
Energy, Congestion and Dilation in Radio Networks

[Extended Abstract]

Friedhelm Meyer auf der Heide∗ Christian Schindelhauer∗ Klaus Volbert∗

Matthias Grünewald†
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ABSTRACT
We investigate the problem of path selection in radio net-
works for a given set of sites in two-dimensional space. For
some given static point-to-point communication demand we
define measures for congestion, energy consumption and di-
lation that take interferences between communication links
into account.

We show that energy optimal path selection for radio net-
works can be computed in polynomial time. Then, we intro-
duce the diversity g(V ) of a set V ⊆ � 2 . It can be used to
upperbound the number of interfering edges. For real-world
applications it can be regarded as Θ(log n). A main result
of the paper is that a weak c-spanner construction as a com-
munication network allows to approximate the congestion-
optimal communication network by a factor of O(g(V )2).

Furthermore, we show that there are vertex sets where
only one of the performance parameters congestion, energy,
and dilation can be optimized at a time. We show trade-offs
lower bounding congestion × dilation and dilation × energy.
For congestion and energy the situation is even worse. It is
only possible to find a reasonable approximation for either
congestion or energy minimization, while the other parame-
ter is at least a polynomial factor worse than in the optimal
network.

Categories and Subject Descriptors
C.2.1 [Computer-communication Networks]: Network
Architecture and Design; F.2.3 [Analysis of Algorithms
and Problem Complexity]: Tradeoffs between Complex-
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ity Measures; G.2.2 [Discrete Mathematics]: Graph The-
ory
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1. INTRODUCTION
In this paper we contribute to modeling radio networks,

to modeling congestion, energy consumption and dilation for
routing in such networks, and to designing routing paths in
order to minimize these cost measures. One major insight
is the fact that trade-offs are unavoidable: minimizing one
measure is only possible at the cost of enlarging another one.

Wireless ad hoc networks consist of nodes that can com-
municate via short-range wireless connections. Each node
can be source, destination and router for data packets, thus
no explicit infrastructure is required to set up and maintain
an ad hoc radio network. The area of application for radio
networks is broad, especially in niches such as search and
rescue missions or environmental monitoring. But ad hoc
networks can also be used as a last-mile technology to pro-
vide access to the Internet in high-populated environments.

In wireless ad hoc networks, energy-expensive long-range
connections should be avoided, and the overall distance be-
tween two communicating nodes (respectively hop count)
should be minimized to achieve low latencies. To use the
available network capacity efficiently and to achieve high
bandwidths, congested connections should also be avoided
by balancing the traffic over all reasonable connections.

These requirements can be expressed using three measur-
able quantities: congestion, energy and hop count. Tradi-
tional routing protocols such as AODV, DSDV and DSR [19]
usually chooses the path with the lowest hop count. There
also exist power-aware routing protocols that use different
metrics (e.g., energy consumed per packet, variance in node
power level) to choose the best route in order to extend the
lifetime of individual nodes or the whole network [22, 23, 3].
The congestion of a route is usually not regarded directly,
but some routing protocols choose routes with the shortest
route discovery, assuming that the route with the quick-
est response is less congested (e.g., SSA [5]). However, to
our knowledge, no practical work or theoretical studies ex-
ist that consider the interdependencies between these three



quantities.
In radio networks it is not clear how to choose nodes

as communication partners because links can interfere with
each other. Our main goal in this paper is to determine the
optimal choice of this network given a set of vertices V ⊆ � 2

(Random choices of vertex sets have been investigated in [1,
10]). Hence, we disregard the mobile and dynamic compo-
nents of ad hoc-networking and determine the optimal static
wireless network. We present a general model for congestion,
energy and dilation for a given solution of the routing prob-
lem of radio networks using one radio frequency. (cf. packet
radio network model or more realistic wireless network mod-
els, for instance as in [1, 24, 10, 2, 14, 11]). Besides the
load the congestion also measures the interferences between
edges.

In Section 2 we start our considerations with the paths
of all packets solving a routing problem in a radio network.
The union of all these paths, called path system, gives a nat-
ural definition of the communication network. These paths
induce load on the communication links that can interfere
with each other. Combining the load and the interferences
we achieve an intuitive model for the congestion of an edge
of the communication network. Our definition is very simi-
lar to those in [1], yet they use a slightly different approach.
Likewise in [1] we relate the congestion and the dilation, also
known as hop-distance, to the routing time of the routing
problem. Then, we define measures for energy consump-
tion, which is important for autonomous nodes that have to
”carry their energy”.

