounds, for any constant
� � & . A robust algorithm requires a more flexible, distributed termination mechanism that recognizes
when all players have been informed.

Shenker proposed a distributed termination mechanism which is not based on the age of the rumor. Let
� denote the rumor being considered. Each player holds a counter ctr

� �*' � � starting at & if the player does
not know the rumor and we have ctr

� � '�� � � �
if the rumor � emerges at player � . In Figure 6.9 we show

the min-counter algorithm.
We will know prove

Theorem 20: The min-counter algorithm informs all players in time
�����
�
	
�
���������
� � � 	��

using
��� 	 � � � ����� 	��

messages with high probability.

Proof: The information spreading process is the same as in the push&pull algorithm, see Table 6.1. We
show that there is a choice of � such that no counter exceeds � ����� ����� 	 before all players are informed and
that after having informed all players all counters will be larger than � ����� ����� 	 after some � � � � � ����� 	��

rounds.
For this we prove that until at most �	 ��� � � players are informed no player has a counter larger than

����� ����� 	
with probability

� � 	 4 � .
Let

� � � '�� � denote the number of players who have a counter of at least � for � rounds at the end of this
phase. It follows from the strict exponential growth that

� � ��' � ��
	

� � ����� � 	



80 CHAPTER 6. RANDOMIZED RUMOR SPREADING

Min-counter algorithm for player � and rumor �
begin

for each round � do
if � knows � and ctr

� � ' � � � � ����� ����� 	 then� � called
� � ' � � � � call � �*' � � �

for all � + � �
do

Send the rumor to � + (i.e., � + pushes and pulls the rumor)
od

if � learns the rumor � then
ctr

� � '�� � � �
fi
if � knows � and ctr

� � ' � � � � ����� ����� 	 then
if � � + � �

with ctr
� � + '�� � � � ����� ����� 	 then

ctr
� �*' � � � � ����� � � � 	

else if � � + � �
with ctr

� � +/' � � � ctr
� �*' � � then

ctr
� �*' � � �

ctr
� �*' � � � �

fi
fi

od
end.

Figure 6.9: The min-counter algorithm.

Phase Informed players Time Messages Growth Method

Start-up
� � ' ����� � 	 � ���������
� � � 	�� ��������� � 	�� � � 
 � � � � � push

Exponential
Growth

� ����� � 	 ' �	 �� � � �����
�
	 ��� �	 �� � � ��� 
 � � �

� � � �	 ��� � � � � push&
pull

Intermediate
Phase

� �	 ��� � ' �� 	 � ���������
� � � 	�� ����	�� � � 
 � � ��
� � � �	 ��� � � � � pull

Quadratic
Shrinking

��������	��
� ������������� ���������
� � � 	�� ��� 	 �����
� � � 	�� � � � � � �� � ��� � � �� pull

Final Phase
� ��
�� ����������������� ��� � � ����	��

— pull

Table 6.1: The phases of the push&pull and min-counter algorithm.
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for some basis � � ��� �	 �� � . Further, the following the arguments used for the analysis of the push&pull
algorithm holds for this recurrency with high probability.

� �  � 
 �	
�
�
� �

�
����� 	  �

��� � 
 �
� � �  �	  � �

A straight-forward calculation shows that
� �  	 ����	 �� � � �

with high probability.
The other phases last some

��� � � � ����� 	��
rounds, which will be reflected in the appropriate choice of � in

the min-counter algorithm. It remains to show that after all players have been informed all counters exceed
� ����� ����� 	 after some

���������
� � � 	��
rounds. Consider the time point at which all players are informed.

Clearly, all counters are at least 1. Then, in every following round each counter is incremented. Clearly,
after � ����� � � � 	 rounds all counters exceed � ����� ����� 	 .

Note that this algorithm uses only
����	 ����� ����� 	��

messages, since it runs at most some
��� � � � ����� 	��

rounds longer than the push&pull algorithm. �

6.4 The Median-Counter Algorithm

In order to improve the robustness, we devise a distributed termination scheme, called the median-counter
algorithm, that is provably robust against adversarial node failures as well as stochastic inaccuracies in
establishing the random connections. In particular, we show that the efficiency of the algorithm does not
rely on the fact that players choose their communication partners uniformly from the set of all players.

Let � denote the rumor being considered. During the course of the algorithm each player � can be in
one out of four states A, B, C, or D (with respect to � ). State A means the player has not yet received
the rumor. In all other states, the player knows the rumor. When a player is in one of the states B or C it
pushes and pulls the rumor � along every established connection. In state D the player does not propagate
the rumor anymore. Each player in state B holds a counter ctr

� � '�� � . We say a player � is in state B- � if
ctr

� � ' � � � � . These counters are irrelevant in other states. The transitions between different states are
defined as follows.

We first give an informal description of the median-counter algorithm shown in Figure 6.10.

� State A: The player � does not know � . (For the purpose of analysis, we assume that ctr
� � '�� � � &

in this state.) If a player � in state A receives � only from players in state B then it switches to state
B-1. If a player in state A receives � from a player in state C then it switches to state C.

� State B-m: The player � knows � and ctr
� � ' � � � � . (The player injecting the rumor starts in state

B-1.)

Median rule: If during a round a player � in state B- � receives � from more players in state B- � +
with � + � � than from players in state A and B- ��+ + with � + + � � then it switches to state B-

� � �� �
, i.e., increases its counter. There is one exception to this rule. If ctr

� � '�� � is increased to ctr ��� �
(where ctr ��� � � ���������
� � � 	��

is a suitable integer) then � switches to state C. Furthermore, if a
player in state B receives the rumor from a player in state C then it switches to state C, too.

� State C: Every player stays in this phase for at most
��� � � � ����� 	��

rounds, and then switches to state
� , i.e. it terminates the rumor spreading.

Roughly speaking, the counters in state B are used in order to determine the point in time when the
algorithm switches from the exponential-growth phase into the quadratic-shrinking phase. A counter value
of ctr ����� indicates that

	 � ! ����� � � � ��	�� players are informed so that it is sufficient to continue the propaga-
tion for only

��� � � � ����� 	��
rounds (which is done in state C). In order to make sure that the median-counter

algorithm terminates even in the very unlikely event that the counter mechanism fails, we determine that
every player stops propagating the rumor after some fixed number of

��� � � 	�� rounds, regardless of its
current state.

We investigate the robustness of the median-counter algorithm against different sources of errors and
inaccuracies.
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Median-counter algorithm for player � and rumor �
begin

for each round � do
if � is in state � � '�� � then� � called

� �*' � � � � call � �*' � � �
for all � + � �

do
Send the rumor to � + (i.e., � + pushes and pulls the rumor)

od
fi
if � learns the rumor then

state
� � � � �

ctr
� � � � �

fi
if � is in state � � '�� � then

if state
� � � � � then

ctr
� � � � ctr

� � � � �
if ctr

� � � � ctr ��� � then
state

� � � � �
fi

else if � � + � �
with state

� � + � � � then
state

� � � � �
ctr

� � � � �
else if  � � � �  ctr ��� � � ctr

� � � �� �  � � � �  ctr ��� � � ctr � � � �� then
ctr

� � � � ctr
� � � � �

if ctr
� � � � ctr ��� � then

state
� � � � �

ctr
� � � � �

fi
fi

od
end.

Figure 6.10: The median-counter algorithm.
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� First, we assume the random connections in each round are established using an arbitrary (possibly
non-uniform) probability distribution ��� � ��� &�' ��� .

� Second, we assume that an oblivious adversary can specify up to
.

node failures occurring during
the execution of the algorithm. The adversary specifies a set � of players (not containing the player
starting the rumor) who fail to exchange information in some of the rounds (as specified by the
adversary). We assume  �  � . and

	 � � ��� � � � � � . .

Clearly, we cannot hope to inform all players when allowing adversarial node failures. Therefore, we are
satisfied if the algorithm informs all but

���/. �
players. (Alternatively, one may assume stochastic rather

than adversarial failures, e.g., each random phone call fails with probability
. � 	

. In this case, staying for
� � � � � � � ����� 	

�
� � � � 2 . � rounds in stage C ensures that all players are informed within

����� � 	 � � �
rounds using

��� � 	�� transmissions with high probability.)

Theorem 21 Assuming an arbitrary distribution � and up to
.

node failures as described
above, the median-counter algorithms informs all but

���/. �
players in

��� � � 	�� rounds using����	 ����� ����� 	��
transmissions with high probability.

Proof: We start with investigating the errorless case. Let � � be the probability that a player calls player
�
,

let
� � ' � � ' ��� ' and � � be defined as above and let � � be the weight of all informed players: � � � � � � � � � � � .

Consider the following three phases.

1. Startup: We want to ensure that at least � ��� � ��� � 	�� informed players with weight � � � 	 �� �
� are

established.

A straightforward analysis shows that � � � � � ����� 	��
rounds of push communication suffice to achieve

this with high probability. Then, � � � � � ����� 	��
rounds of pull-communication establish the wanted

number of informed players with high probability.

2. Exponential growth: This phase ends when the weight � � is greater than
�	 �� � .

In this phase the weight
� � of the set of uninformed players

� � with larger weight than
�� � is of

particular interest: � � � � �
� ��� ��� 
 
 � � � � � � � �

Note that  � �� � � � and that the probability of a member of
� � being called by an informed player in� � is larger than the constant

� � ��� � . Therefore, push operations cause an increase of the weight of
informed players by the amount of

� � � � � � � � � � � � � � for some constant � � & with high probability.

In � � � � � the fraction of players which get only one call in this round is at least
� � ��� � for an

arbitrary small constant � � & with high probability. The probability that one of these players gets
the rumor pushed from

� � is
� �� . The expected number of informed players in the next round is

therefore

E
� � � 
 �

� � ��� � � �	 � ��� � � � � � 	 � � � �  � �� �

� � �
�
�
�
� � � � ��� �

�
� � � � �	   �

If � � � �	 �� � for
� � �

�
� this implies � � 
 � � � � � � �

�� � � + � and in the other case � � 
 � ��� � � � � � �� � � � + �
for some arbitrary small � +�� & .
So after some

��������� 	��
rounds we have either � � � �	 �� � or � � � � �	 ��� � . In the second case every

player with weight larger than
� 	 �� � �
� is informed in the next round with high probability. Further-

more, the expected weight of all informed players is

E
� � � 
 � � �

�
� � " � � �� � � �
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It turns out that this sum is minimal for the uniform probability distribution. Hence, E
� ��� 
 � � � � �� .

Because the weights are upper-bounded we can apply Chernoff bounds and get � � 
 � � � �� � �
�	 ��� � .

For the number of messages note that in all but one round � � � � �	 ��� � . Therefore, the number of
messages is bounded by

��� 	��
.

Now we discuss how often a counter of a player will be increased during this phase. We consider a
player

�
with weight ��� who is informed during this phase.

(a) � � � � 	 �� ��
In each round at least � � � � 	 uninformed players call

�
, while

�
receives a call only from at

most
����� 	

informed players ( � � � � �	 ��� � );
�
’s push call can be neglected. So, this player will

communicate with more uninformed than informed players in each round and the median rule
prevents an increment of

�
’s counter.

(b) � � � � 	 �� ��
We allow that during the time interval � � '�������'�)� for which we have

�	 �� � � � � � ��� � � � � � 	
the counter of � � is increased in every round � .
In every round � � or � � (but possibly not both) grow by a factor � � �

. Nevertheless they
interact pairwise, since the expected number of uninformed nodes informed by a pull is � � � � .
Therefore we have � � 
 � �

� � � � � � �2� � � 	 � � � � � � + � for � ' � + � & with high probability. On
the other hand, every informed node pushes in every round such that � � 
 � � � �� � 	 ��� � with high
probability. So, this time interval is bounded by

��� � � � ����� 	��
.

At any time step after � the number of uninformed players calling � � is higher than the number
of informed players calling � � for the same reasons as in 1.

In every round � before � we concentrate on weights � � with � � � �
� �
	 ��� � � . The probability that

a player with such a weight is called by an informed player is smaller than
� � � � � �

� �
	 �� � � � � � ��	 ��� � � . Let � � be the number of the players who increase their counter at least

�
times before

round � and let � � � � � . In the worst case all players stay in this situation for the whole
phase. Only � � players can cause an increase for a counter larger than

�
. The probability

that such a player calls another is
� 
� �
	 �� � � . Therefore, we have E

� �)� 
 �
� � � �
� �

	 �� � � . It follows
� 
�� ,� � � � � �
� ��

	 ��� � � if � � � � � � � � 	�� ; and if � � � ��� � � � 	��
, then � � 
 � � � & for some constants ��' ��+

with high probability. This proves � � � 	 ���	 ��� � � � & . So, there are no players whose counters
will be increased more than some � ����� �����
	 time during this phase.

3. Quadratic-shrinking: This phase ends, when all players have left states A or B.

The probability for each uninformed player to remain uninformed is at most
� � ��� , if we consider

only pull-communication. Therefore, we have E
� �,� 


� � � � � � � � � � � , which implies

� � 

� � � � � � � � � � � � � ����� 	

� 	  with high probability �

The expected weight of the uninformed player of the next round is E
� � � � � 
 � � � � � � � � � � . Note

that � � � � ��� � � � � �
	 ��� � �
� . Therefore, applying Chernoff bounds it follows that

� � � � 
 � � � � � � � � � � � � ����� � 	

� 	  with high probability �

It is clear that after some
��� � � � ����� 	��

rounds we have
� ��� � 
 � � � 	 �� � �� � . Then, some constant

number of rounds of pull will sufficiently decrease the probability of an uninformed player remaining
in state A.

Since in every round each counter may be incremented only once, it suffices to choose ctr ��� � �
� � � � � � � 	

for some constant � independent of � .
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It remains to show that after some additional
���������
� � � 	��

rounds all counters reach ctr ����� . Con-
sider the time point at which all players are informed. Clearly, all counters are at least

�
. Then,

in every step
�

each counter is at least
�
�

�
. Therefore, the distributional algorithm ends after��������� ����� 	��

rounds.

Since every player produces only one random call in each round the overall number of messages in
this phase is bounded by

����	 ����� ����� 	��
.

We now focus on the case of
. � �� 	 node failures with weight

. � 	
. We assume that if a node

failure occurs on � , that � terminates, i.e., switches to state D without learning the rumor. The analysis of
the startup and exponential phases can be easily adapted to this case, since the growth of informed nodes
proceeds more slowly but still exponentially. We now investigate the situation in the double exponential
shrinkage phase.

Let � be the set of nodes which may be disconnected in some rounds. Then
� � and � � are defined as

the set of informed and uninformed nodes, excluding the nodes in � ; � � , � � , and � � are defined as before.
The probability that a node remains uninformed is at most

�
� � � per round. Therefore, we can conclude

that with high probability � � 

� � � �

� � � � � � . Similarly to the error-free case, we can conclude that

� � � � 
 � � . 	 �
�
�
�

����� � 	
	  � � � � � � � with high probability .

This recursion converges in
��� � � � ����� 	��

rounds to
� � � � � � ��� 2 �

�
. This implies a maximum number of��� . �

uninformed nodes within the next round.
The main problem for the error case is to verify that the number of messages does not grow beyond����	 � � � ����� 	��

. We prove this by showing that at least
��� 	 � � � � 	��

players have reached state C or D, by
the time the first error-free players reach state D. The remaining error-free players can only cause

��� � � � 	��

messages each, where
.

faulty players do not add further messages. We start our analysis in the moment
when only

. + � ��� . �
nodes with weight

. + � 	 have remained uninformed. Let us assume that all informed
players are in the state B-1.

Let
� �  � be the set and

� �  � the weight of error-free nodes in round � with ctr
� � � � � . The probabil-

ity that a node in
� �  � is increased is at least � ctr ������ " � � �  � . We want to prove that in the triangular section

where � � !�� for some constant ! ,
� �  � decreases exponentially in � . For the analysis we allow that some

of the counters may be decreased. The aim of this modification is that the series
� �  � '�������' � �  � � is exponen-

tially increasing, the series
�
� �  � '
�
� � 

�  � '������ is exponentially decreasing, and the weight

� �  � � 
 � � �� con-
tains the rest of the weight. More formally,

� � � � � � � �  � � � � �  � 
 � and
� �  � � 
 � � � � . + � 	 � � � �� " � � �  �

for some � � �
.

By decreasing some of the counters it can be ensured that in the next round we have
� � � � � � � �  � �

� � �  � 
 � and
� � 
 �  � � � 
 �� � �  � . This follows by the fact that � � �� " � � �  � � �� and by reducing the number of

players increasing their counter to a fraction of
�
� each. After some constant number of rounds � we have� � 
 �  � � 
 � � � � � 
 �  � � . Then, we increase � � 
 � � � � � � �

and get the claimed triangular section.
Therefore, after some

���������
� � � 	��
rounds only a fraction of

��� 	 � ����� 	��
players has a smaller counter

than � � � � � � � 	
. �

6.5 Lower Bound for Address-Oblivious Algorithms

Our first lower bound shows that the two presented push&pull algorithms achieve the best possible results
for the class of address-oblivious algorithms. Clearly, any algorithm requires � ��� � 	�� rounds in order to
inform all players. In addition, we show that any address-oblivious algorithm requires � ��	 ����� ����� 	��

transmissions, regardless of the number of rounds. We assume the random phone call model using the
uniform distribution.

Theorem 22 Any address-oblivious algorithm guaranteeing that all but a fraction � of the play-
ers receive the rumor with constant probability needs to perform � ��	 � � � ����� �

�
�

transmissions
in expectation.
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Proof: Let us fix an address-oblivious algorithm � . Depending on the execution of � , we will partition
the rounds into contiguous phases such that the number of transmissions during the first

�
phases is at

least
���
�
� � 	 � � � � ��� 	�� . (The actual length of the phases depends possibly on the outcome of random

experiments influencing the execution of � . Thus, the length of the phases might give some evidence
about the outcome of some random experiments. The following statement, however, holds regardless
of this evidence.) Let � � denote the number of uninformed players at the end of phase

�
, and define

� ��� � � 	 # ��! � � � � � � � � . We will show by induction that � � � � ��� � with high probability. Consequently,
� needs � ������� ����� �� � phases and, hence, � � 	 � � � ����� � � transmissions in order to inform all but a fraction� of the players. Clearly this yields the Theorem.

Phases are defined as follows. Phase 1 starts with the round in which the rumor is generated. If phase�
ends in round � then phase

�
�
�

starts in round � � �
. Thus, it remains to describe when a phase ends.

We distinguish sparse and dense phases. A sparse phase contains at most
	 � � transmissions. The length

of these phases is maximized, that is, a sparse phase ends in round � if adding round � � �
to the phase

resulted in more than
	 � � transmissions. A dense phase consists of only one round containing more than	 � � transmissions. Observe that the number of transmissions during the phases 0 to

�
is at least

���
�
� � 	 � �

because any pair of consecutive phases contains at least
	 � � transmissions by construction.

Now assume by induction that the number of uninformed players at the beginning of phase
�

is at least
� ��� � � �

. We have to show that the number of uninformed players at the end of phase
�

is at least � ��� � with
high probability.

For
� � ! � � ��� � � �

, let ( � denote a 0-1 random variable indicating whether the ! th of those players
who are uninformed at the beginning of round

�
receives a message containing the rumor during the round.

We claim

Pr
� ( � � & � � �

���
� � �
# 	 �

The arguments leading to this inequality are different for sparse and dense rounds.

� Suppose phase
�

is sparse. Then � sends maximum � � messages during this phase. Each of these mes-
sages is initiated without knowing the receiver because decisions are placed in an address-oblivious
fashion. As connections are chosen uniformly at random, the probability that any particular message
reaches player ! is

�
� . Consequently, Pr

� ( � � ��� � � � � ��
� �
� so that Pr

� ( � � & � � �� � � � � 4 � �� � .

� Now suppose phase
�

is dense. Then the phase consists of only one round. In this case, the probability
� � that player ! does not call an informed player is at least

� � � 4 � �
� . Furthermore, the probability � �

that player ! is not called by any other player is at least
�
� . As these two probabilities are independent,

Pr
� ( � � & � � � � � � � � � � 4 � �� � .

Since � ��� � � � � � � 4 � �� " � � � � ( � � , we obtain

E
� � ��� � � �

� � � 4 � �
�� " � Pr

� ( � � & �

� � ��� � � � �
# 	 �

��	 # ��! � � � � 4 � � �� � � �
# 	

� 	 #���! � � � � � � � � � # � ��� � �

In particular, � ��� � � � � � �
�
�
E
� � ��� � �

. Observe that the random variables ( � are slightly dependent since
the random interconnections used for transmissions in phase

�
form partial permutations on the caller

sites. This dependence, however, is negative so that we can apply a Chernoff bound [DR98]. Assuming
� ��� � � � � � 	�� � , we obtain

Pr
� � � � � ��� � � �

Pr
� � � � � � � �

�
�
E
� � ��� � � �� # ��! � �

�
� � E

� � ��� � � �
� # ��! � �

�
� � � ��� � � � ��� 	 4 � � '

for any positive constant � . This completes the proof of Theorem 22. �
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6.6 Lower Bound for General Algorithms

The above lower bound for address-oblivious algorithms does not hold for those rumor spreading algo-
rithms which can base their decisions on the addresses of communication partners. In the introduction,
we give an example showing how all players can be informed using only

��� 	��
transmissions. This unre-

alistic algorithm, however, requires � � 	 � � 	�� rounds. Now we investigate whether there is an algorithm
that is both time-optimal (i.e., using only

��� � � � 	��
rounds) and communication-optimal (i.e., using only����	��

transmissions). The following lower bound answers this question negatively. Again, we assume the
random phone call model using the uniform distribution.

Theorem 23 Any distributed rumor spreading algorithm guaranteeing that all but a fraction� � � � of the players receive the rumor within
��� � � 	�� rounds with constant probability needs to

perform 	 ��	�� transmissions in expectation.

Proof: The difficulty in analyzing arbitrary distributed rumor spreading algorithms is that the distribution
of the rumor can be a highly dependent process although the underlying random calling mechanism is
generated by

	
independent experiments in each round. For example, if player

�
is the only player with

an odd address sending the rumor to players with even addresses, then the success of the algorithm is
highly dependent on the event that player 1 receives the rumor. This small example (not even involving
any additional communication) shows that the analysis needs more than simply applying martingales or
Chernoff bounds.

Our basic trick in the following analysis is that we choose a random sample of the players who can be
guaranteed to act independently. This independence, however, can be guaranteed only for about

�
�
� � � 	

rounds. Of course, this number of rounds is not enough to inform all players about a rumor initiated by a
single player. Therefore, let us assume for the time being that the rumor has already been spread to at least
half of the players and we consider the next � ��� �� ����� 	�� rounds.

Consider an arbitrary rumor spreading algorithm � . Let � � � 	 � � denote the number of initially
uninformed players. (In order to be able to extend our result to more than � rounds later, we assume that
the initially uninformed players are known by all players in the system, e.g., assume that � � '�������' � � �
is the set of initially uninformed players.) Let � � denote a random variable describing the number of
messages sent during the � rounds. Furthermore, let �3+� denote a random variable describing the number
of uninformed players after round � (These randomness of the variable refers to the random phone calls
and any kind of other random decisions made by � .)

Let
�

denote a set of � ��� 	 �
� � �

players chosen randomly from
�

. The set
�

will be our random
sample. Let � � denote the random variable describing the number of initially uninformed players in

�
(with respect to the random choice of

�
). Let � � denote a random variable describing the number of

messages received by the players in
�

, and let �3+� denote the random variable describing the number of
uninformed players in the set

�
after the last round. (These random variables are with respect to random

decisions of � and the random choice of
�

.)
Recall that the communication graph - � in round � is obtained by a distributed random process, i.e.,

each player � chooses a player � from
�

at random and � calls � . This random process generates a
probability distribution � on the set � of possible communication graphs. Repeating this random process
for � rounds extends the probability distribution � to the sample space � ! .

In many parts of the following analysis we will assume a slightly different probability distribution � +
on � which is easier to handle than � . Instead of letting each player call a random other player, we assume
that the connections are established as follows. In each round � ,

� we choose uniformly at random a collection of � disjoint subsets � � � � � ( � � � ), each containing �
players from

� � � (once these sets are chosen, the players in
�

can act fully independently);

� each player � � � randomly chooses an integer 0 � � � � & with Pr
� 0 � � � � � � � �

# ��� (in the very

unlikely case that 0 � � � � � , set 0 � � � � � � �
);

� each player � � � independently and uniformly randomly chooses a set of 0 � � � � �
different players

� � � � � '������ ' � � � � � � � � from � � � � � .
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We determine that every player � � � calls player � � � � � , and the players � � � � � '������ ' � � � � � � � � call � . Every
player for whom we have not yet specified whom to call simply chooses a communication partner from� � � independently and uniformly at random. Clearly, � and � + are different distributions. The following
lemma, however, shows that these distributions are closely related.

Lemma 26 The total variation distance between � and � + on � ! is
��� 	 4 � � � � .

Proof:
We show that the total variation distance between � and � + on � (that is, for one round) is

��� 	 4 � � � �

for each round. Consequently, the total variation distance between � and � + on � ! (that is, over all rounds)
is � � ��� 	 4 � � � � � ����	 4 � ��� � .

Fix a round � . We start our analysis on the variation distance with proving some useful properties about
distribution � . Let 	 denote the set of persons being called by the persons in � , and let 	 � denote the set
of persons calling the person � ��� . Each of the following properties holds with probability

�
�
����	 4 � � � � .

P1)  	 �� �
P2)  	 � � �  � � , � � �
P3) 	 � � ���
P4) 	 � 	 � � � ��� , � � �

Property P1 follows because the persons being called by the persons in � are selected independently,
uniformly at random from

�
so that the probability that two persons from � call the same person is

� � � � � � � � � 	�� � ����	 4 � � � � . P2 follows by applying Chernoff bounds. In particular, E
�  	 � � �  � � �

so
that

Pr
�  	 � � �  � � � � Pr

�  	 � � �  � � � E �  	 � � �  � � � # ��!
�
�
� � �
�  � ����	 4 � � � � �

P3 follows from the fact that 	 and � are randomly selected sets of size at most � so that the probability
for a joint element is at most � � � 	 � ����	 4 � � � � . P4 follows analogously to P3 replacing � with 	 � � � and
assuming P2. All of the properties together, for every � � � , are satisfied with probability

��� � � 	 4 � � � � �����	 4 � � � �
.

Let � & � � �� � � � � � � � denote the distribution obtained by enforcing the properties P1 , P3,
and P4, i.e., restricting the state space � of � to communication graphs satisfying these properties and
rescaling all probabilities. Let � � ����	 4 � � � �

denote the probability for violating one of these properties.
Then the rescaling factor is

�
� 4 � � �

�
��� 	 4 � � � �

. Consequently, the variation distance between � and � &
is
��� 	 4 � � � �

.

The distribution � & can be generated by the following process. W.l.o.g., assume � � � � '������)� � .
For

� � � � � , let � � � � denote the set of persons connected to � in the considered round, that is, if
� � � � denotes the person called by � , then � � � � � 	 � � � � � � � � � � . The properties P1, P3, and P4 state
that the sets � � � � � ��� � � are disjoint from each other and disjoint from � . Therefore, we can select
these sets as follows. First, we select at random the set of nodes called by the persons in � , that is, we
choose 	 � � � � � �  � � ��� from

� � � . Second, we determine the disjoint 	 � � � sets one by one. This
we do by simulating the corresponding probabilities. Define 0 � � � to be a random variable corresponding
to the number of persons calling � , i.e., 0 � � � �  	 � � �  . We choose these variables using the following
probabilities:

Pr
� 0 � � � � � � � � 	

�	��� � � � 4 �
 " � 0 
�  � �
	
� � � �  � � � � �

	
� � � �  � 4 � �

After setting 0 � � � , we choose at random the set 	 � � � of size 0 � � � from
� �%� � � � 4 �
 " � 	 � � � . Finally, it

remains only to choose the persons being called by the persons in
� � � ��)" � 	 � � � . For each person � in

this set we choose i.u.r. a person in � from
� � � .
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Comparing � & with � + , we observe that these distributions deviate only in the following two aspects.
The first difference is that we use different probabilities for the random variables 0 � � � . Assuming

� � � � ,
we can estimate the difference in these probabilities by

Pr
� 0 � � � � �  � & � �

� 	
� � � � � ��  � �	  � � � � �

	
� �  �

�
� 	
� � � � � �	  � � � � �

	
� �� � 
 � �

# � �
�

�
�
�
� � ��� � � � �

	  � � � � � �
	
� �  �

# � �
� Pr

� 0 � � � � �  � + � � �
�
� �	  '

and

Pr
� 0 � � � � �  � & � �

� 	 �  � �
	
� �  � � � � �

	  �
�

� 	
	
� �  � �

# � �
�

�
�
�

�
	
� �� �

# � �
� Pr

� 0 � � � � �  � + � � � � �
	 � �

As a consequence, replacing the probabilities Pr
� 0 � � � � �  � & � by Pr

� 0 � � � � �  � + � , for
� � � � � ,

& ��� � � � �
yields a variation distance of � � � � � � � � 	 � � ����	 4 � � � �

.
The second difference between � & and � + is that we map all probabilities for the events 0 � � � � �

to the event 0 � � � � � � �
. This change in the distribution makes it possible to choose first the disjoint

� � � � � sets at random and then to select � � � � at random from � � � � � . The remapping of the probabilities for
0 � � � � � , however, is covered by a variation distance of

����	 4 � � � �
in case of both distributions because

Pr
� � � � � � 0 � � � � �  � + � � � � ������

�
# � � � � 4 � 
 � � ����	 4 � � � � '

and Pr
� � � ��� � 0 � � � � �  � & � � ��� 	 4 � � � �

applying property P2. (Observe that we have stated this
property originally for � but it holds for � & with probability

� � ����	 4 � ��� � because of our bound on the
variation distance between these two distributions.)

Putting it all together, the variation distance between � and � + is bounded above by
����	 4 � � � �

in each
round and

��� 	 4 � ��� � over all rounds. This completes the proof of Lemma 26. �
Based on this bound, we are able to give the following lemma comparing the behavior of the complete

system
�  � with that of the small system

�  � + .
Lemma 27 For ��� & , � � 	 4 � � � � , & � � � �

,

a) E
� � �  � � � � 	 � � Pr

�
� � � � ��  � + � � � �

����	 4 � ��� � ,
b) � � � � 	 � � Pr

� � � � � �� � � ��� 	 4 � � � � , and

c) Pr
� � +� � � �  � + � ��� � � Pr

� � +� � � ��  � � � � �
��� 	 4 � � � � .

Proof: Result a) is seen easily as follows. The set � is chosen at random. As a consequence, E
� ��$ � �

E
� � � � � � � 	 , so that E

� � �  � � � � 	 implies E
� � $  � � � � � . Now we apply first Lemma 26 and then

the Markov inequality which yields

Pr

�
� $ � � �

�
���� � + � � Pr

�
� $�� � �

�
���� � � � ����	 4 � ��� � � � �

����	 4 � ��� � �
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Hence, result a) is shown. The results b) and c) follow from the following lemma.

Lemma 28 Suppose
�

contains � 	 � 	 4 � � � � � uninformed persons. Let
� � �

denote a randomly chosen
subset of size � � � 	 4 � � � �

. Then the expected number of uninformed persons in
�

is � � � 	 4 � � � � � � .
Furthermore, for any constant 0 � �

, the probability that
�

contains less than � � � 0 or more than 0�� �
uninformed persons is

��� 	 4 � � .
This Lemma is a straightforward consequence of Chernoff bounds. Applying the lemma with 0 � � yields

� � � � � 	 � Pr
� � $�� � �� � � ����	 4 � � , and

� Pr
� � +$ � � �  � � ��� � Pr

� � +� � � ��  � � � � �
��� 	 4 � � .

The first of these results corresponds directly to result b), and the second result combined with Lemma 26
yields c). This completes the proof of Lemma 27. �

Informally, this lemma states that it is sufficient to analyze
�  � + in order to estimate

�  � . In fact,
restricting to the smaller and simpler system

�  � + will enable us to deal with the complex dependencies in
the original system

�  � . The following lemma summarizes our analysis for
�  � + .

Lemma 29 Let � denote a suitable constant. Suppose � � � � � � and � � � � � with � � � and � � �
.

Then
� +� � � � 4 � ����� � � � � '

with probability
� � ����	 4 � ��� � , provided that � ' � ' � are not too large so that � 4 � ����� � � � � � 	 4 � � � � .

Combining Lemma 27 and 29, we obtain the following result for
�  � . Suppose � � � 	 � � and

E
� � � � � 	 � with � � � � 	 � � �

� and ��� & . Applying Lemma 27 a) and b) yields

� � � ! � � and � � � �� � '

with probability at least
� � �

�
�
����	 4 � ��� � , for any

! � & . Now applying Lemma 29 yields

� +� � � � 4 � ��� � � � �
�

�



� �&� '

with probability
� � �

�
�
��� 	 4 � ��� � . Finally, we can conclude from Lemma 27 c) that

� +� �
	 � � 4 � ��� � � � �

�
�



� �&� ' (6.1)

with probability
� � �

�
�
��� 	 4 � ��� � . Assuming

	�� !
, this probability is lower-bounded by

� � �
�

.
For the time being, let us assume � and � to be constants. Then equation 6.1 can be interpreted as

follows. Starting with
	 � � uninformed players (possibly known by all players), performing � � � � 	

transmissions in
� �

�
����� ����� 	 � rounds reduces the number of uninformed players only by some constant

factor with probability at least
� � �

�
. Now let us consider the execution of � phases of length at most� �

�
� � � ����� 	 � each, for any constant � � �

. Suppose we spend at most � 	 transmissions in each of these
phases. Then the number of uninformed players after all � phases is � ��	��

with probability
� � � �

�
. Let

us set
! � ��� � � , for any constant � � & . Then spending � ��	��

transmissions in
��� � � 	�� rounds leaves

� ��	��
uninformed players with probability

� � � . (A rigorous analysis based on inequality 6.1 shows that
informing all but a fraction � of the players with constant probability requires E

� � � � � � � � � � � ��� �� � , where
� � � � � denotes the natural logarithm iterated for ( times.) Hence, Theorem 23 is shown. �



Chapter 7

Online Prediction with Partial
Feedback

7.1 Introduction

Bandwidth allocation in the Internet is managed by the Transport Control Protocol (TCP). According to this
protocol it is the task of the traffic inducing party to regulate the transmission rate of its packets. The only
information available to this party is the flow of acknowledgment packets showing whether the message
was correctly delivered. If the traffic in the network is larger than the capacity then these acknowledgments
will no longer return to the sender of the message and the sender has to cut back on the transmission rate (if
he behaves according to TCP requirements). Based on this simple model Karp et al. [KKPS00] investigate
protocols optimizing the time needed to find the optimal transmission rate. We follow their approach and
consider the following simple game.

On the link there is the problem of the rate of unicast flow from host A to host B. The bandwidth
� �

available fluctuates according to varying requirements for bandwidths of other competing flows. Host A
determines its packet rate � � , also called allocated bandwidth, for some unit time period and receives only
limited feedback. TCP uses only the fact that some packet drops have occurred. We assume that such a
packet drop indicates that in a period � the acquired packet rate � � is too high, i.e. � � � � � . Furthermore we
assume that this knowledge is available before choosing the packet rate � � 
 � of the next round. We model
this feedback by � ��� '�� � , where � ��� '�� � � �

if � ��� and � ��� '�� � � & else (see Figure 7.1).
A cost function � ��� '�� � is given and reflects two major components: opportunity costs due to sending

less than the available bandwidth when ��� � , and retransmission delay and overhead due to dropped
packets when ��� � . The goal of the host A is to minimize the total cost incurred over all periods. In
[KKPS00] the following cost models are considered:

1. The gentle cost function, � � ��� '�� � � � � � when � � � and � � ��� '�� � � � � � � � � when � � � , see
Figure 7.2.

This function models the case where the protocol does not need to wait for lost packets to time out
(e.g., the so-called fast-retransmit in TCP) so � packets get through to the receiver, but still there is
an overhead for detecting and retransmitting some extra packets that are dropped.

2. The severe cost function,
� ��� '�� � � � � � when � ��� and

� ��� '�� � � � when � � � , see Figure 7.3.

This function models the case where the protocol must wait for the first dropped packet to time out
before resuming transmission. If in a period the first packet is lost then essentially no packets are
transmitted during that period and the lost bandwidth can be approximated as

�
.

In [KKPS00] the static case has been considered when
� � � � � � is constant in time. The authors

show an upper bound of
��� � � � � ����� � � of the total loss for the severe cost function and a lower bound of
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Figure 7.1: The feedback used by TCP.
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Figure 7.3: The severe cost function.

� � � 	 ���	 ��� �	 ���	 ����	 �� � �
. For the gentle cost function they show an algorithm with expected cost

� � �� �
���������
	��

and worst case cost � � 	 � ��������� 	��
.

Furthermore they investigate the dynamic case where the change of
� � is restricted. There, the absolute

change  � � 
 � � � �  , the relative change � ����� + � � ,+ � ' + �+ � � , � , or the range of
� ��� � � '� � is bounded. For all

these cases there are algorithms bounding the absolute cost. In all these dynamic scenarios the analysis is
competitive, i.e. the quality of an algorithm is compared to the cost of the best off-line strategy, while the
bandwidth may be chosen by an adversary following the general framework of [BEY98]. In [KKPS00] the
following results are shown:

� If  � � 
 � � � �  � � then there is an algorithm with competitive ratio
�
� � , while a lower bound of�

� � can be shown;

� if � ����� + � � ,+ � ' + �+ � � , � � #
, then there a variant of TCP with competitive ratio

� #
� � and there exists

a lower bound of
#

;

� if
� � � � � '� � , then there is an optimal deterministic algorithm with competitive ratio � � � and the

optimal randomized competitive ratio against an oblivious adversary is
�
�
� � � � � � � .

In this chapter we will discuss the general dynamic case with
� � � � � '�������'�� � for a randomized

algorithm and no restriction on the adversary. For the competitive ratio there is no hope to prove any
reasonable result: For these cost functions the best off-line strategy is to choose

� � , causing total cost & .
Now if the adversary chooses � and

�
with equal probability, then the expected cost of any algorithm in

the severe cost model is at least
� 4 �� , giving the competitive difference (the competitive ratio is not defined

since the denominator is & ).
Following an idea of Karp that if the adversarial choice is too good to compete with, one should at least

try to compete with the best constant strategy. The interpretation is that the algorithm shall try to perform
as well as if the algorithm had acquired the constant bandwidth �'& � � � � , which performs best with the
available bandwidth. Although the situation does not seem much better it is now possible to show that
in the long run the difference between the cost of the algorithm and the cost of the best constant choice,
called relative cost or regret, is substantially smaller than the � � , i.e. we will show that the average regret
per round converges against & . During the investigation of this problem it turned out that our approach
generalizes to an arbitrary cost function � ��� '�� � and any function � ��� '�� � giving sufficient feedback.
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An algorithm choosing the bandwidth is fronting a trade-off similar to the one that is the most distinctive
trait of the multi-armed bandit problem: on one hand, trying to match the maximum bandwidth at any
time step; on the other, choosing the bandwidth in order to collect more information about the available
bandwidth.

Another, even simpler, instance of this general setting arises from a simple quality control problem
also known as the apple tasting problem. In a manufacturing operation, the items produced can be either
working or defective. Unfortunately, to assess the quality of an item it is necessary to destroy it. Both
delivering a defective item and destroying a working one are undesirable events. Suppose that customer
feedback is unavailable, late or unreliable. The only information available about the sequence of items
produced so far is the one the destructive testing procedure provides, but we want to apply it as little as
possible. When the plant is working properly, defective items are extremely rare so that little testing seems
optimal, but a failure would be detected with a worrisome delay.

The goal we set for ourselves was to make these two examples, together with the multi-armed bandit
problem and others, fit a general framework that encompasses different sequence prediction games where
the prediction is based only on some “clues” about the past rounds of the game and good predictions are
rewarded according to some weighting scheme. We model the available feedback on the sequence as a
function of two arguments. One is the current sequence value itself, as it is common in system theory
and the other is the prediction itself. In system theory the classic problem is that of observability: Is
the feedback sufficient to find out the initial state of the system whose transition function is assumed to
be known? More closely related to our problem is that of learning from noisy observations, where the
sequence is obfuscated by some noise process as opposed to a deterministic transformation. The presence
of the second argument, the prediction, makes our approach consistent with a large body of work in the
sequence prediction literature, where the feedback is the reward. Decoupling the feedback and reward
functions is the most notable feature of our approach.

Following a relatively recent trend in sequence prediction research (e.g. see [LW94, HKW95, Vov98,
Sch99, Sch01, CBFH 
 97, CBFHW94, HKW98, CBL99, FS99, ACBFS95, Vov99]) we make no assump-
tions whatsoever concerning the sequence to be predicted, meaning that we do not require, for instance, a
statistical model of the sequence. For lack of a model, we need to assume that the sequence is arbitrary
and therefore generated by an all-powerful device or adversary, which, among other things, is aware of the
strategy a prediction algorithm is using. It might seem that competing with such a powerful opponent is
hopeless. This is why, instead of the absolute performance of a prediction algorithm, it is customary to
consider the regret w.r.t. the best predictor in some class. In this paper we make the choice of comparing
our algorithm against the best constant predictor. Even if it seems a very restrictive setting, let us remind
the reader that the best constant prediction is picked after the whole sequence is known, that is with a much
better knowledge than any prediction algorithm has available and even more so in the incomplete feedback
setting. Moreover, a constant predictor can output a mixed strategy, that is, not a constant outcome but a
constant distribution on all possible outcomes. Finally, constant predictors are the focus of an important
line of research on iterated games [Han57, FS99, ACBFS95].

Our research is closely related to the one presented in [FS99] where the subject is, indeed, the problem
of learning a repeated game from the point of view of one of the players —which can be thought of,
indeed, as a predictor, once we accept that prediction can be rewarded in general ways and not according to
a metric. In that work the authors designed the Multiplicative Weighting algorithm and proved that it has
regret

��� � � � when compared against the optimal constant strategy. This algorithm is used as a subroutine
of ours. In their setting the predictor receives as input not the sequence at past rounds but the rewards every
alternate prediction (not only the one made) would have received. Since this is all that matters to their
algorithm, this setting is called full information game in [ACBFS95], even if, according to our definitions,
the sequence and not the reward is the primary information. In the latter paper, a partial information game
corresponds to the multi-armed bandit problem, in which only the reward relative to the prediction made
is known to the predictor. What would have happened picking any of the other choices remains totally
unknown. The best bound on the regret for this problem has been recently improved to

��� � � � � � [Aue00].

The apple tasting problem as the simplest special case of our prediction problem and the multi-armed
bandit problem has been very well investigated by Helmbold, Littlestone and Long [HLL92, HLL00]. They
analyze the same prediction strategies and show that there is a prediction algorithm within an expected
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regret of at most
��� ! , 	 �	 ��� � � . Furthermore they show a matching asymptotic lower bound.

In this chapter we extend this result to our more general setting, provided that the feedback and loss
functions jointly satisfy a simple but non-trivial condition. This case includes relevant special cases such
as the bandwidth allocation and quality control problems mentioned at the beginning of the present section,
as well as the classic multi-armed bandit problem and others. In this case it is possible to prove a bound of��� � � ��� � on the regret. The aforementioned condition is not specific to our algorithm: Indeed we proved
that, when it is not satisfied, any algorithm incurred a regret � � � � , just as a prediction with no feedback at
all.

Also closely related is the work presented in [WM01] where the same worst case approach to sequence
prediction is assumed, but the sequence is available to a prediction algorithm only through noisy observa-
tions. Albeit very general, their results make some assumptions on the noise process, such as statistical
independence between the noise components affecting observations at different time steps. Our feedback
model encompasses also the situation of noisy observations, but gives up any statistical assumptions on the
noise process, too, in analogy with the notion of “malicious errors” in the context of PAC learning [KL93].
That is we claim our work can be seen also as a worst case approach to the prediction of a noisy sequences.

The chapter is structured as follows. In Section 7.2 we formally describe the problem. In Section 7.3
we describe the basic algorithm and prove bounds on its performance. In Section 7.4 we review some
examples and highlight some shortcomings of the basic algorithm and show how to overcome them. In
Section 7.5 we present a general algorithm and prove that the algorithm is essentially the most general. In
Section 7.6 we discuss our results.