The main contributions concern path selection in radio
networks: Given a set of routing requests, find a routing
path so that the congestion, dilation, and/or energy con-
sumption is minimized. We introduce the notion of diversity
to describe locations of vertex sets where high interferences
are unavoidable. It turns out that if the diversity is small,
i.e. all point to point distances differ only by a polynomial
factor, then the interferences of communication networks
can be kept small. This is key factor for the congestion
avoidance analysis in this paper.

In section 3 we present strategies for path selection that
provably optimize energy consumption and give a O(g(V )2)-
factor approximation of congestion. In section 4, as a main
insight, we can conclude that not any two of these measures
can be minimized simultaneously. Trade-offs between two
measures are unavoidable. Finally, section 5 concludes the
work.

2. MODELING RADIO NETWORKS
We consider a set V ⊆ � 2 of n radio stations, featur-

ing both transmitter and receivers of one frequency, called
sites or vertices, in 2-dimensional Euclidean space. Let
d = maxu,v∈V |u, v| denote the geometric diameter of V .

As in the model of [18] each node u ∈ V can adjust its
transmission radius to some r ≥ 0 for sending a packet to a
neighbor v ∈ V in range r. Then, the communication net-
work N = (V, E) has the edge {u, v}, where |u, v| = r.
To acknowledge this packet the receiving site adjusts its
transmission radius to the same radius r. The transmis-
sion needs a unit time step and the area covered by send-
ing and acknowledging a packet along e = (u, v) ∈ E is
D(e) = Dr(u) ∪ Dr(v), where Dr(u) denotes a disk with
center u and radius r. The edge e′ interferes with e if D(e′)
contains u or v (cp. Figure 1). Since nodes can adjust its

transmission power for sending packets, interferences may
not be symmetric.

radio station

interference

edge

Figure 1: Stations, edges and induced interferences

In [9] we extend the definition of the interference number
to directed communication. There we allow two communi-
cation modes. In the packet routing mode acknowledgment
signals are very short and we can neglect its impact on the
interferences. When control messages have to be exchanged
sending and answering signals are both short, then we have
to consider all combination of interferences. The results of
this work, especially the trade-offs and the incompatibility
of congestion and dilation, apply to both interference mod-
els.

We define the set of interfering edges by Int(e) := {e′ ∈
E(N) | e′ interferes with e}. Note that sending a packet
along e is successful only if no edge from Int(e) sends con-
currently. These interferences of network N describe the
directed interference graph GInt(N) . Its vertex set are
all edges of N and its edges describe all interferences, i.e.
(c, e) ∈ E(GInt(N)) iff c ∈ Int(e). The in-degree of an edge
in the interference graph is called the interference number
of a communication link. The maximum interference num-
ber of a site u is the maximum interference number of all
edges with receiving site u. The interference number of the
network is the maximum interference number of all edges.

Now consider a routing problem w : V × V → � , where
w(u, v) packets have to be sent from u to v. We subdivide
the design of a routing strategy for w into the following
steps:

• Path selection: Select a system P of paths Rp from
source to destination for the packets p in the graph on
V . The union of all edges EP of the path system gives
the links of the communication network N = (V, EP).

• Collision avoidance: As noted above sending a packet
along edge e is only successful if no e′ ∈ Int(e) sends
at the same time.

Consider any routing strategy that routes w in T steps
using the path system P. Let Γ(e) ⊆ {1, . . . , T} denote the
time steps in which e sends successfully, then |Γ(e)| is just
the load `(e) of e, i.e. the number of packets whose path
goes through e, and � e′∈Int(e) `(e′) is the load of all edges

interfering with e. We combine these quantities and get
`(e)+ � e′∈Int(e) `(e′) (which is uniquely defined by the path

system P) as congestion of the edge CP(e). The congestion
of the path system P is defined by

CP(V ) := max
e∈EP

{CP(e)} .

We will denote by the dilation DP (V ) the length of a
longest path in P, also known as the hop-distance. By defini-
tion the optimal routing time T using P fulfills T ≥ DP (V ),
but also congestion gives a lower bound on the time T :



Theorem 1. Consider a radio network M with path sys-
tem P, maximum interference number I, and a routing prob-
lem w with dilation D and congestion C. Let T be its optimal
routing time, when the path system P is used. The following
holds.