7.2 The Model

We describe the problem as a game between a player choosing an action � � and an adversary choosing the
action

� � at time � . There are � possible actions available to the player, without loss of generality from the
set
� � � � � � '�������' � � , and � actions in the set

� � � from which the adversary can pick from. At every time
step the player suffers a loss equal to � ��� � '�� � � � � & ' ��� .

The game is played in a sequence of trials � � � '���'�������'�� . The adversary has full information about
the history of the game, whereas the player only gets a feedback according to the function � ��� '�� � . Hence
the � ��� -matrices � and

.
, with ��� � ��� ��� '�� � and

. � � ��� ��� '�� � completely describe an instance of the
problem. At each round � the following events take place.

1. The adversary selects an integer
� � � � � � .

2. Without knowledge of the adversary’s choice, the player chooses an action by picking ��� � � � � and
suffers a loss (�� � � � � ��� ��� � '�� � � .

3. The player observes ��� ��� ��� � '�� � � .
Note that due to the introduction of the feedback function this is a generalization of the partial infor-

mation game of [ACBFS95].
Let � � � � � � ��!��" � (#� � � � � � ��!��" � � ��� �1'�� � � be the total loss of player � choosing � � '�������'�� ! . We

measure the performance of the player by the expected regret �%$ , which is the difference between the total
loss of � and the total loss of the best constant choice �'& , that is � !��" � ( � ( � � � .

�*$ � � � ���+ , /././.  + 0 E
1 !�
��" � � ��� �1'�� � � � � ����

!�
��" � � ��� � '2� � 3

where each
� � is a function of � � '������ '�� ��4 � . In some works the corresponding min-max problem is investi-

gated, transforming the loss into a reward. The two settings are equivalent, as it is easy to check.
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Multiplicative Weighting Algorithm (MW)
input �
constant � � � & ' � �
begin

Initialize � � � � � � � �
� for all

� � � � '������ ' � � .
for � from

�
to � do

Choose � � according to probabilities � � � � .
Receive the loss vector ( � � �
� � � � � �� " � � 
 � � �� ��� � � � 
 � � �&�
for
�

from
�

to � do

� � � � � � � � � � � � � �
# ��! � ��( � � � � � � �

od
od

end

Figure 7.4: The multiplicative weighting algorithm.

7.3 The Basic Algorithm

For the full information case the following Multiplicative Weighting Algorithm (see Figure 7.4) has been
used in different settings and has recently been analyzed in [ACBFS95]. Figure 7.5 shows the Hedge
Algorithm which is their setting. The following Lemma shows the equivalence of both algorithms.

Lemma 30 Hedge and MW are equivalent algorithms.

Proof: By induction, we prove that in each round the probability � � � � � computed by MW is identical to
the probability

�� � � � � of the Hedge algorithm.
Note that for all

� '2� � � � � we have for the MW algorithm

� � � � �
��� � � � �

� � � � � � �
� � � � � � � #���!

�
��( � � � � �

# ��! � ��( � � � � � � # ��! � ��� � � � � �
# ��! � � � � � � � � �

We have for the hedge algorithm
�� � � � �

���� � � � �
#���! � � � � � � � �
# ��! � ��� � � � � � �

�
This Lemma implies

� � � " � � � � � � , since MW defines � � � � � � � � � ��� � 4 ��� 
 � � �&�� �
�� ,�� 
 and hedge defines

� � � � � � � � � ��� � 4 ��� 
 � � �&�� � .
The analysis of [FS99] leads to a tight result for the full knowledge model. We will base our analysis

on an adaption of their main theorem. Let us define
� � ( � � � � � � � � ( �

Lemma 31 For all � � � � � ' � � : � �
�

� � � � � � � � � � � � � �
Proof: This Lemma follows by applying elementary methods of analysis. By considering the first and
second derivative it turns out that for the function � � ( � � � � � ( � � � � � � � ( � for all (� & we have� � ( � � & . Furthermore it is easy to see that there exists an interval

� & ')( � � such that � � ( �� & and if ( � ( �
we observe � � ( � � & . It turns out that ( � � �

since � � & � ��� � � � � & , which proves the right inequality.
By a similar consideration it turns out that for

� � ( � � � � � ( � � � �� there exists an interval
� ( � ' & � where� � ( � � & , for ( � & we have

� � ( � � & , and for ( � ( � we have
� � ( � � & . We have

� �
� � � � � � & � � &

proving the left inequality. �



7.3. THE BASIC ALGORITHM 97

Hedge Algorithm
input �
constant � � � &�' � �
begin
� � � � � � � �

� , for all
� � � � � .

� � � & � � � & , for all
� � � � � .

for � from
�

to � do
Choose � � according to probabilities � � � � � .
Receive the loss vector ( � � �
for
�

from
�

to � do
� � � � � � � � � � � � � �

� ( � � � �
od� � � � � �� " � �

� ��� � ��� 
 � ��4 � �&�
for
�

from
�

to � do

� � � � � � � � �
�

#���! � � � � � � � � ���
od

od
end

Figure 7.5: The hedge algorithm.

Lemma 32 For all � � � � � ' ��� , and for all ( � � � � ' ��� :
�
� ��( �

�� � � � � ( � � � � � � �
� ��( � � � � � � ( � �

Proof: The proof uses Lemma 31 for � � � � � ' ��� :� �
�
� � � � � � � � � � �	� � � � �

Note that ��( � � � � ' ��� . Then, we have
�� � � � � ( � � �

� � � �	� � ( � � � � � � � �
� � �

� (
�
�
� � � � � � � � ��(

and
� � � � � � ��( � � � �	� � ( � � � � � � � �	� � ( � � � � � � � �

� � � � � � � ( � �
�

The following theorem establishes a bound on the performance of MW that holds for any loss function � .
Theorem 24 [FS99] For � � � & ' � � , for any loss matrix � with � rows and � columns with entries in the
range

� & ' ��� and for any sequence
� � '�������' � ! the sequence of � � � � '�������' � � � � produced by algorithm MW

satisfies

!�
��" �

�
� � " � � ��� � ' � � � � � � � � � � ��

!�
��" � � ��� � '�� � � �

� �
�
�

�

!�
��" �

�
� � " � � � � � � � ��� � ' � � � �

� � �
�

�

Proof: We will prove that, for any choice of � � � � '�������' � � � � where � � � � represents a probability distribution
over

� � � and where � � � � � is the probability of action
�

in step � as well as for any vector � representing a
probability distribution over

� � � , we have:

!�
��" � � !� � � � � �� !�

��" � � !� � � � � � � � ��

!�
��" �

�
� � " � � � � � � � � !� ��� � � � �

� � �
�

�
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We use the Kullback-Leibler divergence, also called relative entropy, which is defined for probability
distributions over � � '������ '�� � by

RE
�
� � � � � �

�
� � " � � � � �

�
� �� �  �

Lemma 33 For any iteration � where MW is used with parameter � � & and for any probability vector �
RE

� �   � � � � � � � � RE
� �   � � � � � � � � ! � � � � � � � � ! � � � � � � � �

� � � � � � �
� � " � � � � � � � � � � � ! �	��� � � �

Proof:

RE
� � � � � 
 �

�
� RE

� � � � � � � �

�
�
� � " � � � � � � �

� � � � � � � �
�
� � " � � � � � � �

� � � � �

�
�
� � " � � � � � � � � � �

� � � � � � �

�
�
� � " � � � � � � � # ��! � � � � � � ! � � � �

� �

� �
� � " � � � � � � � ! � ��� � � � � � �

� � � � � � ! � � � � �
� �
� � " � � � � � �

# ��! � ��( � � � � �
�

�
� � � � � ! � � � � �

� �
� � " � � � � � � � � � � ( � � � � � � � � � � ( � � � � � � �

�
� � � � � ! � � � � �

�
� �

�
� � " � � � � � � � ( � � � � �

�
� � " � � � � � � � � � � � ( � � � � � �

�
� � � � � ! � � � � � � � � ! � � � � � � �

� � " � � � � � � � � � � � � � � � � ! � ��� � �
The last lines use the fact that

� � � � � (
� � ( for any ( � � � and Lemma 32. �

We sum over � :

�
!�
��" � � � � � ! � � � � � � �

!�
��" � � � � � ! � � �	� � � � � !� ��" �

�
� � " � � � � � � � � � � � ! �	��� � ��

RE
� � � � � � � � � RE

� �   � � � � � � �

Noting that � � & , RE
� �   � � � � � � � & , and & � RE

� �   � � � � �� � � � for all � gives the claim. �
Our algorithm relies on the existence of a � ��� matrix - satisfying the following equation:

. - � � �

For instance, if
.

is non singular, this property can be fulfilled by choosing - � . 4 � � . If such a -
does not exist the basic algorithm fails, i.e. it cannot compute a strategy at all.
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FeedExp3
input

.
, �

begin
Compute - such that

. - � � .
Choose � ' � � � &�' � � according to - .
Initialize � � � � with � � � � � � � �

� for all
� � � � '�������' � � .

for � from
�

to � do
Select action � � to be � with probability

���� � � � � � � �
� � � ��� � � � � �� .

Receive as feedback the number ��� .
for
�

from
�

to � do
�( � � � � � � � � - � �  ���#� � � � �

od
� � � � � �� " � � � � � � # ��! � � �( � � � � �
for
�

from
�

to � do

� � � � � � � � � � � � � � # ��!
�
�

�( � � � � �
� �

od
od

end

Figure 7.6: The feedback exponential exploration and exploitation algorithm.

The algorithm can be described as follows. First, it estimates the loss vector using the matrix G and
the feedback. This estimate is fed into the MW algorithm which returns a probability distribution on the
player’s actions. MW tends to choose an action with very low probability if the associated loss over the
past history of the game is high. This is not acceptable in the partial information case, because actions
are useful also from the point of view of the feedback. Therefore, and again in analogy with [FS99], the
algorithm adjusts the distribution � � � � , output by the MW algorithm, to a new distribution

�� � � � such that
�� � � � � � �� for each

�
. We will give an appropriate choice of � and other parameters affecting the algorithm

later on. What is new to this algorithm and what makes it much more general, is the way the quantities
( � � � � are estimated. More in detail, given

.
and � and assuming there is a - such that

. - � � , our basic
algorithm works as shown in Figure 7.6.

The following lemma shows that
�( � � � is an unbiased estimator of the loss vector ( � � � .

Lemma 34 For all
� ' � we have

E
� �( � � � �  � � '�������'�� ��4 � � � ( � � � � and E

� �( � � � � � � E
� ( � � � � � �

Proof: Note that

E
� �( � � � �  � � '�������'�� ��4 � � � �

�
� " � ���� � ( �

. + �  �
�� � � ( � -��  � �

�
�
� " � . + �  � -��1 � � � + �  � � ( � � � � �

This implies E
� �( � � � � � � E

�
E
� �( � � � �  � � '������ '�� ��4 � � � � E

� ( � � � � � . �
Let
� +  � � � � � � . +  � - �  � , for all

� ' � '�� � � � '������ '�� � , � 
 � � � ��� +  �  � � � +  � � � � � ,� 4 � � � � � +  �  � � � +  � � � � � , � � � � ��� &�' � � 4 and � � � � 
 � � 4 .
Lemma 35 For any sequence

� � '������ ' � ! the sequence
�� � � � '�������' �� � � � produced by FeedExp3 satisfies for

all � : !�
��" �

�
� � " � �( � � � � �� � � � � � !�

��" � �( � � � � � � � � � � � � �� � �
� � � � �
� � �

�� !� ��" �
�
� � " � �( � � � � �
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Proof: Consider a game where � � � � denotes the probability distribution and the estimated loss
�( � � � is

the real loss. Then, the FeedExp3-algorithm above reduces to a MW-algorithm, where ( � � � is replaced by
�( � � � . Note that the range of the estimation vector now is

� � � 4 � � ' � � 
 � � � . So, we normalize the loss by
defining

�( +� � � � � � �� � �( � � � � � � 4 � � to
� & ' ��� . Theorem 24 now implies

!�
��" �

�
� � " � � � � � � �( +� � � � � !�

��" � �( +� � � � � � � � � ��

!�
��" �

�
� � " � � � � � � �( +� � � � � �

� � �
�

� !�
��" � �

( + � � � � � � � � � � �� �
� � �
�

�

Rescaling leads to this inequality:!�
��" �

�
� � " � � � � � � �( � � � � � !�

��" � �(�� � � � � � � � � � � � �� � �
� � � � �
� � �

In algorithm FeedExp3 we have defined
�� � � � � � � � �

� � � � � � � � � �� . Hence, we can apply

!�
��" �

�
� � " � �� � � � � �( � � � � � � � � � �

� !�
��" �

�
� � " � � � � � � �( � � � � � � �� !� ��" �

�
� � " � �( � � � � �

So, a choice � � & implies the claim. �

Lemma 36 Let � � & and 0 � & . Then with probability at least
� � 0 , for every action

�
, we have!�

��" � �( � � � � �
�
� �

� � � �
�  !� ��" � ( � � � � � � � � � � � � 0 �

� � �
� � � � � �*�
� � � ' (7.1)

!�
��" � �( � � � � �

�
�
�

� � � �
�  !� ��" � ( � � � � � � � � � � � � 0 �

� � �
� � � � � �*�
� � � � (7.2)

Proof: We use a martingale argument in close analogy to the proof of Lemma 5.1 in [ACBFS95].

(7.1): Let us define the random variable

� � � #���!
�
�
�

�
� � " � � ( +� � � + � � �( +� � � + � � � � � � �

�
�
� � " � ( +� � � + � �

where ( +� � � � � � �� � ( � � � � � � 4 � � and ( +� � � � � � �� � �( � � � � � � 4 � � are normalized replacements of
( � � � � and

�( � � � � . The main claim of the proof is that E
� � ! � � �

. Given this claim, we have by
Markov’s inequality that

� � � ! ��� � 0 � � 0 � �
which, by some algebra, is equivalent to (7.1). We prove that E

� � � � � �
for � � &�'������ ' � by

induction on � using a method given by Neveu ([Nev75], Lemma VII-2-9). For � � & , � � � �
. To

prove the inductive step for � � & , we have

E
� � �  � � '������ '�� ��4 � � � � ��4 � # ��! � � � � � � ( +� � � � � E

� # ��! � � � ( +� � � � � �( +� � � � � �  � � '�������'�� ��4 � � �
Due to normalization we have ( +� � � � � � &�' ��� and

�( +� � � � � � & ' ��� . Therefore ( +� � � � � �( +� � � � � �
and it

follows by Lemma 32

E
� # ��! � � � ( +� � � � � �( +� � � � � �  � � '������ '�� ��4 � ��

E
� �
� � � ( +� � � � � �( +� � � � � � � � � � � ( +� � � � � �( +� � � � � � -� � '������ '�� ��4 � �� �

�
� � � � ( +� � � �� #���! � � � � � ( +� � � � � �
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The second inequality follows from Lemma 34 and the following chain of inequalities:

E
� � ( +� � � � � �( +� � � � � � )� � '�������'�� ��4 � � � E

� �( +� � � � �  � � '�������'�� ��4 � � � ( +� � � � ��
E
� �( +� � � � �  � � '�������'�� ��4 � ��

E
� �( +� � � �  � � '������ '�� ��4 � �

� ( +� � � � �

(7.2): We define the random variable

� � � # ��!
�
�
�

�
� � " � � �( +� � � + � � ( +� � � + � � � � � � �

�
�
� � " � ( +� � � + � � �

Again the main claim of the proof is that E
� � ! � � �

. We have by Markov’s inequality with �
� � ! �� � 0 � � 0 � � , which, by some algebra, is equivalent to (7.2). The rest of this proof is analogous to

the first part.

�
We single out a special case of Lemma 36 for further reference.

Corollary 4 For � ' 0 � & and for the random variable �'& � �
� � � � � � � !��" � ( � � � � we have with proba-
bility

� � 0 :

!�
��" � �(�� ( � � � �

�
�
�

� � � �
�  !� ��" � (#� ( � � � � � � � � � � � 0 �

� � �
� � � � � � �
� � � �

Theorem 25 If there exists - such that
. - � � then the expected regret E

� � FeedExp3
� � � � of algorithm

FeedExp3 after � steps is bounded by

E
� � FeedExp3

� � � � � ��� � � � � ��� � � � � � � � � � � �
with a constant factor linear in � �

� � .

Proof: We first rewrite the expected loss E
� � � � � � of algorithm FeedExp3 in a different way:

E
� � � � � � � !�

��" � E
� ( � � �

� !�
��" � E

�
E
� ( � �  � � � � � � ��4 � � �

� !�
��" � E

1 �
� � " � ( � � � � �� � � � � 3

� E

1 !�
��" �

�
� � " � ( � � � � �� � � � � 3 (7.3)

We then apply Lemma 36(7.2) and choose � � � , 	 � � 	 � ! � , 	 �! , 	 � , � � �! , 	 � and 0 � �! � � . Lemma 31

states for � � � � � ' � � that � �� � � � � � � � � ��� � � � and Lemma 32 for � � � & ' � � � � � � � � 4 � � �
� � � .

This implies for � � � &�' � � :
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!�
��" �

�
� � " � �� � � � � ( � � � � � � !��" � � �� " � �� � � � � �( � � � � �

� � 	 ��� � � ������ �
� � � � � ! ���� �

�
�

� � � �
�

�
�
�
� � � � � ��  � !�
��" �

�
� � " � �� � � � � �( � � � � � � � � � � � � 0 �

� � �
� � � � � � �
� � �

�
�

�
�
�
�� � � �  !� ��" �

�
� � " � �� � � � � �( � � � � ��

� �
� � � � � ��� � � � � � � � � � � � � � � � � � � � � � � � � � (7.4)

Choose � � � 4 � � � . Then Lemma 35 implies, for all � :!�
��" �

�
� � " � �� � � � � �( � � � � � !�

��" � �(�� � � � � � � � � � � � �� � �
� � � � �
� � �

�� !� ��" �
�
� � " � �( � � � �

� !�
��" � �(�� � � � � � � � � ��� � � � �� � � � � � � � �

�� !� ��" �
�
� � " � �( � � � � � (7.5)

Note that from Lemma 36(7.1) it follows for the rightmost additional term with probability
� � 0 � �� � �! � � .

�� !� ��" �
�
� � " � �( � � � � � ��

�
�
�

� � � �
�  !� ��" �

�
� � " � ( � � � � � � � � � � � � 0 �

� �
� � � � � � �

� �
� ��� � � ��� ��� � � � � � � � � � � � � ��� �

� �
� � � � � � � � � � � � � � � (7.6)

At last we will use Corollary 4. Then, we have with probability
� � 0!�

��" � �(�� ( � � � �
�
�
�

� � � �
�  !� ��" � (#� ( � � � � � � � � � � � 0�+ �

� � �
� 4 � � � � � �

� � �
�

�
�
�

�� 4 � � �  !� ��" � (�� ( � � � � ��� �
� � 4 � �� � � � � � ��� � � � � � � � � � � � �

For the expectation we add error term � 0 � for the combined error probabilities � 0 and combine (7.3), (7.4),
(7.5), (7.6), and (7.7).

E

1 !�
��" �

�
� � " � �� � � � � ( � � � �23 �

E

1 !�
��" � (#� ( � � ��3

�
�
�

�� � � �  � � 0 �
�
��� �

� � 4 � �� � � � � � ��� � � � � � � � � � � �
�

E

1 !�
��" � (#� ( � � ��3 � ��� �

� � 4 � �� � � � ��� � � � � � � � � � � � � �
�

7.4 Applications, Limits, and Extensions

We are now equipped to show how the bandwidth allocation problem which initially prompted this research,
as well as other important examples, can be solved using this algorithm, but we will also see that only some
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tweaking allows to solve even more prediction problems. We will see in the next section that these “tricks”
lead to a general algorithm, that, after some preprocessing, uses the basic algorithm to achieve sub-linear
regret whenever this is feasible.

7.4.1 Bandwidth Allocation

In the bandwidth allocation problem the feedback function is defined as follows (threshold feedback):

� ��� '�� � � � & if
� � ��

otherwise �

The feedback matrix
.

is therefore a lower triangular matrix with only 1’s on the diagonal and below.

. �

����
�

� ��
. . .

� �

�����
�

This matrix is invertible and therefore the condition
. - � � can be satisfied by defining - � . 4 � �

where

. 4 � �
������
�

� �
� � �

� � �
. . .

. . .
� � � �

� �����
�

We now consider the severe cost function� ��� '�� � � � � � � if � � ��
otherwise �

We rescale the matrix to
� ++  � � � �

� 4 � � ��� '�� � such that
� ++  � � � & ' � � and apply Theorem 25. Then the

matrix - is given by

- � . 4 � � + �
�� � �

������
�
& �
� �

� �
. . .

� � � �

� �����
� �

This gives for the severe cost function � � � 
 � � 4 � � ��� +  �  � � . +  � - �  � � � � � � +  �  � � . +  � - �  � ��� � � '�� �
and � � � � � � +  �  � � . +  � - �  � � � �

. Now Theorem 25 implies an expected regret for the cost function
� +

of
��� � � ��� � � � � � � � � � � . Rescaling to the severe cost function

�
leads to the following corollary:

Corollary 5 For the treshold feedback function and the severe cost function the FeedExp3 algorithm suffers
the expected regret

E
� � FeedExp3

� � � � � ��� � � ��� ��� � � � � � � � � �
with respect to the best constant choice of bandwidth.

In other words the FeedExp3 algorithm bounds the average regret of
� � � � � 	 � ! � , 	 �! , 	 � � per round.

For the gentle cost function for � � �
defined as

� � � � � � � if � � �
� � � � � � otherwise
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in its rescaled setting � +� � � �
� � � 4 � � � � we get

- � . 4 � � � �
�

� � � � � �

���������
�

& � ��� ��� � ��� � � � � � ��
� � � � � � � ��� � �� �

� � � � � ��� � �� � �
� � � ��� � �

...
...

...
. . .

. . . � �
� � � ��� � �

� �

� ��������
�

�

This implies
� �

�
� � and � � �

and the following corollary.

Corollary 6 For the threshold feedback function and the gentle cost function � � the FeedExp3 algorithm
suffers the expected regret

E
� � FeedExp3

� � � � � ��� � � � � � ��� � � � � � � � � �
with respect to the best constant choice of bandwidth.