1. T ≥ max{C/12, D} = Ω(C + D)

2. It exists an offline routing protocol with routing time
O(C + D · I), with high probability.

3. There is an online routing protocol that needs routing
time O(C + D · I · log n), w.h.p.

Proof. 1. Let e = (u, v) be an edge with maximum con-
gestion C. We partition the plane into 6 regions R1, . . . , R6

with center at u by six half-lines starting at u where the
angle between neighbored half-lines is π/3. Similarly we
consider the analogous partitioning R7, . . . , R12 with v as
the starting point of the 6 half-lines.

Define

Ei := {{p, q} | (p ∈ Ri ∨ q ∈ Ri) ∧ {p, q} ∈ Int(e)} .

Note that by a straight-forward geometric argument for two
edges e′, e′′ ∈ Ei it holds either e′ ∈ Int(e′′) or e′′ ∈ Int(e′).
Therefore, all transmissions over edges in Ei ∪ {e} have to
be done sequentially. Let `i := `(e) + � e′∈Ei

`(e′). Then,

� 12
i=1 `i ≥ C. Hence,

T ≥ max
i∈[12]

{`i} ≥ 1

12

12�

i=1

`i ≥ C

12
.

The upper bounds of 2. and 3. can be proved using the
same arguments as shown in Theorem 2.12 and Theorem
2.13 of [1]. Note that in [1] the notion dilation differs from
our approach.

The variable choice of the transmitter power allows to re-
duce the energy consumption, saving on the tight resources
of batteries in portable radio stations and reducing inter-
ferences. Theoretically, the energy needed to send over a
distance of r is given by O(r2). It turns out that in practice
one can model the energy by O(r4) or even O(r5). Through-
out this paper we model energy costs by O(r2). However, all
results besides theorem 3 in this paper can be easily trans-
ferred for higher exponents.

We distinguish two energy models. In the first model,
called unit energy model, we assume that maintaining a
communication link e is proportional to O(|e|2), where |e|
denotes its Euclidean length. Therefore, the unit energy
U-Energy used by radio network N is given by

U-EnergyP(V ) :=
�

e∈EP (N)

|e|2 .

The flow energy model reflects the energy actually con-
sumed by transmitting all packets. Here, the power con-
sumption of a communication link is weighted by the actual
load `(e) on an edge e:

F-EnergyP(V ) :=
�

e∈EP (N)

`(e)|e|2 .

In this paper we focus on the question: Given some sites
which path selection is best possible to obtain small conges-
tion, low energy consumption and small dilation. Clearly,
the optimal network for hop-distance is the complete graph.
Hence, we investigate only energy and congestion.

3. MINIMIZING ENERGY AND CONGES-
TION

3.1 Energy
The unit energy of a path system for a radio network is

defined as the energy consumption necessary to deliver one
packet on each communication link. It turns out that the
minimal spanning tree optimizes unit energy. Note that the
hardness results shown in [14, 4] do not apply because in our
model the transmission radii are adjusted for each packet.

Theorem 2. The minimal spanning tree is an optimal
path system for a radio network with respect to the unit en-
ergy.

Proof. Consider the graph defined by all edges E ⊆
V × V with edge weight |e|2. The minimum energy net-
work can be constructed using Prim’s or Kruskal’s algorithm
for minimum spanning tree. Note that the decisions in this
algorithm are based on comparison of the length of some
edges e and e′, i.e. |e| ≤ |e′|. Thus, the minimal network
for energy is also the minimum spanning tree for Euclidean
distances.

For the flow energy model, the minimal network is not nec-
essarily a tree. However, one can compute the minimal flow
energy network in polynomial time. In consideration of the
flow energy we use the gabriel graph [6] that consists of all
edges (u, v) such that the open disk using |u, v| as diame-
ter does not contain any node from V . Then the following
holds:

Theorem 3. For a given vertex set V a sub-graph of the
Gabriel Graph is an optimal path system for a radio network
with respect to the flow energy.

Proof. If in the interior of the circle defined by the diam-
eter (u, v) there exists a vertex w, then the edges (u, w), (w, v)
need less energy than the original edge. This follows by the
Theorem of Thales. Therefore, one can add an edge into
the communication network iff in there are no sites in the
interior of its circle, see Fig. 2. This matches the definition
of a Gabriel graph of V .

For two vertices u and v the sub-graph providing the low-
est energy for routing information from u to v is given by
the shortest path in the Gabriel graph if the length of an
edge is redefined by |e|2. The flow energy of the optimal
network consists of a linear combination of these lowest-
energy-paths between pairs. Using an all-pair-shortest-path
algorithm gives the optimal network.

Note, that there are situations where edges of the Gabriel-
graph can be replaced by less energy-consuming paths, even
if no site lies inside the disk described by the edge. Then, the
edge of the Gabriel graph is not part of any energy optimal
route.

3.2 Congestion

3.2.1 Diversity of a Vertex Set
Sometimes the location of the radio stations does not al-

low any routing without incurring high congestion. Con-
sider a vertex set V = {v1, . . . , vn} on a line, with distances
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Figure 2: Communication on an edge c is more ex-
pensive with regard to unit energy than communi-
cation on the edges a and b (a2 + b2 < c2)

|vi, vi+1| = 2i. The edge (vi, vi+1) interferes with all edges
(vj , vj+1) for j ≤ i, see Fig. 3. Therefore the interference
number of the network is n−1. Suppose only v1 and vn want
to communicate, then the better solution for congestion is
to disconnect all interior points and to realize only the edge
(v1, vn). Of course this is not an option when interior nodes
need to communicate.

Figure 3: The high diversity of the vertex set causes
many interferences, resulting in high congestion

It turns out that a determining parameter for the realiza-
tion of optimal communication networks for radio networks,
is the number of magnitudes of distances. Distances have
different magnitude if they differ more than a factor of 2.

Definition 1. The diversity g(V ) of a point set V in
Euclidean space is defined by

g(V ) := |{m | ∃u, v ∈ V : blog |u, v|c = m}| .

Note that in the above scenario we observe the almost max-
imum diversity of n (and a high interference number). For
point sets V on the line with small diversity the interference
number is small, too. It is easy to see, that the interference
number for a vertex set V on the line is at most O(g(V )).

Lemma 1. The diversity of n points in
� 2 is at least

Ω(log n) and at most O(n). For a point set randomly dis-
tributed in a square of

� 2 the diversity is O(log n) with high
probability (i.e., 1− n−c for any fixed constant c > 0). Fur-
thermore,

g(V ) ≤ 1 + log
maxu,v∈V ||u, v||2

minu,v∈V ∧u6=v ||u, v||2
.

The last inequality follows directly from the definition. It
implies logarithmic diversity for random point sets since the

probability to choose a vertex within a n
−c−1

2 -neighborhood
of another can be bound by n−c−1. Hence, for all vertices
the probability that g(V ) ≥ ( c+1

2
) log n can be bounded by

at most n−c. The proofs for the upper and lower bounds
can be found in [20].

There are many reasons why in the real world the diversity
can always be estimated by O(log n), e.g. the accuracy of

determining locations; and the ratio between the physical
size of a radio station and its transmitting range.

3.2.2 Approximating Congestion
To approximate congestion-optimal communication net-

works for radio networks we will use the Hierarchical Layer
Graph with bounded degree introduced in [9]. Adopting
ideas from clustering [7, 8] and generalizing an approach of
[1] we present a graph consisting of w layers L0, L1, . . . , Lw.
The union of all this graphs gives the Hierarchical Layer
graph. The lowest layer L0 contains all vertices V . The
vertex set of a higher layer is a subset of the vertex set of a
lower layer until in the highest layer there is only one vertex,
i.e. V = V (L0) ⊇ V (L1) ⊇ · · · ⊇ V (Lw) = {v0}.

The crucial property of these layers is that in each layer Li

vertices obey a minimum distance: ∀u, v ∈ V (Li) : |u, v| ≥
ri. Furthermore, all nodes in the next-lower layer must be
covered by this distance: ∀u ∈ V (Li) ∃v ∈ V (Li+1) :
|u, v| ≤ ri+1. Our construction uses parameters α ≥ β > 1,
where for some r0 < minu,v∈V |u, v| we use radii ri := βi · r0

and we define in layer Li the edge set E(Li) by E(Li) :=
{(u, v) | u, v ∈ V (Li) ∧ |u, v| ≤ α · ri}.

Clearly, for a vertex set V with diversity g(V ) we have
a maximum number of w = O(g(V )) layers. We will see
that the weak c-spanner property has implication for mini-
mizing congestion. Note, that by the following definition a
c-spanner G = (V, E) is also a weak c-spanner.