We now want to investigate a continuous setting: Instead of discrete choices � � '�������' � � the allocated
bandwidth and available bandwidth are real numbers in the range

� &�' � � . This models applies if � is very
large, i.e. � � � � . Since the regret depends on the number of constant experts, i.e. possible discrete
choices of � , the bound on the regret of FeedExp3 becomes too large. For a solution we consider the� � �

discrete choices for allocating the bandwidth � � � � &�' �� ' �� '�������' � � . Of course the available
bandwidth

� � is still continuous. Because of the discrete threshold feedback, our algorithm underestimates� � : if � ��� '�� � � & then the algorithm interpretes � � � as by
� + � ��� + ���� .

Now note that the real costs and the costs refering to
� + differ not too much for the severe cost function� ��� '�� � .

Lemma 37 For the continuous severe cost function
� ��� '�� � with � ' � � � &�' � � and � + � � &�' �� ' �� '�������' � �

we have � ��� '�� + � � � � � � � �� '�� +  �
�
& '

��  '� � � ' � � � ��  � � ��� '�� � � �� �

Proof: follows straight-forward from the definition of
�

. �
This Lemma has two implications.

1. If we consider a game using
� +� � � � + ���� instead of

� � in each round, then we get additional loss of
at most

�
� per round.

2. The best constant choice � & reduces the total loss by at most !� over all rounds compared to the

choice � � ( ���� .

These considerations immediately imply the following Theorem.

Theorem 26 In the continuous case of � � ' � � � � & ' ��� , for the bandwidth allocation problem with threshold
feedback and severe cost function there exists an algorithm � with expected regret of at most

E
� � $ � � � � � ��� � � � � ��� � � � � ��� �

with respect to the best constant choice of bandwidth �'&�� � &�' � � .
Proof: Use the FeedExp3 algorithm in the discretized world � +� ' � +� � � & ' �� ' �� '������ ' � � where

� +� � ��� + ����
for � � � � � � � � � � � � 4 � ��� . Theorem 25 shows that in this discretized world this algorithm suffers an
expected regret of

E
� � FeedExp3

� � � � � ��� � � � � ��� � � � � ��� � �
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Lemma 37 shows that the best discrete constant choice performs over all � rounds at most !� worse than
the optimal continuous choice. Furthermore, Lemma 37 shows that a continuous choice of the available
bandwidth also increases the cost by at most !� .

Hence, the regret of the algorithm FeedExp3 increases in the continuous setting by at most !� �� � � � ��� � � � � ��� �
For the gentle cost function � � ��� '�� � for � � �

in the continuous setting the same observations apply.

Lemma 38 For the continuous gentle cost function � � ��� '�� � with � ' � � � & ' ��� and � � �
we have

����
� ��� '�� � � � � � � � �� ' � � � ��  ���� � �� �

Proof: follows straight-forward from the definition of � � . �

Theorem 27 In the continuous case of � � ' � � � � & ' ��� , for the bandwidth allocation problem with threshold
feedback and gentle cost function � � for � � �

there exists an algorithm � with expected regret of at most

E
� � $ � � � � � ��� � � � � � � � � � � � ��� �

with respect to the best constant choice of bandwidth �'&�� � &�' � � .
Proof: For the choice � � � � 4 � � � ��� � � � 4 � ��� the proof is analogous to the proof of Theorem 26 and
follows from Lemma 38 and Theorem 25. �

7.4.2 Loss Feedback and Full Information

The multi-armed bandit problem with partial information of Freund et al. [ACBFS95] corresponds to the
case

. � � . Under this condition, - � �
is a suitable choice. A somehow dual situation arises when. � �

, that is when the feedback is a binary “hit or miss” information. Then - � � is a suitable choice
for - .

A more troublesome situation is the full feedback case. Even if in this case the machinery presented
in this paper is not necessary, since an expected regret of

��� � � � � � � � � � can be achieved by the MW
algorithm [FS99], it is clear that a general algorithm for this class of problems must be able to solve this
special case, too. A natural choice for

.
is
. � � � � , which implies ���	� � � . Unfortunately, such a matrix

has rank 1 and therefore the condition
. - � � can be satisfied only when L has a very special, and rather

trivial, form. But more than the specific values of the entries of
.

, what defines “full feedback” is the fact
that no two entries in every column of

.
have the same value, that is there is a bijection between the values

in
. � and the range of

� � . If
.

satisfies this property, it is possible to compute
� � from ��� and hence we

can say we are still in the full information case. Therefore, we are interested in finding a full rank matrix
within the set of matrices just described, which all represent the full feedback case.

One possible solution is to replace every diagonal entry with a number large enough to satisfy Hada-
mard’s theorem, that is:

 . � � �� �
�

� " �  � �" �  . � �� �
implies that ��#�	 � . � �� & . But this solution is specific to the full feedback case, whereas the problem of
singular or low rank

.
arises in many contexts.

For instance, consider the threshold feedback and modify slightly the definition to be � ��� '�� � � & , if� � � and
�

otherwise. Then
.

becomes singular, but it is enough to reverse the arbitrary roles of 0 and 1
to get an equivalent problem, where this time

.
is invertible.
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7.4.3 Extensions

An acceptable transformation of
.

can be detailed as a set of functions for each column of
.

, from the
range of the elements of

.
into some other range. The goal is to obtain a new matrix

. + , where each
column is obtained applying one of the functions to the elements of a column of

.
, for which there is a

- such that
. +�- � � + . It is clear that

. + can have more columns than
.

, because each column can be
transformed in different ways, but no fewer, since every action has to be represented. This corresponds
to introducing new actions that are essentially replicas, but for each of which the feedback undergoes a
different transformation. From the point of view of the loss, these additional actions are totally equivalent
and therefore we need to extend � into a larger matrix � + by duplicating the appropriate columns. What
we seek is a general way to expand

. + so as to keep the number of columns reasonably small but making
the linear span of

. + all-inclusive, that is such that it cannot be enlarged by adding more columns obtained
in a feasible way. This can be accomplished as follows. For every column

. � containing �)� distinct values
(w.l.o.g. from the set

� � � � ) we define � � columns
. +� 
 
 � �����

. +� 
 
 � 
 , where � � � � � 4 �� " � � � , as follows:. +� 
 
 �  � � � � � . �  � � , for
� � � � � � , where

�
� � � �

if � is true and 0 otherwise. As to � + , we set
� +� � � � if and only if � � � � � � � � � � . It is straightforward to check that the matrix

. + obtained this way
has the largest possible linear span among all the ones that can be obtained from

.
via the transformations

detailed above. Also, since
.

is � � � ,
. + is at most � � � � . These are more columns than we need and

would impact negatively the bounds on the regret: Therefore we will pick the smallest subset of columns�
which is still good for our purposes, that is, it satisfies the following conditions:

� All the columns of � are represented in � + or, equivalently, all the actions in the original instance are
represented, that is for every

� � � � � there is a � � � such that � � �	� � � � � � � ;
��� � � . +� � � � � � � � � � � � # � . + � .

The final feedback and distance matrices can be obtained by dropping all the columns not in
�

from
. + and

� + , and we will continue to use the same symbols for the submatrices defined this way. In the next section
we will present a greedy algorithm which solves this problem.

Let us see how this helps in the full feedback case. Recall that a natural choice for
.

is
. � � � � .

Therefore, the corresponding
. + has maximum rank (some columns of

. + form an � � � identity matrix),. +�- � � can be solved for - and the general algorithm can be applied successfully.
A further complication arises from non-exploitable actions. These are actions which for any adversarial

strategy do not turn out to be optimal. The problem here is that the condition
. - � � might be impossible

to be satisfied because of some columns related to non-exploitable actions. Consider, for instance,

. �
�� � � �

� � �
& � �

�� � �
�� � � &� � &� & �

�� �

Here column 1 of � is not in the linear span of
.

, but it is easy to see that actions 2 and 3 can be always
preferred to the first. Therefore, it might seem reasonable to simply drop the first column as it is related to
a non-exploitable action. It turns out, though, it is just action 1 which provides the necessary feedback to
estimate the loss. It is clear that simply omitting non-exploitable actions is not a good strategy.

As with the feedback matrix
.

, the solution for these problems is to transform the loss matrix � into a
new � + in a way that does not lower the regret.

If we add the same vector ( to every column of � , we are not changing the problem instance in any sub-
stantial way, since the regret, our performance measure, is invariant w.r.t. this transformation. Therefore,
we are interested in those transformations that help fulfilling the condition

. - � � . This time, it makes
sense to try to obtain a matrix � + from � of minimum rank. Rank minimization is a difficult problem in
general, but this special case turns out to be rather trivial.

Lemma 39 Given three matrices � , � + and � + + such that for every
� � +� � � � � � � and � + +� � � � � ( , we

have that, for any vector ( and index � , � � � + � � � � � + + � .
Proof: Since � � � � � � � � � ( � � � � � ( � , the lemma follows. �
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Therefore, choosing ( equal to one of the columns of � minimizes the linear span of � + . In the following
we will assume � � � � &�'�������'1& � w.l.o.g.

As to non-exploitable actions, we first need to formally define them. Let us define a partition1 of the
set of mixed strategies (for the adversary) as follows. Every element of the partition is centered around a
column of � + and is defined as:

 � � � � � � � � �  � � � � � �� � � � ��� � � ��� � �
where the set �	� � � � � � &�' � � �  � � ��� � � � denotes all possible mixed strategies of the adversary.

That is, an element of this partition is the set of mixed adversarial strategies such that a certain predic-
tion is preferred to any other. If

 � � � � is empty, then
�

is a non-exploitable action. The rationale behind
this definition is that no sensible algorithm will ever try this action for exploitation purposes (that is often),
since there are other actions which bear a smaller loss. The interior of

 � � � � is defined as follows:� � � � � � � � � �  � � � � � �� � � � ��� � �
��� � �
The following lemma shows that we can replace every mixed adversarial strategy on the surface of some
element of the partition by another strategy not on the surface, with no penalty in performance.

Lemma 40 For all mixed adversarial strategies �	� � there exists a column � � with
� � � � � ���� such that

� �  � � � � .
Proof: We concentrate on elements in the set � � � � �  � � � � � � � � � � . Note that we have

� � 	 �  � � � � �  � � � � � � � � � & � �

Therefore, � is a subset of a union of at most � � subspaces of dimension � � � . Since � is a � � �
dimensional polytope, any � -ball centered on a point � �  � � � � contains elements not in � . Such an
element ��+��� � is contained in a set � � � with

� � � � �

� �� � . Since this is true for any � � � �   , then � belongs
to the surface of

 � � � �

�
too, that is ��� � � ��� � � . �

Hence, we can extend the definition of non-exploitable actions to columns with
� � � � � � � , since their

choice gives no improvement over actions with
� � � � � �� � .

In order to extend the applicability of the basic algorithm, we set in � all the entries in the columns
corresponding to non-exploitable actions equal to the size of the maximum element in its column. This
can only increase the regret w.r.t. the best constant strategy, because none of the actions associated to these
columns can be part of any optimal strategy. Furthermore, it is easy to check that the columns obtained this
way are in the linear span of

. + for every
.

.

7.5 The General Algorithm

In Figure 7.7 we show how to implement the construction of
. + and � + . Let

� . �  � � � � � " � /././.  � denote the
vector obtained replacing, in the � th column of

.
, every entry equal to � by

�
and all others by & . The

algorithm constructs
. + and � + by appending columns derived from

.
and � to their right sides.

Augmented with this kind of preprocessing for the loss and feedback matrices, our algorithm covers
all the examples we considered. A natural question is therefore whether the condition

. +�- � � + is not
only necessary for our algorithm to apply, but in general for any useful algorithm. The answer is positive,
meaning that if the condition cannot be fulfilled, then any algorithm will undergo a loss � � � � .
Theorem 28 For any prediction game

� . ' � � we have either one of the following situations:

� The General Algorithm solves it with an expected regret of

E
� � General

� � ��� � � ��� ��� � � � � � � � ��� � � ' � � � � � � �
1Strictly speaking, it is not a partition, but the idea helps the intuition.
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The General Algorithm
input � ��� -matrices

.
, �

begin� � � &
for � from

�
to � do

� � � &
for all values � in

. � do
if
� . �  � � � � � " � /././.  � �� � �/. +� '������ ' . +� � then
� � � �� � � � � �
. +� � � � . �  � � � � � " � /././.  �
� +� � � � �� � � � � ���

fi
od
if � � & then� � � � � �
. +� � � � & '�������' & �

� +� � � � �� � � � � ���
fi

od
b := 0
for
�

from
�

to � do
if � � & and

� � � +� � �� � then� � � �
fi

od
for
�

from
�

to � do
� +� � � � +� � � + �od

for
�

from
�

to � do
if
� � � +� � ��� then
� +� � � �

� ��� � � � � +� � � � '������ ' � � � � � � � +� � � � �
fi

od
Perform ���������	��
� � . + ' � + � and replace each guess � � by

� � � � �
end

Figure 7.7: The General Algorithm
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� There is an adversarial strategy which causes any algorithm � to produce a regret of � � � � with
probability

� � � .
Proof: In the previous section, we have already seen that we can map a sequence of actions for the
prediction game

� . + ' � + � to the instance
. ' � in a way that does not essentially increase the regret. This

proves the first part of the theorem. We can rephrase the second part as follows:

Given an instance of the prediction game
� . ' � � let

. + and � + be the matrices obtained through
the transformations detailed in the previous section. If there is no - such that

. +�- � � + , then
any prediction algorithm will undergo a loss � � � � .

We associate a graph
� � � � ' 	 �

to the partition �  � � + � � '�������'  � � + � � � by defining
� � � � � �� � � +� � �� �&� and

� � +� ' � +� � � 	 if and only if � +� � � +� or the sets
 � � +� � and

 � � +� � share a facet, i.e. a
face of dimension � � � . Note that for all

�
the set

 � � +� � describes a polytope of dimension � � �
, or its

interior
� � � +� � is empty.

Let �
� 	 �

be the linear span of the set of differences between vectors at the endpoints of each edge in
	 . We have the following

Lemma 41 �
� 	 � � � � � � +� ��� +� � � � � .

Proof: For each � +� � �
, let � +� � � +� � � +� , � � +� , ��� +� � � ����� � � +��� � � + � , where

� � +� ' � +� , '������ ' � +��� ' � + � �
is a path connecting � +� to � + � , if such a path exists.

We need only to prove that
�

is connected. Given the two vertices � +� and � +� , we seek a path joining
them. Consider the segment joining a point in the interior of

 � � +� � to one in the interior of
 � � +� � .

Since the set of mixed strategies is convex, every point in the segment is a mixed strategy. Let us pick an
arbitrary orientation for this segment and consider the sequence of polytopes that share with the segment
some interior point, and specifically two consecutive entries in the sequence,

 � � + 	 � and
 � � + � � . If the

segment goes from the first to the second through a facet, then the two corresponding vertices in the graph
are joined by an edge. If not, that means that the two polytopes share only a face of dimension � � � or
lower, e.g. a vertex or an edge. In that case we need to pick a different point in, say,

 � � � � . This is always
possible because

 � � � � has dimension � � �
whereas the set of points collinear with the designated point

in
 � � � � and any point in any face of dimension � � � or lower has dimension at most � � � . �
Now, let us assume that there is no - such that

. +�- � � + . This implies that there is � +� such that
� +� �� � �/. + � . Let us assume

� � � +� � � � . By definition of � + , � +� � � � � '�������' � � for some � . This
implies, by definition of

. + , � +� � � � . + � , a contradiction. Therefore,
� � � +� � �� � and, by lemma 41,

� � 	 � �� � � . + � . Hence, for some
� � +� ' � +� � � 	 , we have that � +� � � +� �� � � . + � . Since the range

of
. + is the orthogonal complement to the null space of

. + ! we have that, for some non-zero vector	 � � #�� �/. + ! � ' 	 � � +� � � +� � ���& . Let
�

be a point in the interior of the facet shared by
 � � +� � and � � +� � . We have that

�
� � 	 and

�
� � 	 are both mixed strategies for some � . They are indistinguishable

from the point of view of any algorithm because
���
� � 	���. + � ���

� � 	���. + � ��. + , but they correspond
to different optimal actions, and the regret implied by making the wrong choice is  � 	 � � +� � � +� �  . �

7.6 Conclusion and Open Problems

We solve the problem of discrete loss and feedback online prediction games in its general setting, presenting
an algorithm which, on average, has sub-linear regret against the best constant choice, whenever this is
achievable.

In the full knowledge case, it is well known that the average per step regret is bounded by
��� � 4 � � � � .

In [ACBFS95] it is shown that, if the feedback is identical to the loss, there is an algorithm the average
regret of which is bounded by

��� � 4 � � � � (omitting polylogarithmic terms), recently improved to
��� � 4 � � � �

[Aue00]. In this chapter, we show that, for every “reasonable” feedback, the average per step regret is at
most

��� � 4 � ��� � . Otherwise, no algorithm can do better than � � � � .
If the number of rounds � is unknown in advance the general algorithm can be modified to work in

epochs, a technique shown in [ACBFS95]. This modification does not change the asymptotical bounds on
the regret.
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We applied the FeedExp3 algorithm to bandwidth allocation problems and showed a sub-linear regret
for the severe and the gentle cost function under threshold feedback. We will discuss in the next chapter
whether this results can be actually applied to the original setting.

While we proved that no algorithm can attain sub-linear regret on a larger class of problems than ours
does, it is an open problem whether such general prediction games can be solved with a bound on the regret
as good as the one obtained for the multi-armed bandit problem, in the most general setting or under some
additional assumptions.

It is straightforward to transfer the upper bounds shown for the worst case regret against constant
predictors to the finite pool of general predictors (a.k.a. “expert”) model, in analogy with the argument of
[ACBFS95], Section 7. However, the lower bound is not readily applicable to this case and, therefore, it
is an open question whether our general algorithm achieves sub-linear regret whenever it is possible in this
context.

Another interesting question is whether a uniform algorithm exists that works for any feedback and loss
function and achieves the best known performance for each feedback. Note that the algorithms presented
in this work, even when given as an input a feedback function corresponding to the “full knowledge” case,
guarantees only an average per step regret of

��� � 4 � ��� � , whereas
��� � 4 � � � � is the best bound known.



Chapter 8

Bandwidth Allocation under
Adversarial Timing

8.1 Introduction

In this chapter, we investigate distributed and cooperative bandwidth allocation protocols. A well-known
example for such a protocol is the Transport Control Protocol (TCP) in the Internet. This protocol was
modified when the Internet experienced a severe service degradation or “Internet Meltdown” during the
early growth phase of the mid 1980s [Nag84]. The dynamics of packet forwarding were underestimated
which resulted in a “congestion collapse”. The fix for the Internet meltdown is the “back off” behavior
of TCP [Jac88]. In simplified form, when TCP suffers a packet loss, it decreases its sending rate (by
decreasing its window size by a factor of two), and when a packet is successfully delivered, it increases
its sending rate (by increasing its window size by one). This additively increasing and multiplicatively
decreasing (AIMD) behavior implements social interaction between the allocation patterns of concurring
host-to-host connections.

Consider two connections � and
�

sharing a link of capacity � , see Figure 8.1. Suppose the algorithm
allocating each connection bandwidth uses AIMD behavior like in TCP and assume that if the sum of the
chosen packet rate of � and

�
is larger than � , then packets are dropped. Let � be the first established

connection and after some time
�

will join in. We observe that as long � is the only active process, its
bandwidth of � oscillates: � increases its bandwidth until it is larger than � , then packets are dropped
and thus � decreases its bandwidth by a constant factor, then � ’s bandwidth increases and so on. Now

�
joins and since � does not use the complete bandwidth � for most of the time, there is some bandwidth
left for

�
such that

�
has a chance to get a constant fraction of the bandwidth. Clearly, the process does

not converge and does not reach full utilization, i.e. in an average round only a constant fraction of the
available bandwidth is used.

Time

Bandwidth

P

Q

Packets dropped

Figure 8.1: Allocation behavior of pure AIMD.
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Time

Bandwidth

P

Q starts and allocates
no bandwidth

Figure 8.2: Unfair allocation behavior of an online prediction algorithm.

Now let us replace the AIMD behavior by an online prediction algorithm introduced in the previous
chapter (E.g. we use FeedExp3 algorithm and neglect the influence of the uniformly distributed testing
pattern or we use the Hedge/Multiplicative Weighting algorithm). Figure 8.2 shows that when � starts it
quickly allocates the whole bandwidth � if it minimizes the gentle or the severe costs. Then

�
starts with

minimal bandwidth & . Now observe that � does not suffer any loss in the gentle and severe cost model,
since the available bandwidth for � is � . The available bandwidth for

�
is & , hence the cost for

�
is & , too.

Since both allocation algorithms suffer no loss, the allocated bandwidths of both algorithms will not be
changed anymore. We notice that the system converges and reaches full utilization. However, the situation
is undesirable, since it is unfair.

But also for TCP fairness is not guaranteed, since its behavior depends heavily on the speed at which
individual players increase their rate. It is known that TCP is inherently unfair to connections with long-
round trip times [FJ92] and the unfairness can sometimes be as bad as the inverse square of round-trip
times [LM97].

In this chapter we concentrate on fairness and full bandwidth utilization. For this, we consider an
asynchronous distributed network in a very simplified setting. In contrast to TCP and the feedback model
in the preceding chapter (but along some concurrent concepts), we allow the protocols to see the residual
bandwidth, while other information like the allocated bandwidths (or even the number) of competing pro-
tocols is not used. Following the ideas of [BEY98, KKPS00] we challenge our protocols by an adversary
to ensure robustness and reliability. In [KKPS00] this is modeled in form of the choice of the bandwidth
by an adversarial strategy. In our new approach the link bandwidth is fixed and fluctuations in the available
bandwidth for individual players are modeled using an adversary who determines when player enter and
leave the system and, in particular, controls the timing of rate update operations of individual players. Let
us describe this in more detail.

Consider a set of ! players who share a single bus of bandwidth � . Each participating player
�

holds
a rate variable �)� describing how much bandwidth the player currently occupies. From time to time new
players arrive and claim a fair share of bandwidth while other players leave the system and release allo-
cated bandwidth. Clearly, such a dynamic environment requires a resource management that adapts the
bandwidth allocation continuously to the varying circumstances. For example, if several players share a
single bus and a new player arrives then the established players have to release parts of their bandwidth so
that the newly arrived player can receive a fair amount of bandwidth. Similarly, if some players leave the
system then the remaining players can divide up the released bandwidth.

Let us transfer TCP into this model: A player increases its rate by one unit when he observes that its
current rate value can actually be realized since � � � � � � . Eventually, the rates will be increased by such
an amount that the sum of the individual rates exceeds the available bandwidth and the system collapses.
This collapse is observed by the individual players and as a response all players halve their rate values.
Then players continue with the linear increase and so on.

Recently, some TCP implementations which use more aggressive congestion strategies and increase
their rates at higher speed have been suggested. In fact, already today the speed at which players increase
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their rates depends on many different aspects, especially on the so-called round-trip times, which again
depend on the bandwidth utilization and, hence, on the rates chosen by the players.

In order to study the influence of different speeds in our toy model, consider two players � and
�

who
interact on a bus. Suppose player � increases his bandwidth � times as fast as player

�
. Then, on the long

run, the average rate of player � will be � times higher than the average rate of player
�

. (This is because
the ratio between the sum of rate increments and the sum of rate decrements converges against one with
time so that the average loss of player � in case of a collapse must be � times higher than the one of player�

, which in turn implies that also the average rate of � must be � times the average rate of
�

.)
We summarize that different speeds for updating the bandwidths can result in an unfair bandwidth

allocation in practice as in our toy model (see also [CJ89, MSM97]). In the following, we will have a
closer look at this kind of problems in an adversarial model of time. We start with upper and lower bounds
for a very simple model in which players interact on a single bus. Afterwards we generalize our model to
general networks.

8.1.1 Model 1: Fair bandwidth allocation on a single bus

Consider a single bus of bandwidth � . We assume an open system in which players can enter and leave the
bus continuously. Let � denote the possibly infinite set of players. When players from � enter the bus
they request a share of its bandwidth, and when they leave the bus they release the allocated bandwidth.
Active players (i.e., players who entered but did not leave the bus) need to agree on the share of bandwidth
they receive. This is done by so-called “rate update operations” that active players can perform in order to
adjust their individual share of bandwidth. We formalize this as follows.

We model the open system by an adversary that specifies a sequence of events � � � � � � � � ����� , where
each event � � is a tuple

��� '1( � with
� � � and ( � � enter ' leave ' update � . With each player

� � � , we
associate a positive rate variable ��� the value of which is zero if the player is inactive, that is, the initial
value of �� is zero and �)� is reset to zero whenever the adversary calls

��� ' leave
�
. The adversary calls update

operations only for active player. In particular, if the adversary calls
��� ' update

�
then player

�
can set � � to

any positive value. In other words, the adversary determines how often and when players can redefine their
rate. At any given time, we define the share of bandwidth �� player

�
receives by

� � � � � � if � � ��� � � � � ,
& otherwise .

Thus, the share of bandwidth of all players is zero when the system is overloaded. (For analogous models
see, e.g., [KKPS00].) A fair and efficient allocation protocol aims to set the rates in such a way that all
players in the system get almost the same share of bandwidth and the unused bandwidth is as small as
possible.

Clearly, when the adversary frequently changes the set of active players or does not allow to perform
a reasonable number of update operations for all active players, then it is impossible to achieve a fair and
efficient allocation of bandwidths among the active players. Therefore, we focus on periods of times in
which the system is closed. A closed system period

��� '�� �
is defined by a possibly infinite interval of time�

and a finite set of players � � � . During
�

there are no players entering and leaving the system and
the adversary only allows the players in � to perform update operations. Our goal is to rapidly approach
a fair and efficient allocation of bandwidth in closed system periods. For this purpose, we investigate the
following simple protocol which is also known as the Phantom Protocol [AMO00]. Let � � �

denote a
global parameter. Figure 8.3 shows the allocation of three players using this protocol.

The Virtual Player Protocol (VPP)
Suppose player � performs an update operation. Let �� � � � � � � � � � ��� � � '1& � denote the
unused bandwidth immediately before the update operation. Then player � sets

� � � � �
� � � � � � � �� � �

In order to describe the behavior of the virtual player protocol (VPP) in a closed system period
��� '�� �

,
let us partition

�
into contiguous phases in such a way that each phase contains at least one update operation

for each player.
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Bandwidth

R

Figure 8.3: Allocation behavior of the Virtual Player Protocol.

Theorem 29 Let � � denote a suitable absolute constant. Consider any closed system period
��� ' � �

. Define! �  �  and let � �
�
�

 � � . Within the first � � � � ! � � ����� � � ! � � � phases of the interval

�
the VPP reduces

the unused bandwidth to at most
� �
� �

� � and yields

� � � �
� � ��� � � � �! ' � � � �

� � � �
! �

for all all
� � � , regardless of the initial rates.

In other words, the VPP utilizes the available bandwidth almost completely and distributes it in a fair
way among the players in � . In fact, one can interpret the unused bandwidth �� (which is the only feedback
used by the VPP) as the rate of an additional virtual player. Suppose � � �

. Then an update operation of
player � simply brings � � into line with �� . This way, the bandwidth will finally be divided up in a fair way
among all players in � and the virtual player. By increasing � , the share of the virtual player can be made
arbitrarily small. A formal proof of the theorem is given in Section 8.2.

Let us measure the length of closed system periods in the number of phases they define. Then the
theorem implies that the VPP converges against a completely fair bandwidth allocation in closed system
periods of infinite length. In other words,

� � �� �
�
� � � � �� � � � � � � '

for all players
� '2� from � . Observe, however, that the VPP does not utilize the full bandwidth. In fact, the

wasted bandwidth is � �
�
�

 � � in the limit. This gives rise to the question whether it is possible to obtain

fairness and full utilization simultaneously. The following theorem answers this question negatively and,
hence, gives a strong motivation for leaving a small fraction of the bandwidth unused.

Theorem 30 For any bandwidth allocation protocol
�

converging against full utilization in closed system
periods of infinite length, there is an adversarial sequence � that defines a closed system period

��� '�� �
of

infinite length with  �  � � that enforces a bandwidth assignment of at most ��� ( � � & ) for one of the
players in � .

This surprising impossibility result follows from a simple, elegant lower bound argument. The corre-
sponding proof is given in Section 8.3.

Note that the incompatibility of fairness and full utilization also holds if all players know the complete
current status, e.g. for explicit rate based algorithms like in [CRL96, Rob96].
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8.1.2 Model 2: Bandwidth allocation in general networks.

We generalize the above adversarial model to general networks. The network is modeled by a (hyper)graph
- � � � ' 	 �

. Edges represent buses, routers, or other shared resources of limited bandwidth. The band-
width capacity of edge � is denoted by � � � � . Each player comes with a set of edges constituting a simple
path (i.e., a path in which every edge appears at most once). For player

� ��� , let � � � � ��� � denote the
player’s path, and for an edge ��� 	 let � � � � � � denote the set of those players whose paths contain � .

As before, an adversary determines when players enter and leave the system and when they can update
their rates. For the time being, we assume that update operations are performed atomically, i.e., an update
operation is not performed by the adversary until the previous one has become effective on all edges of the
respective path. We generalize the VPP as follows. Let � � �

denote a global parameter.

The Virtual Player Protocol for General Networks
Suppose player � performs an update operation. For every edge � , let �� � � � � � � � � �� � � � � � � �)� � � � denote the free bandwidth on edge � . Then player � sets

� � � � �
� � � � � � � � � �������� �
	 � � � � �� � � � � � '

where � � �
denotes a global parameter.

The most widely accepted criterion for a fair and efficient bandwidth allocation in networks is the
concept of “max-min fairness” [Jaf81, KRT99]. The network is considered to be in a state of max-min
fairness if it is impossible to infinitesimally increase the rate of any player without exceeding the edge
capacities or decreasing the rate of players whose rate is equal or smaller. Our impossibility result for a
single edge implies that one cannot converge against max-min fairness in closed system periods. Therefore,
we relax the concept of max-min fairness as follows.

For every 0 � & , the network is in a state of 0 -max-min fairness if it is impossible to increase the
rate � of any player by more than a factor of

� �
� 0

�
without exceeding the edge capacities in ��� � � ��� � or

decreasing the rate of players whose rate is at most
� �
� 0

� � . We define that a protocol converges against
0 -max-min fairness if, given any closed system period

��� ' � �
of infinite length, the rates converge against

a state in which the above criterion is fulfilled among the players in � .

Theorem 31 The VPP converges against
�
� -max-min fairness.

The proof of the theorem can be found in Section 8.4. If � � �
then we can describe the state against

which the protocol converges as follows. For every edge � , we define a virtual player whose path contains
only the edge � . The rate of this player is defined to be the unused bandwidth on edge � . Then the system
converges against a state of max-min fairness among all participating players including the virtual players.
Increasing � simply decreases the share of the virtual player and, hence, the wasted bandwidth.

Unfortunately, the analysis showing the convergence does not also prove a fast convergence. For this
purpose, we investigate a discrete variant of the VPP adopting some ideas of [AS98b], that is, the rate
values of active players are of the form

� �
� �

� � , for fixed � � & and � � �
. Fix any closed system

period
��� '�� �

. Let the congestion � � � ��� ' � �
denote the maximum number of paths (of participating

players) which contain the same edge, and let the dilation � � � ��� '�� �
denote the maximum length of

a path. Furthermore, let � � � ��� '�� �
denote the ratio between the bandwidth that is available for the

participating players on the widest and the narrowest edge.

Theorem 32 For every 0 � & , there is a discrete variant of the VPP that approaches a 0 -max-min fair
state in any closed system phase. This state is reached after

��� � � � � � � ������� � � � 0 � � phases.

The proof of this theorem is given in Section 8.5. Observe that the performance of the protocol depends
only on local parameters such as the congestion or the dilation but not on global parameters like the total
number of players or the size of the network. Furthermore, the protocol does not need to be parametrized
with any other parameter than 0 , and the only feedback a player needs in order to perform an update
operation is the unused bandwidth on the narrowest edge on its path.
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8.2 The Virtual Player Protocol

We will now prove that the Virtual Player Protocol (VPP) converges against fairness.
Proof of Theorem 29: W.l.o.g., assume � � � � '�������'�! � . We add a virtual player 0 whose rate is defined
by � � � � � �� . This way, the set of all participating players is

� ! � � � � � � &�'�������'�! � . Furthermore, we assume
that the closed system period starts with � � . We want to show that the maximum distance between any pair
of rates (including the rate of the virtual player) is at most

� � � � � � � ! � after � � ��� � ! � ����� � � ! � � phases,
which implies the theorem.

For every
� � � ! � � �

and � � �
, let �)� � � � denote the rate of player

�
after step � and let ��� � & � denote the

initial rate. For � � & , let
	 � � � � ��  � � � � 
 � � � � � � � � � � � � � � �

denote the maximum distance after � . We define the following potential function

� � � � �� �  � � � �
 � � � � � � � � � � �  � �

� � �
 � � � � � � � � � � �  �

Observe that ! 	 � � �*� � � ! � 	 � , for every � � & . Hence, we only have to show that the value of the
potential function drops below

� � �	� � � � ! after � � ��� � ! � ����� � � ! � � phases.
For � �

, define 0�� �  � � �
� � � � � � � � �  , i.e., the distance between the virtual player and the activated

player
� � . We observe � � � � � � 0�� because

 �)� �
� � � � � � � � �  �  �)� �

� � � � � � � � � � � � �  � 0 �
and, for every � � � � � � � � ,

�  � � � � � � � � �
� � �  �  � � � � � � � � � � �  � �  � � � � � � � � � � �

� � � � �  �  � � � � � � � � � � � � � � �  �

Thus, the rate of the virtual player changes by
�
� 

� 0 � during step � . In other words, the potential decreases

by the distance that the virtual player moves times
� 

�
� .

Now, for � � �
, let � � ! � and 	 � ! � denote the potential and the maximum distance, resp., at the end of

phase � , and let � � � � and 	 � � � denote the corresponding initial values. Observe that the distance traveled

by the virtual player in phase � is at least
� � 0 � , � �� 


� because its rate is averaged with the smallest and the
largest rate in every phase. As a consequence,

� � ! � � � � ! 4 � � � � � �
� � 	 � ! 4 � � �� � � � � � ! 4 � � � 	 � ! 4 � � �

Applying 	 � ! 4 � � � � � 0 � , �� � � and � � � � � � ! � � gives

� � ! � � � ! � �
�
� �

�
� ! �  ! �

Finally, we observe that

� � ! � � �����! � � � � � � �
!

for � � ��� � ! ������� � � ! � � � � . This completes the proof of Theorem 29.

Technical remarks. On the first view it might seem that the speed of convergence should be polyloga-
rithmic rather than polynomial in ! . In fact, under a randomized sequence of activations of players the rates
would converge within

��������� ! � phases. A simple counterexample, however, shows that the adversary can
force the process to take a linear number of phases until all players come close. This counterexample is
given in Section 8.6.

The system of rates can also be interpreted as a simple physical system in which we are given ! � �
perfectly isolated rooms that initially have different temperatures. The rooms

�
to ! have a door leading to
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room 0. If such a door is opened then the temperatures in both rooms are averaged. Clearly, if all doors are
used frequently then the temperatures in all rooms will come closer and closer. In other words, the entropy
of the physical system decreases.

This metaphor suggests to consider the entropy as a potential function, e.g., in form of the sum of the
squares of the rates or in form of the relative entropy (Kullback Leibler divergence). In fact, both of these
potential functions can also be used in order to show the convergence. However, these functions do not
decrease as fast as the potential function � (e.g. on the initial instances of the counter example given in the
Section 8.6) and, hence, lead to slightly weaker upper bounds on the performance. �

8.3 Fairness versus Full Utilization

We will now show that under adversarial timing fairness and full utilization cannot be both satisfied.
Proof of Theorem 30:

Assume that such a protocol
�

exists. We start with two players Tom and Tina. At the beginning Tom
allocates all the bandwidth and Tina none at all. The adversary activates Tina only if the free bandwidth is
smaller than

�� � 
 � � � , where ! denotes the number of Tinas active rounds. Particularly this implies that Tina
is activated again if she allocates more than the free bandwidth (system overload). Since the protocol has
to resolve this blockade, we consider only the last allocation of Tina in this sequence.

If the protocol converges to full utilization, Tina is activated infinitely often. If not, Tom would remain
alone in a closed system period where the wasted bandwidth never falls below a constant value which
contradicts our assumption.

So, Tina can allocate additional bandwidth of at most
�� � in her ! -th active round. Hence, her overall

bandwidth is bounded by � �� " � �� � � � �
�
� . �

8.4 VPP Converges against
�
� -max-min Fairness

Proof of Theorem 31:
Fix a closed system phase

��� '�� �
. W.l.o.g., we assume � � � � '������ '�!�� and all other players have rate

zero. We show that the VPP converges against a particular state
�

which we describe in the following
paragraph.

For every edge � , we define an additional, virtual player whose path contains only edge � . The rate of
this player is defined by the unused bandwidth of edge � times � . The set of virtual players is called � + .
Now let us imagine for a moment that virtual players have a rate independent from the unused bandwidth of
the respective edge, that is we want to treat virtual players like original players, except that the bandwidth
used by a virtual player is only

�
� times its rate. Suppose we increment all rates including the rates of the

virtual players in round-robin fashion with infinitesimal increments, starting with all rates being zero, until
the bandwidth capacities of the narrowest edges are reached. At this point, we stop to increase the rates for
all paths using one of these edges and continue with the remaining paths in the same fashion until all rates
are settled. Let us denote the final state of this process by

�
.

We observe that
�

utilizes the bandwidth of all edges if we take into account also the bandwidth
occupied by the virtual players. From now on, we consider the bandwidths occupied by the virtual players
again as unused bandwidth. For player

�
, let � ��� � denote one of its bottleneck edge, i.e., an edge because

of which it stopped increasing the bandwidth. By our incremental construction, the rate of player
�

in state�
is equal to the final rate of the virtual player of � ��� � . In other words, the rate of every player

�
in
�

is �
times the unused bandwidth on its bottleneck edge � ��� � . Furthermore, the values of the unused bandwidth
on all other edges on � � � � ��� � are not smaller than this value. This implies that

�
is a fixed point, i.e., the

VPP does not diverge from state
�

once it reaches this state. Furthermore, we can observe that
�

satisfies�
� -max-min fairness since increasing the rate of a player by more than

�
�
�
� would exceed the capacity on

its bottleneck edge. (In fact,
�

yields min-max fairness if we take into consideration also the rates of the
virtual players.) Therefore, it remains only to show that the VPP converges against the fixed point

�
.

For an edge � � 	 , let � &� � � � denote the value of the rate of the virtual player on � in the steady state�
. Define �%& � � � &� � � �  � � 	 � . Define � �  �%&  . (Observe that possibly � �  	  .) Let � � � � '�������'�� � � �
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denote the elements from � & in increasing order, and define 	 � � � � � ��� 	  � &� � � � � � � � � � for
� � � � � .

Furthermore, let � � � � � � denote those players whose bottleneck edge is in 	 � � � , i.e., the set of players
whose steady state rate is equal to � � � � . We will show by induction on � that the rates of the players in � � � �
will converge against � � � � .
Claim 1 Let � � & denote any positive real number. For every � � � � '������ ')� � , there exists � � �

such
that, after phase � , the rates of all players in � � � � are in the interval

� � � � � � � ' � � � � � � � .
In the rest of the remaining analysis we will show this claim using induction. Let � & � � � denote the

unused bandwidth on edge � if we assume that the players � � � � � � ��� � � � � � � �
have bandwidths as

described by
�

and all other players have rate zero. In fact, we can assume by induction that the rates of all
players in � � � � � ��� � � � � � � ���

deviate at most by � � � ! from their values in
�

for any � � & . Under this
assumption, the bandwidth available for the players in � & � � � � � � ����� � � � � � on edge � fluctuates only
within the interval

� � & � � � � � ' � & � � � � � � . Observe that we can choose � arbitrary small. Nevertheless,
we need to take into account these fluctuations explicitly because phases can have arbitrarily length so that
a small change in the bandwidth at any given time potentially has vast consequences on the system of rates
in later time steps that might be even in the same phase.

In the following, we consider only the players in � & , that is, we ignore the players from � � � � � ��� � �
� � � � ���

but we take into account the small fluctuations they cause as follows. We define that the maximal
available bandwidth on edge � is � + � � � � � & � � � � � but, in each step � , players may observe a slightly
disturbed bandwidth � +�

� � � � � �3+ � � � ����� ' � + � � � � . By our construction, none of the players in � & uses
an edge from 	 � ��� � ����� � 	 � � � � �

. Therefore, we can restrict our attention to the set of edges 	 & �
	�� � 	 � � � � ����� � 	 � � � ��� �

. Let � + + denote the set of virtual players of edges in 	 & .
Now fix an edge � . Let � denote the number of players on this edge. Let � � � + � � � denote the maximal

bandwidth of this edge, and � the number of players whose paths contain � . If an external observer only
sees the behavior of the rates on edge � without knowing any details about the rest of the network then he
can observe a behavior which is covered by the following protocol.

Adversarial VPP
Suppose player � performs update operation � � . Let �� � � � � � � � � � �� " � �)� � � � � �

. Then
player � sets

� � � � � � � �
� � � � � � � � � � �

� �� � � � � � � � � � '

where � � � � &�' �� � ��� � is selected by an adversary.

The adversarial sequence � models the disturbing influence due to other edges and bandwidth fluc-
tuations simultaneously. Let � � � � �� denote the bandwidth of the virtual player, also called player 0.
Furthermore, let

�
denote the fix point of the protocol under the assumption that � � � & , for all � , that is,

� � � �
� ! � � �

� � & � � � � � � �
� ! � � � � � � � �

Observe that at least one player
� � � � �

���
satisfies � � � �

at any given time. Define � ��� � �
� � � � � � � 
 � � � � � � & � � , i.e., the smallest initial rate.

Lemma 42 Assume � ��� � � �
� � , for any � � & . Then in every time step after performing one phase,

� � � � ��� � � � � 4 � 4 � .
Proof: The lemma follows because of the following monotonicity property of the VPP on single edges:
Given an adversarial sequence � , increasing � � , for any � , increases � � � ��+ � and does not increase � � � ��+ � ,
for every ��+ � � , � � � � � . (This property can be shown easily by induction. Observe that monotonicity
against adversarial bandwidth fluctuations holds only for single edges. In networks with several edges,
reducing the bandwidth of a single edge can decrease and increase rates on other edges. In fact, a small
local change in bandwidth can have strong influence on the rates of remote edges. For an example showing
exponential effects in a similar context see [AMO96]. Here we cover these vast inter-dependencies among
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different edges by worst-case assumptions based on the adversarial sequence � .) Because of this mono-
tonicity property, we can assume in the following that � � � & , for all � , without increasing the rate of the
virtual player.

Next we observe that either the initial value of � � is at least
�

or there is another player with at least
rate

�
that performs an update during the first executed phase. Consequently, there is a step � & in the first

phase yielding

� � � � & � � � � � � � ��� �
�

� � � � � ��� � �
�� �

Once more, we apply monotonicity and assume, w.l.o.g., that all updates �,� ( � � � & ) moving the virtual
player upward are skipped, i.e., all updates with � � � � � � � � � � � � � � �

. Under this assumption, each player
is called at most once after � & because � � � � � in all time steps after its first update. Now a straightforward
induction shows that

� ��� � �
�� � 
 � '

after the
�
th of at most � updates. Clearly, this proves the lemma. �

Now let us take into account all edges again. We consider double phases, i.e., pairs of contiguous
phases. Let � ��� � denote the minimal rate over all players in � & � � + + at the beginning of a double phase.
Suppose � ��� � � � � � � � � . Then Lemma 42 gives a lower bound on the rates of the virtual players after the
first phase, namely � &� � � � ��� ��� � � �)� 4 � 4 � , for every ��� 	 & , where � denotes the maximum number of
players on the same edge. Thus, in the second phase, each player is averaged with a virtual player of value
at least � ��� � � �)� 4 � 4 � so that, after the execution of one double phase, the minimum rate over all players
increases to

� � ��� � � � � ��� � � �)� 4 � 4 � �	��� �
� � � ��� ��� � � �)� 4 � 4 �� � � '

provided � � � � 4 � 4 � . Consequently, all rates will have value at least � � � � � � after a finite number of
phases.