Definition 2. A graph G = (V, E) is a c-spanner, if for
all u, v ∈ V there exists a (directed) path p from u to v with
|p| ≤ c · |u, v|. G is a weak c-spanner, if for all u, v ∈ V
there exists a path p from u to v which is covered by a disk
of radius c · |u, v| centered at u.

Theorem 4. [9] If α > 2 β
β−1

the Hierarchical Layer Graph

is a c-spanner (and therefore a weak c-spanner) for c =

max � β α(β−1)+2β
α(β−1)−2β

, α
β � .

Lemma 2. For a vertex set V with diversity g(V ) the in-
terference number of the Hierarchical Layer Graph is bounded
by O(g(V )).

Proof. The interference number of the Hierarchical Layer
Graph is bounded by the number of layers. By definition
we have a constant number of interferences in each layer
and therefore the number of layers is bounded by w =
O(g(V )).

A typical feature of radio communication is that trans-
mitting information blocks a region for other transmission.
We formalize this observation and define the capacity of a
region following a similar approach presented in [10]. Let
A(R) denote the area of a geometric region R.

Definition 3. The capacity κ(R) of a geometric region
R is defined as follows: If in every point of R the same
set of edges E interfere then κ(R) := � e∈E `(e) · A(R) ,
where A(R) denotes the area of R. Such a region is called
elementary. Otherwise partition R into elementary regions
R1, . . . , Rm and define κ(R) := � m

i=1 κ(Ri) .

This definition implies the following relationship between
capacity, area and congestion.
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Figure 4: The edge e interferes with other edges
(at least) within the central disk. Its information
is rerouted on p, lying completely within the outer-
disk with radius (c − 1

2
)|e|

Lemma 3. Let R be a region and C the congestion of
a path system P. Then, the capacity of R is bounded by
κ(R) ≤ A(R) · C.

Every edge e with load `(e) has a certain impact on the
capacity of the area covered by the radio-network.

Lemma 4. An edge e with load `(e) occupies the capacity
c`(e)|e|2 for a constant c > 0.

The proof follows from the definition of the interference
area.

Lemma 5. Let C∗ be the congestion of the congestion-
optimal path system P∗ for a vertex set V . Then, every
weak c-spanner N can host a path system P ′ such that the
induced load `(e) in N is bounded by `(e) ≤ c′g(V ) C∗ for a
positive constant c′.

Proof. Given a path p of the path system P∗, we replace
every edge e = (u, v) that does not exist in the weak c-
spanner N with a path p from u to v in N such that the new
route lies completely inside a disk Dc(e) of radius (c− 1

2
)|u, v|

and center 1
2
(u + v).

For the path system P∗ there may have been interferences
between e and other edges. For simplicity we underesti-
mate the area where e can interfere other communication
by the disk D1(e) with center 1

2
(u + v) and radius 1

2
|u, v|

(see Fig. 4).
We want to describe the impact of rerouting of all edges

in E(N∗) to a specific edge e0 ∈ E(N) in the c-spanner N .
If this edge e0 = (u0, v0) ∈ E(N) transmits the traffic of
a detour of an edge e = (u, v) ∈ E(N∗), then the distance
between the central points z0 := 1

2
(u0 + v0) of e0 and z :=

1
2
(u + v) is bounded by |z0, z| ≤ (c − 1

2
)|e|.

Now consider the edge set Ei,e0
⊆ E(N∗) of edges e with

length |e| ∈ [2i, 2i+1] for i ∈ � which reroute their traffic to
e0. Their center points are located inside a disk with radius
(c − 1

2
)2i+1 ≤ 2i+1c and center z0. The interference area of

every edge e is described by Dc(e). It occupies an area of at
least π22i, which lies completely inside a disk D with radius
2i+1(c + 1) and center z0. The area of D is π22i+2(c + 1)2.

Lemma 4 shows that every edge e reduces the capacity in
D by at least c′′`(e)22i. Because of Lemma 3, the over-all
capacity of C is at most κ(D) = π22i+2(c+1)2C∗. Therefore
we have for the sum of the loads `(e) for e ∈ Ei,e0

that
� e∈Ei,e0

`(e) ≤ π4(t + 1)2C∗/c′′ . By definition there are

at most g(V ) non-empty sets Ei,e0
. This implies for the sum

of loads `(e) of the set Ee0
⊆ E(N∗):

�

e∈Ee0

`(e) ≤ g(V )4(t + 1)2πC∗/c′′ = c′C∗g(V ),

where c′ := 4(t + 1)2π/c′′.