Finally, we observe that this lower bound on the minimal rates also upper-bounds the maximal rate for
edges from 	 � � � . For � � �

the maximal rate is � � � � � ! � � � � � as � � � � denotes the average rate over all
players. For general � � �

a small calculation shows the maximal rate is � � � � � � with � � ��� � ! � � . This
proves Claim 1 and, hence, completes the proof of Theorem 31. �

8.5 The Discrete Virtual Player Protocol

Proof of Theorem 32: We now introduce a discrete version of the VPP that guarantees to reach a fair
and efficient allocation within a small number of stages. Here “discrete” means that rates of active players
are of the form

� �
� �

� � , for integral � and positive, real � . We use
� � � to indicate upward rounding w.r.t.

this representation. Let � � & , � � �
, and � � �

denote global parameters whose actual values will be
determined during the analysis.

Discrete Virtual Player Protocol
Suppose player � performs update operation � � . For every edge � , let

�� � � � � � � � � � �
� � � �$� � � �

� � �

denote the free bandwidth on edge � . Set � � � ��� ������� �
	 � � � � �� � � � � .
If � � � � � � � �� � � � ' � � � �

� � � � � then

� � � � � �
� �
� � � � � � � � � � �

� � ��� �

For analyzing the discrete VPP, we use a similar approach as for the fractional VPP. We define a virtual
player for each edge � . The rate of this player is denoted by � � and we define � � � � � � � � �� � � � � . Let us
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ignore the rounding for a moment. Then we can summarize the above protocol as follows. An update of
player � brings the rate � � in line with the minimum virtual rate � over all � � ��� � � � � � , unless � � is only
slightly larger than � , that is, unless � � � ��' � � � � � � � � . In the following, the minimal bandwidth over all
players including virtual players is denoted by � ��� � � � � , for � � & .

Observation 1 The sequence of rates � ��� � is non-decreasing.

Let us partition time into super-phases. Each of these super-phases consists of � � � phases or � �
double phases. We will use the discrete rates in order to show that � ��� � increases by a factor of

�
� � in

each super-phase until the system of rates runs into a bottleneck. More formally, for � � & let �
� ! ���� � denote

the value of � ��� � at the end of super-phase � . We will show by induction that �
� ! ���� � � � � � ���� � � � � �

� ! , where� & denotes the first super-phase in which at least one edge “settles down”. In super-phase � , an edge is
called settled if the rates of all players on the edge are within the interval

� �
� ! 4 � ���� � ' �

� ! 4 � ���� � � �
� �

� � � and the

rate of the virtual player is exactly �
� ! 4 � ���� � .

Observation 2 Once an edge settles during any super-phase, the rates of the players crossing this edge
are fixed forever.

Now let us fix an arbitrary super-phase. We assume that there is no settled edge at the beginning of the
super-phase. W.l.o.g., the super-phase starts with update � � and the smallest initial rate in the super-phase
is � ��� � � �

. We need the following three lemmas in order to show � ��� � � � �
� �

�
at the end of the

super-phase.

Lemma 43 For every non-virtual player
�
, if � � � � � � � �

� �
�

then �)� � � � � � � � �
� �

�
, for every � � & .

Proof: As all players including the virtual players have at least rate one, we can conclude that �� � � � � ��
� � � 
 � � , for every ��� 	 . Thus, �)� � � � � �

� � implies

� � � � � � � �
�
� � �
� �

�
�

�
� � � 
 � � �

� � � � � � � � �
�
�
� � ��� �

� � � '

so that �� � � � � �
is rounded up to

�
� � . �

Lemma 44 For every non-virtual player
�
, if
�

is called in step � � �
with � � � � � � �

and all virtual player
on its paths have at least rate

�
� � then ��� � � � � � � �

� � , for � � & .

Proof: As all virtual players on
�
’s path have at least rate

�
� � , the unused bandwidth on each of these

edges is at least
�

 �� , for some ( � & . Consequently,

�)� � � � � � � � � � � � � 
 �� � �
� � � � � �

� � �

�

Lemma 45 For every non-settled edge � , in every phase there is at least one update � � after or before
which the virtual player of � has at least rate

�
� � .

Proof: Either the virtual player has rate
�
� � already at the beginning of the phase or at least one of the

players must have rate larger than
� �
� �

� � , otherwise the edge would be settled. Let us assume that the
virtual player has rate one. Then the unused bandwidth is at most

�
� . Let � denote a player with at least rate� �

� �
� � . During the phase, � updates its rate at least once. Let � denote the corresponding time step. Then

�� � � � � � � � � � � � � � � � �� �� � � � �
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We set � � �
�
����� �


 �

� �
� � � � . (If we assume �

� �
� � , then � � ��� .) This is the minimal assignment

yielding �)� � � � � � � � �
� �

� � 4 � . This way, the rate of player � is decreased by more than � , which in turn
implies that the unused bandwidth increases by more than � , so that the rate of the virtual player is at least� �� 4 � � � � � � �

� � . �
Lemma 43 implies that we only need to show that each player with rate one at the beginning of the

super-phase is lifted up (i.e., its rate is set to
�
� � ) once during the super-phase in order to show that all

players have at least rate
�
� � . Now consider a double phase. Lemma 45 shows that every virtual player

gets loaded (i.e., the virtual rate is set to minimum
�
� � ) at least once during the first phase of the double

phase. Furthermore, Lemma 44 shows that a player with rate one is lifted up if all virtual players on its
paths are loaded. We conclude that every player with initial rate one is lifted up at his first update during the
second phase of the double phase unless there is one virtual player on his path that it not loaded anymore,
which means that this virtual player has lifted up another player before.

Let us call players sharing an edge neighbors. We conclude that, for every double phase
!

and every
player

�
with initial rate one, either player

�
or at least one of his neighbors is lifted up during

!
. This

implies that all players are lifted up during a super-phase consisting of � � double phases as each player
has at most � � � �

neighbors.
We summarize, the minimum rate � ��� � increases by a factor of

�
� � in every super-phase until at least

one edge settles down. Now let us set ��� �� and � � � �
�

.

Lemma 46 The set of settled edges and players satisfy 0 -max-min fairness.

Proof: By definition, the players on settled edges have a rate in
� � ' � � � �

� � � and the unused bandwidth
is at most

��� � . Hence, one cannot increase the rate � of one of the players by a factor of
�
�
�
� � �

� 0
without exceeding the unused bandwidth or decreasing the bandwidth of a player with rate

� �
� �

� � � �� �
� �

�
�
� � � �

� ��� �
� � � � �

� 0
� � , which corresponds to the definition of 0 -max-min fairness. �

Now suppose one or more of the edges settle down. Then we can exclude these edges and the rates
of those players using one of them from our considerations as the corresponding rates are fixed forever.
Hence, we can treat the system of remaining edges and players analogously to the original system. This
way, we continue following the allocation process until we find that the rates of all players are fixed in a
0 -max-min fair state.

It remains to analyze how many super-phases it takes until all players are settled. W.l.o.g., let us assume
that the capacities of the edges are from the interval

� � ' � � . Then one can show that the minimum rate after
the execution of only one double phase is � � � 4 � � ! � . (This follows analogously to the lower bound on
the increase of rates per double phase that we have done for the fractional VPP.) Furthermore, after the
last super-phase the minimum rate among the players having survived until the end of our construction is��� � � ! � . As the minimum rate among the surviving players increases by a factor of

�
� � per super-phase,

we conclude that the process settles down after
��� � �

� � � � � � � � � super-phases, which corresponds to��� � � � � � � ������� � � � � � � ��� � � � � � � ������� � � � 0 � � phases. Thus, Theorem 32 is shown. �

8.6 A Lower Bound for VPP

The ! players � � '�������'"! � start with bandwidths &�' � '���'�������'�! � �
with no wasted bandwidth, i.e. ��� � & � � &

and � � ! � ! � � � � � . In round � we activate player � � � � � � � �
� � ! � �

and update his bandwidth by
� � � �� � � � � � � � . This implements the Virtual Player Protocol for � � �� . So, player

�
is the first to begin

in a phase which consists of ! rounds. Note that for a closed system period the VPP protocol is equivalent
to a balancing circuit. Such a circuit can be described by a directed acyclic graphs with

	
sources and

	

sinks where every node has in- and out-degree 2. At the inputs � � '������ '�� � 4 � � �
are given. Every node

balances the values on the inputs � '� to the outgoing values
�
�
� � � � � , �� � � � � � . The behavior of such

a circuit can be described as the product � of the matrices denoting the balancing of the inputs. If we
iteratively apply this circuit it corresponds to repeat the activation strategy. Now we can apply standard
theory of Markov chains and it follows that the rate of convergence depends on the eigenvalues of � , see
[AHS94, Mih89, Fil91]. Using such Markov chain methods it is possible to analyze this example for fixed! . However, it is not clear how these results can be generalized. Therefore we follow a different approach.
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Note that in [RSW98] it is shown that the convergence behavior of balancing circuits also holds if applied
to a discrete domain. Therefore, this result transfers to the VPP in closed system periods with periodical
adversarial behavior.

Lemma 47 At the end of phase � we have for the bandwidths � � of players
� � � � � � � ! :�

� � � �
!
� � � ��� � � � �

! �

Proof: We prove this claim by induction. For the first round observe that for � � � � '������ '�!�� : � � � � � �
� � � � � � � � �

� ��� 4 � .
For the inductive step we know that � � � � ! � � � ����� ! � � � & '�! � � �

(From now on we use interval
arithmetic and ( �

�
as convenient notation for

� ( � � ')( � � � ). We claim that for
� � & :

� � � 
 � � 	 �� � 
 � � � � � � � ! � � � � � � ! � � � � � � ! � � � � � � � �
� ! � �

! � � 4 � �
This follows by

� � � 
 � � 	 �� � 
 � � � ! � �
�� � � � 4 � � � 
 � � 	 ��� � 
 � � � � � � � ! � �

�� � � � � ! � � � ����� ! � � �
�

��
� �
�
� � � � �

�

�
! � � � �

!  � 4 � 4 � 	 ��� �  
�
�� � � � � � � �

� ! � �
! � � 4 � 
 � �� �

� � �

� �
! � 4 � � �

! � � 4 � � ! � 4 � � ���! � 4 �  � 4 � � ! � 4 �
� �

� � �
� ! � �

! � � 4 �
�

This Lemma implies that VPP cannot reduce the maximum bandwidth difference by a factor of two
within

�� 	 �� � phases and
� �� 	 ��� � rounds.

A similar but more lengthy proof improves this bound to
� 4 � 	 ��� �� phases. Then, we replace the activa-

tion schedule by double-phases of sequences
� '���'�������'�! '"! ������'���' � for the same start configuration.



Chapter 9

Tree Network Design for the
Cost-Distance-Model

9.1 Introduction

Given
	

terminal points in the Euclidean space we investigate the problem of constructing a network with
small cost and short distances. This research is motivated by a number of practical problems arising in
network design for traffic in communication networks as well as real traffic in street or railway networks.
If one minimizes only the network size, i.e. the sum of all edge lengths, some distances between terminals
had to be considerably increased. On the other hand if we minimize the distances between all terminals we
face a complete network with large costs.

We want to investigate a measure considering the static network size and a more dynamic component
that considers the point-to-point distances as well as the number of messages/vehicles using this route. In
the case of a street network the static costs account for construction and maintenance, while the dynamic
costs described by the sum of the mileage of all cars account for the fuel cost of all cars. In the case of a
communication network we observe that there is a fixed cost for the physical network, while highly used
connections need additional hardware, such as more parallel wires or additional hardware, describing this
dynamic component.

In practice network designers model the demand in a network by a so-called origin-destination matrix� � �*' � � . For sites �*' � it describes the traffic starting at � with destination � . We model the cost of the
network for each edge by a linear function � �   �   � � � � � ���  � � � � � � � � � � '�� � � ��� � for � � ' � � � & , where
� � � � denotes the Euclidean length of the edge and �

� � � is the set of all pairs
� � '�� � such that the shortest

path between � and � contains � . By summing over all edges we define the Weighted Cost-Distance (WCD)
of a network


and a weighting � :

WCD 
 �� � � � ������������
�� � �   �   � � � � ����  � � � � �$� � �

� � '�� � � ��� �
�� � (9.1)

Thus, for a pair � '�� with large weight � � �*' � � (frequent traffic) a detour between � and � implies higher
costs than between pairs with smaller weight.

There is a trade-off between cost and weighted distance. If we choose � � � & we face the intensively
studied minimum network problem. If we choose � � � & , the optimal solution is a complete network for
sites in general position and positive weights. As we scale the parameter � � � � � from & to % , we see a
gradual transformation from the Steiner tree to the complete network. We are interested in the structure of
the intermediate states.

For simplicity we replace the above definition by the following. Since we only consider � � � & , we can
set � � � � � � �

if we simultaneously modify the weighting by � + � �*' � � � � ,� � � � � '�� � . This results in the

123
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following equivalent version of the Weighted Cost-Distance:

WCD 
 �  � � � ������#����� �
� � � � ��  � ���#����� �

� � '�� � � � � �*' � � ' (9.2)

where � � � � denotes the cost of an edge and � � � � '�� � the length of the shortest path from � to � in the
network


. We use this notation throughout this chapter. The corresponding optimization problem is

defined as follows.

Definition 12 Let � � � � '�� � denote the minimum length of a path of node � to � in graph - .

� Weighted Cost-Distance Network problem (CDN): Given a set of sites
�

in Euclidean space and
a weighting � � � � � �� � 
 , find a network

 � � � ' 	 �
that optimizes the Cost-Distance

WCD 
 �� �
(according to equation (9.2)).

� Weighted Cost-Distance Tree problem (CDT): Given
�

and � � � � � �� � 
 , find a tree � � � � '�	 �

that optimizes the Cost-Distance WCD 
 � � � .
In addition to the sites we allow the use of a non-terminal node set, if not explicitly stated otherwise.

9.1.1 Previous Work

If the weights are set to zero, and no restrictions for the non-terminals are given the Weighted Cost-Distance
problem reduces to the Euclidean Steiner Tree problem. It was shown to be NP-hard by Garey, Graham and
Johnson [GGJ76]. However, in his groundbreaking paper Arora [Aro98] showed that this problem admits
a polynomial time approximation scheme.

In [KRY95] the Balanced Spanning Tree problem was introduced. Here, the task is to find a tree which
optimizes the term

�������� ! � �
� � � � �

� ��� � ! � � '�� �
for a given root � under a metric � (not necessarily Euclidean). Non-terminal sites are not available.

The authors prove the existence of trees where the dilation of all nodes’ distances from the root is
bounded by any � � �

and the trees cost is at most � times the cost of the minimum spanning tree, where
� � �

�
�
� 4 � . This leads to a constant polynomial time bounded approximation algorithm.

The Balanced Spanning Tree problem is a variant of the Weighted Cost-Distance Network problem, if
we allow general metrics and exclude non-terminal nodes. The weighting is limited to � � ��' � � � �

and� � �*' � � � & for � '�� � � ��� �'� . For this problem in [KRY95] it is shown that a tree is always part of
the optimal solution and approximating networks can be pruned to trees. Hence, here the Cost-Distance
Network problem reduces to the Cost-Distance Tree problem.

Meyerson et al. [MMP00] generalize this problem by introducing a positive node weighting, and by
allowing two different metrics for cost and distance: the length metric � and the cost metric � . The Cost-
Distance measure is given by

��"���#� ! � �
� � � � �

� ��� � � � � � ! � � ' � �
for a root � . They present a polynomial time bounded randomized algorithm approximating the problem
within a factor of

���������
	��
. Furthermore, they show that the optimal solution is always a tree.

A � -spanner is a connected partial graph of a given graph - such that for all nodes � '�� � � � - � the
corresponding shortest path in the � -spanner is at most � times longer than in - . There exist � -spanners
in Euclidean space, the sizes of which are bounded linearly by the size of the minimum spanning tree
[ADM 
 95]. It turns out that these spanning networks already allow us to state constant factor approxima-
tion algorithms for the Weighted Cost-Distance Network problem.

Theorem 33 ([ADM 
 95]) In ! -dimensional Euclidean space, for any � � �
there exists a � -spanner with

size
��� � � MST

�
which can be computed in time

����	 � � � 	��
.
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This immediately implies that � -spanners allow constant factor approximation for the CDN-problem.

Corollary 7 For Euclidean space the Weighted Cost-Distance Network problem can be approximated by
a constant factor within time

����	 ����� 	��
.

For the two-dimensional Euclidean space we can pin down the constant very accurately by using the
result of [LL89].

Lemma 48 [LL89] For � � & , there exists a
� �
�
�
�
� � �

���
��� � �

�
�
� -spanner of the complete graph, the size of

which is at most � � � �
times the costs of the minimal spanning tree.

Optimizing the choice of � leads to the following result:

Theorem 34 For the two-dimensional Euclidean space there exists a polynomial time approximation of
the Weighted Cost-Distance Network problem with non-terminal nodes by a factor of

� � 
 � 

� �

� � 
 � �
� 
	�

�
�
�

�� �/� � ����� .
For the complete proof we refer to [Web01].
Using the results in [Bar98] and [CCG 
 98] one can transfer the � -spanner result of [ADM 
 95] to arbi-

trary metrics. However the cost is increased by a logarithmic term. Such � -spanners give an approximative
solution for CDN:

Corollary 8 For metric costs and distances the Weighted Cost-Distance Network problem can be approx-
imated in polynomial time within a factor of

��� � � � 	��
.

9.1.2 The Optimal Network is not a Tree

For the minimum network problem it is known that introducing non-terminal nodes helps to reduce the
network costs (i.e. size) by a constant factor. The optimal choice of such nodes are Steiner points.

Many properties are known for these Steiner networks. First of all minimum networks are trees. Fur-
ther, in the plane Steiner points have degree three and the angle of neighbored edges is

� � &�
 . The number
of these non-terminal points is bounded by

	
� � .

A complete analysis of even small graphs shows that non-terminal sites also allow an improvement of
a constant factor for the CDN-problem. Nevertheless, the angles between the adjacent edges may differ
from

� � & 
 .
In contrast to the Cost-Distance Problems investigated so far, it turns out that the optimal solution is not

a tree. We will prove in section 9.3 that a tree can differ by at least a factor of � � � � � 	�� from the optimal
network. Even more surprisingly, non-terminal (quasi-Steiner points) may be involved in cycles and there
may be cycles connecting only quasi-Steiner points.

Another interesting observation is that the optimal network may include crossing edges where the
placement of a quasi-Steiner point onto the crossing point does not improve the solution. This reminds of
the open problem [Epp00] whether optimal dilation trees contain crossings.

Examples for crossings and quasi-Steiner points can be seen in Figures 9.1, 9.2 and 9.3. A detailed
discussion of these examples can be found in [Web01]. In the following section we will prove that the
optimal Cost-Distance network can be approximated by a tree within a factor of

���������
	��
. Furthermore,

there is a polynomial time bounded algorithm computing such a tree, given the weighting and the sites in
Euclidean ! -dimensional space. In section 9.3 we prove the optimality of this approximation factor. We
finally conclude these results and present some open problems for further research.

9.2 A Tree-Approximation by a Factor
������������

Note that for ! -dimensional Euclidean space the quality of the minimum networks differs from the min-
imum spanning tree only by a constant factor. For the Cost-Distance problem the situation is similar.
Therefore we will not use any non-terminals in the following construction.
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� �

� �� ,

Figure 9.1: The optimal
WCD-network contains a
quasi-Steiner point.� � � � '�� � � � � � � � '�� � ���� � � � '�� � � � � � � � '�� � �

� �

���

� �

Figure 9.2: The optimal WCD-
network contains a cycle.� � � � '�� � � � � � � � '�� � ���� � � � '�� � � � � � � � '�� � �

� �

� , �

� �

���

� , ,

� , �
Figure 9.3: An instance where
a crossing is part of the optimal
solution.� � � � '�� � � � � � � � � '�� � ���� � � � '�� � � � � � � � � '�� � � ���� � � � '�� � � � � � � � � '�� � � � &

We use the notion of a split tree [ADM 
 95]. A split tree is a tree stemming from a hierarchical
decomposition of a point set into ! -dimensional rectangles of bounded aspect ratio, say in the range

� �
�
' � � .

We start with the smallest possible rectangle, � � � � � � �
, including the point set

�
. Let � � be the root of

the split tree. This rectangle � � is split into two smaller rectangles � � and � � . Let
� � � � be the subset of

nodes in rectangle � . The split tree of � � is the split tree for the nodes
� � � � � , and similarly for � � and� � � � � . These sub-trees are connected to the root � � , see Figure 9.4.

We will construct a fair split tree (FST) where each sub-tree with node set
� + has a diameter of��� !�� � � + � � , where � � � + � � � � ��� �  � ��� �   �*' � � � . Let � � � � be the length of the longest edge of a rect-

angle � . We will use the following recursive construction given a rectangle � , a root � � � � � � and a
weighting � such that for some � � �

: � � � � �  � � � � '�� � � ��� 	 � �
.

1. If � � � �� � � � �
� � , then we choose an arbitrary node �	��� and connect all nodes

� � � � to � .

2. Otherwise, we partition the rectangle � by a hyper-plane orthogonal to an edge � with length � � � � .
The distance between the hyper-plane and the ends of the longest edge is at least

�
�
� � � � . The exact

position depends on the weighting and will be described in the proof of Theorem 35.

The resulting two axis-parallel adjacent rectangles partitioning � are called � � and � � .
(a) If � is in

� � � � � let � � � � and take an arbitrary node � � � � � � � � and vice versa if �	� � � � � � .
Insert the edge � � � '�� � � .

(b) Recursively, proceed with � � '�� � and � � ' � � .
Note that � � � �� � � � � � and observe that after ! rounds the length of the longest edge is reduced by at

most a factor of
�
�
. So there are only

��� ! ����� 	�� rounds until the size of the rectangles is bounded by
4 � � � �
� � .

Figure 9.4: A split tree resulting form a hierarchical rectangle decomposition.
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The length of every path in the resulting tree is bounded by ��! � � � � � : starting from the node of the path
closest to the root, following the path downwards in both directions, the lengths of the edges � � ' � � '������ and
� + � ' � +� '������ are upper bounded by � � �   � '   � +� � � � � �

�
� � � � � � � � � �

.

Lemma 49 Fair split trees have diameter � !�� � � �
and weight

��� � � MST
� � � � ! � � � 	�� .