Theorem 5. Let P∗ be the congestion optimal path sys-
tem for the vertex set V . Then the Hierarchical Layer Graph
contains a path system P with congestion O(g(V )2CP∗(V )).

Proof. From Theorem 4 it follows that the Hierarchi-
cal Layer Graph is a weak c-spanner. Therefore we can
use Lemma 5 to show that there exists a routing such that
the load of an edge e is bounded by `(e) ≤ c′g(V )CP∗(V ).
Lemma 2 shows that the interference number of the net-
work is bounded by O(g(V )). So, this implies that CP(V ) =
O(g(V )2CP∗(V )).

Since in practice the diversity can be seen as a logarithmic
term, the Hierarchical Layer Graph provides a O((log n)2)-
approximation for congestion.

4. TRADE-OFFS
We have seen efficient ways for selecting paths to opti-

mize energy and approximate congestion. One might won-
der whether an algorithm can compute a path system for a
radio network optimizing energy, congestion and dilation at
the same time. It turns out that this is not the case.

4.1 Congestion versus Dilation
For a vertex set Gn placed on the crossings of a

√
n×√

n-
grid the best choice to minimize congestion is to connect grid
points only to their neighbors given the demand w(u, v) =
W/n2 for all vertices (Fig. 5). Then the congestion is
O(W/

√
n) and the dilation is given by O(

√
n). In [10] it

is shown that such a congestion is best possible in a radio
network. A fast realization is given by a tree featuring a
hop-distance of O(log n) and congestion O(W log n) (Such a
tree-construction for the Cost-distance problem is presented
in [21]). In both cases we observe CP(Gn)DP(Gn) ≥ Ω(W ).
This also is true for any other path selection:

Theorem 6. Given the grid vertex set Gn with traffic W
then for every path system P the following trade-off between
dilation DP (Gn) and congestion CP(Gn) exists:

CP(Gn) · DP (Gn) ≥ Ω(W ) .

Proof. For n = 9p2 partition the grid into three p × 3p
rectangle shaped vertex sets V1, V2, V3, such that V1 contains
all left vertices, V3 all right vertices and V2 the vertices in
the middle.

We consider only an 1
9
th of the demand starting at V1

heading for vertices in V3. Let D ≤ 3p be the dilation of the
network and pi,j denote the route from vertex vi to vertex



Figure 5: The grid Gn

vj . Let r(pi,j) = w(ui, uj) denote the information flow on
path pi,j .

Consider two vertices vi ∈ V1 and vj ∈ V3. Then the path
pi,j has at most DP(Gn) edges. The induced capacity κ(pi,j)
of the path pi,j is at least κ(pi,j) ≥ c1`(pi,j) � e∈pi,j

|e|2 .

This term is minimized if the path uses the maximum pos-
sible number DP (Gn) of edges with equal length of at least

d
3DP (Gn)

. Then, we have κ(pi,j) ≥ c1d2W
9n2DP (Gn)

.

The sum of the capacity over all paths cannot extend the
capacity of the (3d) × (3d)-square containing all possible
interference areas. This gives:

�

vi∈V1

�

vj∈V3

κ(pi,j) ≤ 9d2 .

Combining the inequalities states the claim, since we get

CP(Gn)DP(Gn) ≥ c1

81
W .

4.2 Dilation versus Energy
The simplest location of sites is the line vertex set Ln

as investigated in [14], see Fig. 6. Here all vertices Ln =
{v1, . . . , vn} are placed on a line with equal distances |vi, vi+1|
= d

n
. Only the leftmost and the rightmost node want to ex-

change messages, i.e. w(v1, vn) = W and w(v, w) = 0 for all
other pairs (v, w). The energy-optimal network for unit and
flow energy is the path (v1, v2, . . . , vn), given the unit energy

U-EnergyP(Ln) = d2

n
, the flow energy F-EnergyP(Ln) =

d2W
n

and the dilation n.

Figure 6: The line Ln

The fasted network realizes only the edge (v1, vn) with
hop-distance 1 and unit energy d2 (and flow energy Wd2).
There are path systems that can give a compromise between
these extremes. However, it turns out that the product of
dilation and energy cannot be decreased:

Theorem 7. Given the vertex set Ln with diameter d
then for every path system P the following trade-offs between

dilation D and unit energy U-Energy (resp. flow energy F-
Energy) exist:

DP (Ln) · U-EnergyP(Ln) ≥ Ω(d2) ,

DP(Ln) · F-EnergyP(Ln) ≥ Ω(d2W ) .

Proof. Let m be the number of edges of the longest path
of the radio network (wlog we assume that there are only
edges with non-zero information flow `(e) > 0). For the
unit energy model we can assume that there is only a path
p from v1 to vn (because introducing more edges needs ad-
ditional energy without decreasing the dilation). We have
to minimize U-EnergyP(p) := � m

i=1(`i)
2 defined by the

edge lengths `1, . . . , `m, where � m
i=1 `i = d. Clearly, the

energy sum is minimal for `1 = `2 = · · · = `m = d
m

giving

U-EnergyP(p) · DP (p) ≥ d2 .
The bound for the flow energy follows analogously.

4.3 The Incompatibility of Congestion and En-
ergy

We will show that for some vertex sets congestion and
energy are incompatible. This is the worst oocurence of
a trade-off-situation since there is no possible compromise
between energy and congestion.

The vertex set Uα,n for α ∈ [0, 1
2
] consists of two hori-

zontal parallel line graphs Lnα . Neighbored (and opposing)
vertices have distance d

nα . There is only demand W/nα

between the vertical pairs of opposing vertices of the line
graphs. The rest of the n − n−α vertices are equidistantly
placed between the vertices of each line graph and the left-
most vertical pair of vertices (see Fig. 7).

Figure 7: Vertex set Uα

The minimum spanning tree consists of n vertices where
all edges have length Θ(dn−1). This results in a total unit
energy of

U-EnergyMST(Uα,n) = O(d2n−1)

and congestion

CMST(Uα,n) = O(W ) .

The flow energy of the (same) minimum network is given by

F-EnergyMST(Uα,n) = O(Wd2n−1) .

The congestion optimal path system P ′ connects only ver-
tices with non-zero demand. Its congestion is

CP′(Uα,n) = O(Wn−α)

and its unit energy is

U-EnergyP′(Uα,n) = O(d2n−α) .

The flow energy is given by

F-EnergyP′ (Uα,n) = O(Wn−2αd2) .



Lemma 6. For α ∈ [0, 1
2
) and the vertex set Uα,n with

diameter d let x ∈ {0, . . . , nα} be the number of edges of
length dn−α of a path system for the radio network and let
f ∈ [0, W ] be the information flow on these edges. Then, we
have for the congestion C, unit energy and flow energy:

U-EnergyP(Uα,n) ≥ d2

n
+ x

�
d2

n2α
− d2

n1+α � , (1)

CP(Uα,n) ≥ W

x + 1
, (2)

F-EnergyP(Uα,n) ≥ f
d2

n2α
+ (W − f)

�
d2

n
− � f

nα � d2

n � (3)

CP(Uα,n) ≥ f

nα
+ (W − f) . (4)

Proof. The minimum unit energy network is given by
the MST which is a U-shaped path. Note that no shortcut
within the left and right horizontal bars of this path can
reduce energy or congestion. Therefore the only reasonable
choice for an edge is to connect some (x) of the horizontal
vertices (and possibly to disconnect a route to a vertical
neighbors). Adding the vertical channel implies additional

energy consumption of d2

n2α . For x + 1 horizontal routes
(including the original low energy route) the best choice is
to fairly distributed the traffic.

For the flow energy the argument is analogous.

Theorem 8. There exists a vertex set V with a path sys-
tem minimizing congestion to C∗, and another path system
optimizing unit energy by U-Energy∗ and minimal flow en-
ergy by F-Energy∗ such we have for any path system P on
this vertex set V we have

CP(V ) ≥ Ω(n1/3C∗) or

U-EnergyP(V ) ≥ Ω(n1/3U-Energy∗) ,

CP(V ) ≥ Ω(n1/3C∗) or

F-EnergyP(V ) ≥ Ω(n1/3F-Energy∗) .

Proof. The claim follows directly by Lemma 6 using the
graph V = U1/3,n.

Hence, there is no hope that routing in wireless networks
can optimize more than one parameter at a time. The wire-
less network designer has to decide infavor of small conges-
tion or low energy consumption.