Proof: We apply the Lemma of [Epp00, DHN93] using the isolation property. If we add non-intersecting
cylinders to all edges with radius � � � and distance � � � to the end points, then the cost of the corresponding
network is linearly bounded by the cost of the MST. (The isolation property also holds if the cylinder is
replaced by other geometric objects). Note that for the edges of each recursion step, we can attach such a
cylinder to an edge such that the cylinder is completely in the corresponding rectangle. Since there are at
most

��� ! � � � 	�� recursion steps this implies the claim. �
We have not presented where we place the split. The following Lemma helps us to make a good

selection.

Lemma 50 Given rectangle � � and a weighting � � � � � �� � 
� . There exists partition of
�

into
rectangles � � and � � with node sets

� � , � � such that

����  � � � � ,�� � � � � � � � , � � �*' � � � � �� � � � �
where � � � � �  � ��� � � � '�� � � �*' � � � .
Proof: Define � � � � 4 � � � �

�
��� adjacent parallel rectangles ��� of thickness 	 � � �� , where � � �� �  � ��� � � � '�� � . These rectangles have distance of at least � � � � � � � to the left and right end of the longest

edge of � � . We will partition between a pair � � and � � 
 � .
Next consider a pair of nodes �*' � with � � � � and � � ��� . Then, we have � �*' � � � � 	 �  � � �  .

Measure � � which is the weight of all connections crossing the right border between � � and � � 
 � :
� � � �

��� �
	 � �� � � � �� � ��� �
� � '�� � � � � � ' � � �

Let
� � � � � � denote the index of the rectangle � � with � � � � . Note that

� � � � � ��  � �� 
 � 
 �
� �*' � �  � � � � � � � � �  � � �  �

� � � '�� � � �*' � � �
	 � � �

Hence, for at least one of the rectangles � � we have � � � �
� � � �4 � � � � . �

Of course, this split can be found in polynomial time if the number of partitions is not too high. If we
use � � rectangles, then a random partition fulfills this property with probability of at least

�
� . However, the

number of sites
	

is a lower bound of the number of different values �'� . Using this observation one can
find an algorithm that always determines such a split in polynomial time, even if 	 is arbitrarily small.

Theorem 35 Given a set of sites
�

in ! -dimensional Euclidean space and a non-negative weighting �
such that the sum of all weights is polynomial in

	 �  �  ; there exists a tree with a weighted distance
which differs from the optimal Weighted Cost-Distance by at most a factor of

��� ! ����� 	�� . Such a tree has
size

��� � � � � � � � � � ! � � � 	�� and can be computed in polynomial time.

Proof: We construct a fair split tree using the partition introduced in Lemma 50. We consider the node
pair sets � � � � � �� , � � � � � �� , and

� � � � � � � � � � � � �
�
.

It holds:

����  � � ��� � � � '�� � � ! � � '�� � �
� ������  � � ��� � �� � � � � ! � � '�� � � � �� � � � ��! � � � �� � ! � '
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where � � � � �  � � � � '�� � � � '�� � � is a lower bound for the weighted distance of the optimal network. For
the disjoint pair sets � � and � � we apply this technique recursively for at most

��� � ! � � � 	�� rounds. As we
have already observed, the length of the longest edge of the sub-rectangles is at most � + � � 4 � � � �

� � . Then we
face partitions � � '�������' � � with partial weight sums � � '�������'�� � ( � � � � � ���  � � � � 
�� � �*' � � ). The sum
of all weights � � ��� �  � � � �*' � � is bounded by a polynomial

��� 	 � �
. Therefore, � � � � � � � ����	 � �

.

The corresponding normalized weighted distances 	 � � � � �  � � � 
 
 ���  � �� 
   �*' � � � are bounded by � � , which
is the length of the longest edge of the partition � � ’s rectangle. Note that

�� � � 
 ��  � � � 
 � ! � � '�� � � � � '�� � � � � � � � � � �*' � � � � � � � � � �
� � � + � � � + � � � � � � � + � � MST

� � � �

for a suitable constant � + . This and the recurrency over
��� ! � � � 	�� rounds imply

� �  � � � � '�� � � ! � �*' � � � � + � � MST
� � � �

� � + + ! �������
	�� �
� � + + + ! � � � � 	�� WCD 
 �  �

for a suitable constant � + + and � + + + and every network


. �

9.3 A Lower Bound for Tree-Approximations

Trees cannot approximate the optimal Weighted Cost-Distance graph better than stated in Theorem 9.2.
To show this, we construct a counter-example where the sites are uniformly distributed and the weighting
supports only neighbored sites.

In particular, we consider an
	 � 	

unit square grid - and the following weighting function:

� � � '�� � � � � ��� �*' ��� � � �
& ��� �*' ��� � �� � �

Clearly, the weighted Cost-Distance of the grid consisting of all positive weighted edges is
��� 	 � �

and since
the minimum spanning tree has at least cost

	 �
� �

, this network is optimal up to a constant factor. We will
show that every spanning tree � has weighted distance � � 	 ��� � � 	�� even if we allow � to use non-terminal
nodes.

Let - � be the set of nodes with distance
�
� �

to the convex hull of the grid, i.e. - � is the convex hull
and - � 
 � is the convex hull of - � � ��� � -�� .
Lemma 51 For every spanning tree � of the grid and for all

� � 	 � � there exist two grid neighbors
� '�� � - � such that the connecting path in � has at least length � � .

Proof: Assume the contrary and consider the upper row of - � . Note that neighbored nodes (in the grid)
are connected by a path which is too short to reach the other half of the grid. Therefore, in the upper row
the leftmost and the rightmost node must be connected by a path, which lies completely in the upper half
of the rectangle.

For symmetry reasons the analogous property is true for the the left column, the lower row, and the right
column. Therefore, there exists a cycle enclosing the center of the grid, contradicting the tree property. �

Definition 13 (spanning cut) A spanning cut splits a tree � � � � ' 	 �
by a straight line � into trees � � �� � � � � � ' 	 � � and � � � � � � � � � ' 	 � � . These sub-trees are entirely in the left or right half-space defined

by � . All nodes in
� � (resp.

� � ) are orthogonally projected onto � and will be used as non-terminals
� � in� � (resp.

� � in � � ). All edges in trees � � and � � are copied from the original tree.

So, we copy every tree into both half spaces without increasing any edge length, for an example see
Figure 9.5.
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� �
Figure 9.5: A spanning cut and the resulting sub-tree in the lower half-space

Figure 9.6: The white marked p̀-shaped area induces long paths for a number of neighbored pairs. For the
lower bound the grid is tiled into 16 sub-grids

Lemma 52 For a spanning cut of � into � � and � � we have for all � � ' � � � � � � � � and � � '�� � � � � � � � :
� � � � � ' � � � � � � , � � � ' � � � and � � � � � ' � � � � � � � � � � '�� � �

Theorem 36 For every spanning tree � of the
	 � 	

-grid, where � � �*' � � � �
if � and � are neighbored

nodes and � � �*' � � � & elsewhere, the weighted Cost-Distance is at least � � 	 � � � � 	�� , while the optimal
Cost-Distance network has cost and weighted distance

����	 � �
.

Proof: We will split this grid into 16 sub-grids of size � � � � � by 15 spanning cuts (Figure 9.6). By
Lemma 52 the sum of the weighted distances of the sub-grids is a lower bound for the over-all grid (We
also split the weighting into 16 local weighting functions).

Lemma 51 implies that in every subset - � there are paths � � '�������' � � � � between neighboring nodes
with length of at least

	 � � . Furthermore, we can choose these paths such that the spanning cut reduces the
lengths of all of them by at least � � , since they reach the other side of the grid.

This way, we can account the length � � of these � � paths for this recursion level. This leads to the
following recurrency for the weighted distance � ��	��

of spanning trees of an
	 � 	

-grid:

W
��	�� �

	 �� � � � W
��	 � � � �

Resolving this recurrency proves the claim. �
Applying the algorithm of Section 9.2 to this instance produces trees structured similar to the U-Layout

shown in Figure 9.7. Such trees optimize the weighted Cost-Distance of an
	 � 	

grid by a factor of
� ������� 	��

.
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Figure 9.7: The U-Layout approximates the Cost-Distance of this instance by a factor of � ������� 	��
.

9.4 Conclusions and Future Research

As an immediate implication of Theorem 35 we can state the following approximation result:

Corollary 9 For polynomial weights the Weighted Cost-Distance-Tree problem can be polynomially ap-
proximated within a factor of

��������� 	��
.

There is some hope that the approximation techniques introduced by Arora [Aro98] may lead to a
polynomial time approximation scheme. Another follow-up result may be the extension to general metrics.
We conjecture that the results of [Bar98] lead to an

��� � � � � 	��
approximation.

An interesting open question is: If � , the sum of all weights, is super-polynomial, does the upper
bound of Section 35 also apply? Or can the lower bound factor be increased for such weights? This
mirrors the case in the original setting (Equation (9.1)) that the fixed costs are sub-polynomial compared
to the linear costs.

Another extension of these results may be to consider different metrics for cost and distance as in-
troduced in [MMP00]. They proved a

���������
	��
-approximation for the two-metrics Cost-Distance problem

with weights only on the root-node pairs. We have shown that for pairwise weight trees do not approximate
better than � � � � � 	��

, while for node-root weights Meyerson et al. [MMP00] showed that a tree is always
part of the optimal solution. It is an interesting open question whether trees approximate this Weighted
Cost-Distance problem with different metrics within a factor of

��������� 	��
.



Chapter 10

Energy, Congestion and Dilation in
Wireless Networks

10.1 Introduction

In this chapter we contribute to modeling wireless communication networks, to modeling congestion, en-
ergy consumption and delay for routing in such networks, and to designing routing paths in order to min-
imize these cost measures. One major insight is the fact that trade-offs are unavoidable: Minimizing one
measure is only possible at the cost of enlarging another one.

Wireless ad hoc networks consist of nodes that can communicate via short-range wireless connections.
Each node can be a source, a destination and a router for data packets, thus no explicit infrastructure is
required to set up and maintain an ad hoc radio network. The area of application for radio networks is
broad, especially in niches such as search and rescue missions or environmental monitoring. But ad hoc
networks can also be used as a last-mile technology to provide access to the Internet in high-populated
environments.

In wireless ad hoc networks, energy-intensive long-range connections should be avoided, and the over-
all distance between two communicating nodes respectively hop count should be minimized to achieve
low latencies. To use the available network capacity efficiently and to achieve high bandwidths, congested
connections should also be avoided by balancing the traffic over all reasonable connections.

These requirements can be expressed using three measurable quantities: congestion, energy and hop
count. Traditional routing protocols such as AODV, DSDV and DSR [Per01] usually choose the path
with the lowest hop count. There also exist power-aware routing protocols using different metrics (e.g.,
energy consumed per packet, variance in node power level) to choose the best route in order to extend
the lifetime of individual nodes or the whole network [SR98, SW98, CT00]. The congestion of a route is
usually not regarded directly, but some routing protocols choose routes with the shortest route discovery,
assuming that the route with the quickest response is less congested (e.g., SSA [DRWT97]). However, to
our knowledge, no practical work or theoretical studies exist that consider the interdependencies between
these three quantities.

In radio networks it is not clear how to choose nodes as communication partners because links can
interfere with each other. Our main goal in this chapter is to determine the optimal choice of this network
given a set of nodes

� �	� �
(Random choices of node sets have been investigated in [AS98a, GK00]).

Hence, we disregard the mobile and dynamic components of ad hoc-networking and determine the optimal
static wireless network. We present a general model for congestion, energy and dilation for a given solution
of the routing problem of the radio networks. (cf packet radio network model or more realistic wireless
network models, for instance as in [AS98a, UY98, GK00, ABBS01, KKKP00, CNP01]). Besides the load
the congestion also measures the interferences between edges.

In Section 10.2 we start our considerations with the paths of all packets solving a routing problem
in a radio network. The union of all these paths, called path system, gives a natural definition of the
communication network. These paths induce a load in the communication links which can interfere with

131
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each other. Combining the load and the interferences we achieve an intuitive model for the congestion
of an edge of the communication network. Our definition is very similar to those in [AS98a], although
they use a slightly different approach. Likewise in [AS98a] we relate the congestion and the dilation, also
known as hop-distance, to the routing time of the routing problem. Then, we define measures for energy
consumption, which is important for autonomous nodes that have to ”carry their energy”.

The main contributions concern path selection in wireless networks: Given a set of routing requests,
find routing path so that the congestion, delay, and/or energy consumption is minimized. We introduce the
notion of diversity to describe locations of node sets where high interferences are unavoidable. It turns out
that if the diversity is small, i.e., all point to point distances differ only by a polynomial factor, then the
interferences of communication networks can be kept small. This is key factor for the congestion avoidance
analysis in this chapter.

In section 10.3 we present strategies for this path selection which provably optimize energy consump-
tion and give a

��� � � � � � �
-factor approximation of congestion. In section 10.4 as a main insight, we can

conclude that not any two of these measures can be minimized simultaneously, but that trade-offs between
measures are unavoidable. Finally, section 10.5 concludes this chapter.

10.2 Modeling Wireless Networks

We consider a set
��� � �

of
	

radio stations, featuring both transmitter and receivers, called sites or
nodes, in 2-dimensional Euclidean space. Let � � � ��� �  � ��� � � '�� � � denote the geometric diameter of

�
.

As in the model of [MBmH01] each node ��� �
can adjust its transmission radius to some � � &

for sending a packet to a neighbor � � �
in range � . Then, the communication network

 � � � ' 	 �
has

the edge � � '�� � , where   �*' � � � � � . Note that for adjusting the transmission power nodes exchanging
packets must interact during the transmission. Just imagine that one of the nodes is moving and therefore
the distance between these nodes continuously changes. In our model we simplify this interaction by
assuming that the sending and acknowledging part of this interaction may interfere with any other such
bi-directional connection if the distance is too small.

In particular, this means: To acknowledge this packet the receiving site adjusts its transmission radius
to the same radius � as the sending radius. The transmission needs a unit time step and the area covered
by sending and acknowledging a packet along � � � �*' � � � 	 is � � � � � ��� � � ��� ��� � � � , where ��� � � �
denotes a disk with center � and radius � . Of course edges only interfere when the routing protocol tries to
send a packet at the same time and if � � � + � contains � or � (cp. Figure 10.1. We keep the timing aspect of
interferences in mind and expand the notion of interferences to edges: Edge

� � '�� � interferes with edge � +
if � or � is in the area � � ��+ � .

We define the set of interfering edges by Int
� � � � � � � +�� 	 �  �  � + interferes with � � . Note that

sending a packet along � is successful only if no edge from Int
� � � sends concurrently. These interferences

of network


describe the directed interference graph - Int
�  �

. Its node set are all edges of


and its
edges describe all interferences, i.e.,

� ��' � � � 	 � - Int
�  � �

iff � � Int
� � � . The interference graph can be

interpreted as an additional constraint for routing. An edge of the radio network can only be used for
sending a packet in a time unit if all interfering edges remain silent. The number of this interfering edges
is given by the in-degree of an edge in the interference graph and is called the interference number of a
communication link. The maximum interference number of a site � is the maximum interference number
of all edges with receiving site � . The interference number of the network is the maximum interference
number of all edges.

Now consider a routing problem � � � � � � 	
, where � � � '�� � packets have to be sent from � to � .

We subdivide the design of a routing strategy for � into the following steps:

� Path selection: Select a system
�

of paths � � from source to destination for the packets � in the
graph on

�
. The union of all edges 	� of the path system gives the links of communication network � � � ' 	 � � .

� Collision avoidance: As noted above sending a packet along edge � is only successful if no � +��
Int

� � � sends at the same time.



10.2. MODELING WIRELESS NETWORKS 133

Therefore, the following holds: Consider any routing strategy that routes � in � steps using the path system
� . Let � � � � � � � '�������'���� denote the time steps in which � sends successfully. Then clearly

 � � � �  � �� � � Int �$� �  �
� � + �  � � �

As  � � � �  is just the load � � � � of � , i.e., the number of packets whose path goes through � , the above
quantity is � � � � � � � � � Int � � � � � � + � . We denote this quantity (which is uniquely defined by the path system
�

) as congestion of the edge � � � � � . The congestion of the path system
�

is defined by

� � � � � � � � � ������ � � � � � � � � �

We will denote by the dilation ��� � � �
the length of a longest path in

�
, also known as the hop-distance.

By definition the optimal routing time � using
�

fulfills � � � � � � �
, but also congestion gives a lower

bound on the time � :

Theorem 37 Consider a radio network � with path system
�

, maximum interference number
�
, and a

routing problem � with dilation � and congestion � . Let � be its optimal routing time, when the path
system

�
is used. The following holds.

1. � � � ��� � � ��� ��' � � � � � � � � �

2. It exists an offline routing protocol with routing time
��� � � � � � � , with high probability.

3. There is an online routing protocol that needs routing time
��� � � � � � � ����� 	�� , w.h.p.

Proof: 1. Let � � � � '�� � be an edge with maximum congestion � . We partition the plane into 6 regions� � '������ ' � � with center at � by six half-lines starting at � where the angle between neighbored half-lines
is � � � . Similary we consider the analogous partitioning � � '������ ' � � � with � as the starting point of the 6
half-lines.

Define
	 � � � � � �*' �'�  � � � � � � �	��� � � � � � '
�'� � Int

� � � � �
Note that by a straight-forward geometric argument for two edge � +/' � + + � 	 � it holds either ��+ � Int

� � + + �
or � + +�� Int

� � + � . Therefore, all transmissions over edges in 	 � � � � � have to be done sequentially. Let� � � � � � � � � � � � ��� 
 � � � + � . Then, � � �� " � � � � � . Hence,

� � � ���� � � � � � � � � � �
�
� �
� �
� � " � � � � �� � �

The upper bounds of 2. and 3. can be proved using the same arguments as shown in Theorem 2.12 and
Theorem 2.13 of [AS98a]. Note that in [AS98a] the notion dilation differs from our approach. �

The variable choice of the transmitter power allows to reduce the energy consumption, saving on the
tight resources of batteries in portable radio stations and reducing interferences. Theoretically, the energy
needed to send over a distance of � is given by

��� � � � . It turns out that in practice one can model the energy
by

��� �
� �

or even
��� � � � . Throughout this chapter we model energy costs by

��� � � � . However, most results
in this chapter can be easily transferred for higher exponents.

We distinguish two energy models. In the first model, called unit energy model, we assume that
maintaining a communication link � is proportional to

��� � � ��� � � � � , where   �   � denotes its Euclidean
length. Therefore, the unit energy U-Energy used by radio network


is given by

U-Energy�
� � � � � ��"��� � �����

�   �   � � � �

The flow energy model reflects the energy actually consumed by transmitting all packets. Here, the power
consumption of a communication link is weighted by the actual load � � � � on an edge � :

F-Energy�
� � � � � ������ � ����� � � � � �   �   � � � �
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Figure 10.1: Radio stations, edges and induced interferences
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Figure 10.2: For an edge � of a Gabriel-graph no node may be in inside its disk

In this chapter we focus on the question: Given some sites, which path selection is best possible to
obtain small congestion, low energy consumption and small dilation? Clearly, the optimal network for
hop-distance is the complete graph. Hence, we investigate only energy and congestion.

10.3 Minimizing Energy and Congestion

10.3.1 Energy

The unit energy of a path system for a radio network is defined as the energy consumption necessary to
deliver one packet on each communication link. It turns out that the minimal spanning tree optimizes unit
energy. Note that the hardness results shown in [KKKP00, CPS00] do not apply because in our model the
transmission radii are adjusted for each packet.

Theorem 38 The minimal spanning tree is an optimal path system for a radio network with respect to the
unit energy.

Proof: Consider the graph defined by all edges 	 � � � �
with edge weight

� � � � � � � . The minimum
energy network can be constructed using Prim’s or Kruskal’s algorithm for minimum spanning tree. Note
that the decisions in this algorithm are based on comparison of the length of some edges � and � + , i.e.,
� � � � � � � +   � . Thus, the minimal network for energy is also the minimum spanning tree for Euclidean
distances. �

For the flow energy model, the minimal network is not necessarily a tree. However, one can compute
the minimal flow energy network in polynomial time.

Theorem 39 For a given node set
�

a sub-graph of the Gabriel Graph [GS69, JT92] is an optimal path
system for a radio network with respect to the flow energy.

Proof: If in the interior of the circle defined by the diameter
� �*' � � there exists a node � , then the edges� � '�� � ' � � '�� � need less energy than the original edge. This follows by the Theorem of Thales (otherwise

energy is not optimal because
� � �*' �   � � � �

�   � ' � � � � � � �   �*' � � � � � � . Therefore, one can add an edge
into the communication network iff there are no sites in the interior of this circle, see Figure 10.2. This
matches the definition of a Gabriel graph of

�
.

For two nodes � and � the sub-graph providing the lowest energy for routing information from � to �
is given by the shortest path in the Gabriel graph if the length of an edge is redefined by

� � � � � � � . The flow
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Figure 10.3: The high diversity of the node set increases the interference number, resulting in high conges-
tion

energy of the optimal network consists of a linear combination of these lowest-energy-paths between pairs.
Using an all-pair-shortest-path algorithm gives the optimal network. �

Note, that there are situations where edges of the Gabriel-graph can be replaced by less energy-
consuming paths, even if no site lies inside the disk described by the edge. Then, the edge of the Gabriel
graph is not part of any energy optimal route.

10.3.2 Diversity of a Node Set

Sometimes the location of the radio stations does not allow small congested routes for the radio networks
at all. Consider a node set

� � � � � '������ '�� � � on a line, with distances  � �1'���� 
 �  ��� � . The edge
� ���1'���� 
 � �

interferes with all edges
� � � '�� � 
 � � for � �
� , see Figure 10.3. Therefore, the interference number of the

network is
	
� �

. Suppose only � � and � � want to communicate, then the better solution for congestion is
to disconnect all interior points and to realize only the edge

� � � ' � � � . Of course this is not an option when
interior nodes need to communicate.

It turns out that a determining parameter for the realization of optimal communication networks for
radio networks, is the number of magnitudes of distances. Distances have different magnitude if they differ
more than a factor of 2.

Definition 14 The diversity � � � �
of a point set

�
in Euclidean space is defined by� � � � � �  � � �� � '�� � � � � � � � � � '��   � � � � �� �

Note that in the above scenario we observe the maximum diversity of
	

(and a high interference number).
For point sets

�
on the line with small diversity the interference number is small, too. It is easy to see that

the interference number for a node set
�

on the line is at most
��� � � � � �

.