5. CONCLUSIONS AND FURTHER WORK
The main difference between wired networks and radio

networks is that the choice of communication links in wire-
less networks influences the quality of the edges. We model
the type of influences by the interference graph, which gives
a very general description how links can interfere. If the
sending and receiving characteristics of the radio stations
are known, this interference graph can be described by the
geometric properties like the location of sites and transmit-
ter power.

However, the main difference is still that choosing a cer-
tain communication link for some time decreases the ability
of transmitting information in some other parts of the radio
network. Since the analysis of point-to-point communication

(or permutation networks) in wireless networks is relatively
young (see [1]), we start our investigation with a static sim-
plified model: The point-to-point communication and the
location of the sites is fixed. You can also see this model
as a snapshot of a more dynamic model (where research has
just begun [2]).

We investigate the question what the optimal choice of
communication links is to achieve the best possible network.
We measure the quality by congestion, energy and hop-
distance. Given a path system for the packets we present a
sound definition of congestion, which takes into account the
actual information flow, i.e. load, over a link and possible
interferences of other links.

A probabilistic solution for solving interferences has been
presented if the network parameters are known [1]. We show
how this algorithm can be applied to our setting. Further,
we relate routing time to our notion of congestion and dila-
tion, which is the maximum number of edges of a route.

We prove that for our notion of energy (depending on
the packet flow) the optimal path system can be computed
in polynomial time. Furthermore, we prove that a weak c-
spanner construction for the communication networks allow
path systems with small congestion. Concretely, we show
an approximation of a factor of O(g(V )2) of the minimal
congestion, where g(V ) denotes the diversity of the vertex
set. We introduce this measure to characterize malformed
vertex locations. For practical applications we have g(V ) =
Θ(log n), e.g. if |V | = n and if the vertex set is random, or if
the ratio of maximum and minimum distance of nodes is at
most polynomial (These results are summarized in Table 1).

However there are situations where it is not possible to op-
timize two of these measures at the same time, see Table 2.
We prove trade-off results for congestion versus dilation and
energy versus dilation. For congestion and energy we show
that every path system trying to approximate the congestion
within a smaller factor than o(n1/3) of the optimal conges-
tion, suffers under an increased energy consumption of at
least a factor of Ω(n1/3), and vice versa. Hence, energy and
congestion minimization in radio networks are incompatible
tasks.

Another possibility to decrease interferences is to use mul-
tiple frequencies, (as done in Bluetooth [16] or IEEE 802.11
[12]). As long as number f of frequencies is small (which
is the case in practice, because of governments’ regulation
of all frequency spectra) this may improve the congestion
by this factor f . However, using frequency hopping cannot
completely resolve the shown trade-off and incompatibility
problems. Besides the standard model of omni-directional
communication we are currently investigating a sector model
where sender and receiver can focus signals (e.g. infrared).
Such sector communication is a special case of so-called
space multiplexing techniques to increase the network capac-
ity (e.g. by using directional antennas [15]). The techniques
of the results shown in this paper can be easily transferred
to such a model [9].

At the moment we are working on the implementation
of a prototype communication system based on infrared di-
rected communication. The prototype will be allowed to
submit data in a fixed number of different directions and
to adjust the transmission power in each sector separately.
It can be used as an extension module for the mobile mini
robot Khepera ([17, 13]). Thus, realistic scenarios for ad
hoc networks can be reproduced by performing experiments



Congestion Dilation Unit Energy Flow Energy
Structure HL Graph Complete Network MST Gabriel Sub-Graph

Approx.-factor O(log2n) optimal optimal optimal

Table 1: Approximation results for logarithmic diversity

Dilation Congestion
Congestion CP(V ) · DP (V ) ≥ Ω(W ) —

Unit Energy DP (V ) · UEP(V ) ≥ Ω(d2) CP(V ) ≥ Ω(n1/3C∗
P(V )) or

UEP(V ) ≥ Ω(n1/3UE∗
P(V ))

Flow Energy DP(V ) · FEP(V ) ≥ Ω(d2W ) CP(V ) ≥ Ω(n1/3C∗
P(V )) or

FEP(V ) ≥ Ω(n1/3FE∗
P(V ))

Table 2: Trade-Offs and Incompatibilities on network parameters

with these mini robots. Beside computer simulations [25],
this enables us to validate our communication strategies un-
der practical conditions. Such a network is technically more
complicated, but our goal is to show that it is possible to set
up a geometric spanner graph as a communication network.
Notably, this paper shows that such geometric spanners al-
ways provide good solutions for congestion minimization in
radio networks.
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