Lemma 53 The diversity of
	

points in
� �

is at least � ������� 	�� and at most
��� 	��

. For a point set randomly
distributed in a square of

� �
the diversity is

���������
	��
with high probability (i.e.,

� � 	 4 � for any fixed
constant � � & ). Furthermore,

� � � �� �
�
����� � ��� �  � ���   � '��   �

� ��� �  � ����� � �" � � � '�� � � �

Proof:
� For a point set

� � � �
: � � � � � � � � � � 

�  .
We consider the following sequential process starting with � � � � ��� �  � ���  � �" � � � � 	 �� � � �  � � � � � . We
start with a non-marked node set

� � � � � '�������' � � � and we sequentially visit every non-marked node� � . Now we mark every node ��� with � � � and � � � '��)� � � � � ��'�� � � .
After having visited all non-marked nodes we end up with a non-marked node set

� + , where for
all �*' � � � + we have � � '��   � � � � . Since � � � ��� � '�� � � ' �
�� � � � '�� � � , a straight-forward
geometric argument shows that each node may cause only 18 other nodes to be marked. Therfore,
we have  � +  � �

� � 
�  . This leads directly to the claim.
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� � � � � �
�
	
�
� & for

� � �
with  �  � 	 � � .

Let
� � � � � � '������ ' � ��� denote the nodes sorted from left to right. Define

� �#� � � � ( � � �� � � � �%( � � � � �����   ���)' � � � � � � '
where � is a uniform random variable (the same for all

�
) of the interval

� & ' ��� . Note that
� � � � and

 � � 4 �  � �
. We will prove that

E
�  � � � � � 
 �  � � � � (10.1)

Let � � ��� '�� � � � � � � � � �  ���)' � �  � and � � � � � ��� ' � � � �
. Now for all � � � � �

with � � ��� � � '�� � � � �
�

we have � � ��� '2� � � ����'
� � � '
� � �&� inducing three elements into the difference set
� � � � � 
 � .

For all � � � � �
with � � ��� � � '�� � � ��+ � � � � we have analogously � � ��� '2� � � ����+/' ��+ � � � . But

since  ���1'���� 
 �  � � � � 4 � 
 �  ��� 
 � '�� �  , the probability that � + �
�

actually occurs in
� � but not in

� � 
 �
can be bounded by � � � 4 � 
 � . Note that ��+ � � � 
 � and that ��+ �

�
is added to

� � with probability� � � 4 � 
 � . Therefore, the expected number of elements larger than � � � added into
� � is at most 1.

Note that (� � � � �� � � � � � � � '������ '�� � � � � � and therefore inequality 10.1 implies that

E
� � � � � � � � '������ ' � � � � � � � � � 	

� � �

Hence, there exists a choice � � � &�' � � with� � � � � � � '������ '�� � � � � � � � 	
� � �

Now the different rounding points by introducing a factor � � may at most double the diversity, which
implies � � � �� � 	 � � �

.

� � � � � � � � 	 � � � for
� � � �

and
	 �  �  .

The � -dimensional case can be reduced to the
�
-dimensional case. Now let � � ' � � � � � �� �

be the
orthogonal projection onto the axes. Then we have

� �
�� � � � � � � � � �����   � � � � � ' � � � � �   � �
�� � � � � � � '��   � � ����� � � � � � � ' � � � � �   � �

Now � � � � � � � � � � 	 � � �
implies that � � � � � � � � � � � � � �

� � � � � � � � � � � � � 	 ��� � . Of course
this argument can be generalized to

� �
for a constant ! .

� The last inequality follows directly from the definition. It implies logarithmic diversity for random
point sets since the probability to choose a node within a

	 4 � 4 � -neighborhood of another can be
bound by

	 4 � 4 � . Hence, for all nodes the probability that � � � � � � � � � � ����� 	 can be bounded by
at most

	 4 � .
�

There are many reasons why in the real world the diversity can always be estimated by
���������
	��

, e.g.
the accuracy of determining locations; and the ratio between the physical size of a radio station and its
transmitting range.

10.3.3 Congestion

To approximate congestion-optimal communication networks for radio networks we will use the � -spanner
with bounded degree introduced in [AS94]. A � -spanner is a graph such that for each pair

� �*' � � there exists
a path of at most length ��� � '�� � � . Note that � -spanners are a common choice for the communication links
in radio networks, e.g. see [GGH 
 01].

The algorithm AS-spanner
� � ' � '�� � shown in Figure 10.4 constructs such a spanner for a point set

�
in� �

. The algorithm considers all ordered pairs
� �*' � � of sites in increasing order of their distances. The edge� �*' � � is added to the graph iff there is no edge
� ��' � � in the current graph such that

� � ' � � and
� ��' � � have

roughly the same direction and the points � and � are close to each other, or the points � and � are close to
each other.



10.3. MINIMIZING ENERGY AND CONGESTION 137

Algorithm AS-spanner
� � ' � '�� �

(* & � � � � � , & � �
� �� ��� � � � � �)��� � � *)
begin

�
� � list of all pairs of
�

sorted according to their distances;
		� � �
for all ordered pairs

� � ' � � � � do
add � � true
for each edge

� ��' � � � 	 do
if angle

� � � �*' � � � � � � then
add � � add

� � � �*' � � � �
�   ��' ��� � �
fi
if angle

� � � ��' � � � �� � then
add � � add

� � � ��' ��  � �
� � ��' ��  � �
fi

od
if add � true then 	 � � 	 � � � � '
� � � fi
od
return

� 	 �

end

Figure 10.4: The algorithm of Arya and Smid [AS94] for the construction of a � -spanner

Theorem 40 [AS94] The graph constructed by algorithm AS-spanner is a � -spanner with bounded degree� �

� for � � � � ��� � � � � �)��� � �	� � � .
Such a � -spanner causes only a small number of interferences if the node set

�
has a small diversity.

Lemma 54 For a node set
�

with diversity � � � �
the interference number of the � -spanner constructed by

algorithm AS-spanner is bounded by
��� � � � � �

.

Proof: We choose � � �� ��� � � � � �1� � � � for � � � � � . Hence the stretch-factor is given by � � � � ��� � � � �
�1� � � � .

We define
� � � ��� � ' � � '�������'
� � � � �

such that
� � � � � �� �*' � � � � � � � �   � '��   � � � � � . We

consider an edge � � � � '�� � of length �� � � � 
 '�� � � � 
 � . We try to insert as many edges interfering � as
possible. Their number is bounded by

��� � �

� 
 � since the constructed spanner has bounded degree
� � and for

every edge to a neighbored node we can construct at most
��� �
 � � ��� � �

parallel edges interfering with �
because of the restriction that the distance between the edges must be at least � �  (see figure 10.5). We
have � � � � �  �  and therefore the number of interferences is bounded by

��� � � � �
� � 
 �

. Using that � and �
are constant, this completes the proof. �

A typical feature of radio communication is that transmitting information blocks a region for other
transmission. We formalize this observation and define the capacity of a region following a similar ap-
proach presented in [GK00]. Let � � � � denote the area of a geometric region � .

Definition 15 The capacity
!�� � � of a geometric region � is defined as follows:

1. If in every point of � the same set of edges 	 interfere, then
! � � � � � � �"��� � � � � � � � � � where � � � �

denotes the area of � . Such a region is called elementary.

2. Otherwise partition � into elementary regions � � '������ '�� � and define
! � � � � � � �� " � ! � � � � �

This definition implies the following relationship between capacity, area and congestion.

Lemma 55 Let � be a region and � the congestions of a path system
�

. Then, the capacity of � is
bounded by

! � � � � � � � � � � .
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Figure 10.5: For an edge � to a neighbored node
there exist at most ��� �
 parallel edges interfering
with �
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Figure 10.6: The edge � interferes with other edges
(at least) within the central disk. Its information is
rerouted on � , lying completely within the outer-disk
with radius

�
� ��  �   �

Every edge � with load � � � � has a certain impact on the capacity of the area covered by the radio-
network.

Lemma 56 An edge � with load � � � � occupies the capacity � � � � � � � ��� � � � for a constant � � & .
The proof follows from the definition of the interference area.

Lemma 57 Let � & be the congestion of the congestion-optimal path system
� & for a node set

�
. Then,

every � -spanner


can host a path system
�
+ such that the induced load � � � � in


is bounded by � � � � �

� + � � � � �%& for a positive constant ��+ .

Proof: Given a path � of the path system
� & , we replace every edge � � � � '�� � that does not exist

in the � -spanner


with the shortest path � from � to � in


(which by definition has length of at most
 �  � ��  �*' � � � ). Therefore, the new route lies completely inside a disk � � � � � of radius

�
� ��  � '��   � and

center
�
�
� � � � � .

For the path system
� & there may have been interferences between � and other edges. For simplicity we

underestimate the area where � can interfere other communication by the disk � � � � � with center
�
�
� � � � �

and radius
�
� � �*' � � � (see Figure 10.6).

We want to describe the impact of rerouting all edges in 	 �� & � to a specific edge � � � 	 �  �
in the

� -spanner


. If this edge � � � � � � '�� � � � 	 �� �
transmits the traffic of a detour of an edge � � � �*' � � �

	 �� & � , then the distance between the central points � � � � �� � � � � � � � of � � and � � �� � � � � � is bounded
by   � � '�� � � � �� ��� ��� � .

Now consider the edge set 	 �  � � � 	 �� & � of edges � with length � � � � � � � � '�� � 
 � � for
� � �

which
reroute their traffic to � � . Their center points are located inside a disk with radius � � � and center � � . The
interference area of every edge � is described by � � � � � . It occupies an area of at least � � � � , which lies
completely inside a disk � with radius � � � � � � �

and center � � . The area of � is � � � � � � � � � �
.

Lemma 56 shows that every edge � reduces the capacity in � by at least � � � � � � � � . Because of
Lemma 55, the over-all capacity of � is at most � � � � � � � � � � � � � � � �%& . Therefore, we have for
the sum of the loads � � � � for � � 	 �  � � that � �"��� 
 
 � � � � � � � � � � � � � � �%& � � � By definition there are

at most � � � �
non-empty sets 	 �  � � . This implies for the sum of loads � � � � of the set 	 � � � 	 �  & � :� ����� � � � � � �� � � � � � � � � � � � �%& � � � � + �%& � � � �

, where � + � � � � � � � � � � � . �
Combining the last two lemmas we can show that the � -spanner approximates the optimal network by

a factor of
��� � � � � � �

. Since in practice the diversity can be seen as a logarithmic term, such a � -spanner
provides a

��� � � � � 	�� � �
-approximation for the congestion.

Theorem 41 The � -spanner of [AS94] contains a path system
�

with congestion
��� � � � � � � � ( � � � �

, where� & denotes the congestion optimal path system for the node set
�

.
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Proof: From Lemma 57 it follows that there exists a routing on a � -spanner such that the load of an edge
� is bounded by � � � � � ��+ � � � � � � ( � � �

. Lemma 54 shows that the interference number of the network is
bounded by

��� � � � � �
. This implies � � � � � � ��� � � � � � � � ( � � � �

. �

10.4 Trade-Offs

As we have seen there are efficient ways for selecting paths to optimize energy and to approximate con-
gestion. One might wonder whether an algorithm can compute a path system for a radio network such that
energy, congestion and dilation can be optimized at the same time. It turns out that this is not the case.

10.4.1 Congestion versus Dilation

For a node set - � placed on the crossings of a � 	 � � 	 -grid the best choice to minimize congestion is
to connect grid points only to their neighbors given the demand � � � '�� � � � � 	 � for all nodes (Figure
10.7). Then the congestion is

��� � � � 	�� and the dilation is given by
��� � 	�� . In [GK00] it is shown that

such a congestion is best possible in a radio network. A fast realization is given by a tree featuring a hop-
distance of

���������
	��
and congestion

��� � � � � 	��
(Such a tree-construction for the Cost-distance problem

is presented in [SW01]). In both cases we observe � � � - � � � � � - � � � � � � �
. This is also true for any

other path selection:

Theorem 42 Given the grid node set -3� , then for every path system
�

the following trade-off between
delay � � � - � � and congestion � � � - � � exists: � � � - � � � � � � - � � � � � � �

.

Proof: For
	 � ��� � partition the grid into three � ����� rectangle shaped node sets

� � ' � � ' � � , such that
� �

contains all left nodes,
�
� all right nodes and

� � the nodes in the middle.
We consider only an

�
� th of the demand starting at

� � heading for nodes in
�
� . Let � � ��� be the

delay of the network and � �  � denote the route from node � � to node ��� . Let � � � �  � � � � � � � ' � � � denote the
information flow on path � �  � .

Consider two nodes � � � � � and �)��� �
� . Then the path � �  � has at most ��� � - � � edges. The induced

capacity
! � � �  � � of the path � �  � is at least

!�� � �  � � � � � � � � �  � � � ����� 
 
 � � � ��� � � � � This term is minimized

if the path uses the maximum possible number � � � - � � of edges with equal length of at least
�

� � � � � � � .
Then we have

! � � �  � � � � , � � �
� � � � � � � � � �

The sum of the capacity over all paths cannot extend the capacity of the
� � � � � � � � � -square containing

all possible interference areas. This gives � � 
 ��� , � � � ��� � !�� � �  � � � � � � . Combining the inequalities
states the claim: � � � - � � � � � - � � � � ,� � � � �

10.4.2 Dilation versus Energy

The simplest location of sites is the line node set � � as investigated in [KKKP00], see Figure 10.8. Here
all nodes � � � � � � '������ ' � � � are placed on a line with equal distances   � � ' � � 
 � � � �

�

� . Only the first and
the last node want to exchange messages, i.e., � � � � '�� � � �
� and � � � '�� � � & for all other pairs

� � '�� � .
The energy-optimal network for unit and flow energy is the path

� � � '�� � '������ '�� � � , given the unit energy
U-Energy�

� � � � � � �
� , the flow energy F-Energy �

� � � � � � � �
� and the delay

	
.

The fasted network realizes only the edge
� � � '�� � � with hop-distance

�
and unit energy � � (and flow

energy ��� � ). There are path systems that can give a compromise between these extremes. However, it
turns out that the product of delay and energy cannot be decreased:

Theorem 43 Given the node set � � with diameter � , then for every path system
�

the following trade-offs
between delay � and unit energy U-Energy (resp. flow energy F-Energy) exist:

� � � � � � � U-Energy �
� � � � � � � � � � '

� � � � � � � F-Energy �
� � � � � � � � � � � �
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Proof: Let � be the number of edges of the longest path of the radio network (wlog. we assume that
there are only edges with non-zero information flow � � � � � & ). For the unit energy model we can assume
that there is only a path � from � � to � � (because introducing more edges needs additional energy without
decreasing the delay). We have to minimize U-Energy �

� � � � � � �� " � � � � � � defined by the edge lengths� � '������ '���� , where � �� " � � � � � . Clearly, the sum is minimal for � � � � � � � ��� � ��� � �

� giving
U-Energy�

� � � ��� � � � � � � � �
The bound for the flow energy follows analogously. �

10.4.3 The Incompatibility of Congestion and Energy

We will show that for some node sets congestion and energy are incompatible. This is worse than a trade-
off-situation since there is no compromise possible for energy and congestion.

The node set � �  � for � � � &�' �� � consists of two vertical parallel line graphs � � � . Neighbored (and
opposing) nodes have distance

�

� � . There is only demand � � 	 � between the horizontal pairs of opposing
nodes of the line graphs. The rest of the

	
�
	 4 � nodes are equidistantly placed between the nodes of each

line graph and the lowest horizontal pair of nodes, see Figure 10.9.
The minimum spanning tree consists of

	
nodes where all edges have length � � � 	 4 � � . This results in

a total unit energy of U-EnergyMST

� � �  � � � ��� � � 	 4 � � and congestion � MST
� � �  � � � ��� � �

. The flow
energy of the (same) minimal network is given by F-EnergyMST

� � �  � � � ��� ��� � 	 4 � � .
The congestion optimal path system

�
+ connects only nodes with non-zero demand. Its congestion is

� � �

� � �  � � � ��� � 	 4 � � and its unit energy is U-Energy� �

� � �  � � � ��� � � 	 4 � � . The flow energy is given
by F-Energy� �

� � �  � � � ��� � 	 4 � � � � � .
Lemma 58 For � � � &�' �� � and the node set � �  � with diameter � let ( � � &�'������ ' 	 � � be the number of
edges of length � 	 4 � of a path system for the radio network and let � � � &�'�� � be the information flow on
these edges. Then, we have for the congestion � , unit energy and flow energy:

U-Energy �
� � �  � � � � �	 � (

� � �	 � � � � �	 � 
 �  ' (10.2)

� � � � �  � � � �
( �

� ' (10.3)

F-Energy �
� � �  � � � � � �	 � � � � � �	� � � � �	 � � �

	 ��� � �	  ' (10.4)

� � � � �  � � � �
	 � �

� � �	� � � (10.5)

Proof: The minimum unit energy network is given by the MST which is a U-shaped path. Note that no
shortcut within the left and right vertical bars of this path can reduce energy or congestion. Therefore, the
only reasonable choice for an edge is to connect some ( ( ) of the horizontal nodes (and possibly to discon-
nect a route to a vertical neighbors). Adding the horizontal channel implies additional energy consumption
of

� �
� � � . For ( �

�
horizontal routes (including the original low energy route) the best choice is to fairly

distribute the traffic.
For the flow energy the argument is analogous. �

Theorem 44 There exists a node set
�

with a path system minimizing congestion to � & , and another path
system optimizing unit energy by U-Energy & and minimal flow energy by F-Energy & such for any path
system

�
on this node set

�
we have

� � � � � � � � 	 � � � � & � or U-Energy �
� � � � � � 	 � � � U-Energy & � '

� � � � � � � � 	 � � � � & � or F-Energy �
� � � � � ��	 � � � F-Energy & � �

Proof: follows by Lemma 58 using the graph
� � � � � �  � . �

Hence, there is no hope that communication networks can optimize more than one parameter at a time.
The network designer has to decide whether to go for small congestion or low energy consumption.
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Figure 10.7: The grid - � Figure 10.8: The line � � Figure 10.9: Node set � �

10.5 Conclusions and Further Work

The main difference between wired networks and radio networks is that the choice of communication
links in wireless networks influences the quality of the edges. We model the type of influences by the
interference graph, which gives a very general description how links can interfere. If the sending and
receiving characteristics of the radio stations are known, this interference graph can be described by the
geometric properties like the location of sites and transmitter power.

However, the main difference is still that choosing a certain communication link for some time de-
creases the ability of transmitting information in some other parts of the radio network. Since the analysis
of point-to-point communication (or permutation networks) in wireless networks is relatively young (see
[AS98a]), we start our investigation with a static simplified model: The point-to-point communication and
the location of the sites is fixed (unlike in mobile ad hoc networks). You can also see this model as a
snapshot of a more dynamic model (where research has just begun [ABBS01]).

We investigate the question of what is the optimal choice of communication links to achieve the best
possible network. We measure the quality by congestion, energy and delay. Given a path system for the
packets we present a sound definition of congestion, which takes into account the actual information flow,
i.e., load, over a link and the interferences of other links.

There already exists a probabilistic solution for solving interferences if the network parameters are
known [AS98a]. We show how this algorithm can be applied to our setting. Further, we relate the routing
to our notion of congestion and dilation, which is the maximum length of a path.

We prove that for our notion of energy (depending on the packet flow) the optimal path system can be
computed in polynomial time. Furthermore, we prove that a � -spanner construction for the communication
networks allows path systems with small congestion. Concretely, we show an approximation of a factor of��� � � � � � �

of the minimal congestion, where � � � �
denotes the diversity of the node set. We introduce this

measure to characterize malformed node locations. For practical applications we have � � � � � � ������� �
, e.g.

if the node set is random, or if the ratio of maximum and minimum distance of nodes is at most polynomial.
An overview of these results is shown in Table 10.1.

However there are situations where it is not possible to optimize two of these measures at the same
time (see Table 10.2). We prove trade-off results for congestion versus dilation and energy versus dilation.
For congestion and energy we show that every path system trying to approximate the congestion within a
smaller factor than � � 	 � � � � of the optimal congestion, suffers under an increased energy consumption of
at least a factor of � � 	 � � � � , and vice versa. Hence, energy and congestion minimization in radio networks
are incompatible tasks.

Besides the standard model of omni-directional communication we are currently investigating a sector
model where sender and receiver can focus signals (e.g. infrared). Such sector communication is a special
case of so-called space multiplexing techniques to increase the network capacity (e.g. by using directional
antennas [KSV00]). All results shown in this chapter can be easily transferred to such a model.

Another possibility to decrease interferences is to use multiple frequencies (as done in Bluetooth
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Congestion Dilation Unit Energy Flow Energy
Structure AS-spanner Complete Network MST Gabriel Sub-Graph

Approx.-factor
���

log
� 	��

optimal optimal optimal

Table 10.1: Approximation results for logarithmic diversity

Delay Congestion
Congestion � � � � � ��� � � � � � � � � �

—

Unit Energy � � � � � � UE � � � � � � � � � � � � � � � � � � 	 � � � �%&� � � � �
or

UE � � � � � � � 	 � � � UE &� � � � �

Flow Energy � � � � � � FE � � � � � � � � � � � � � � � � � � � 	 � � � �%&� � � � �
or

FE � � � � � � � 	 � � � FE &� � � � �

Table 10.2: Trade-Offs and Incompatibilities on network parameters

[Miy00] or IEEE 802.11 [IEE97]). As long as number � of frequencies is small (which is the case in
practice, because of governments’ regulation of the entire frequency spectrae) this may improve the con-
gestion by � . However, using frequency hopping cannot completely resolve the shown the trade-off and
incompatibility problems shown here.

This work is part of a project where a prototype communication system is being developed based on
infrared directed communication. The prototype will be able to communicate in eight sectors independently
with adjustable transmission powers. Furthermore, it can be used as an extension module for the mobile
mini robot Khepera ([MFG99, KTe00]). Thus, realistic scenarios for ad hoc networks can be reproduced
by performing experiments with these mini robots. Thus, beside computer simulations, our communication
strategies will also be validated under practical conditions. Such a network is technically more complicated,
but our goal is to show that it is possible to set up a geometric spanner graph as a communication network.
Notably, this chapter shows that such geometric spanners always provide good solutions for congestion
minimization in radio networks.
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