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Abstract. For ¢ € R, a c-spanner is a subgraph of a complete Euclidean graph
satisfying that between any two vertices there exists a path of weighted length
at most c times their geometric distance. Based on this property to approximate
a complete weighted graph, sparse spanners have found many applications, e.g.,
in FPTAS, geometric searching, and radio networks. In a weak c-spanner, this
path may be arbitrary long but must remain within a disk of radius c-times the
Euclidean distance between the vertices. Finally in a c-power spanner, the total
energy consumed on such a path, where the energy is given by the sum of the
squares of the edge lengths on this path, must be at most c-times the square of
the geometric distance of the direct link.

While it is known that any c-spanner is also both a weak C'i-spanner and a
Cz-power spanner (for appropriate C1, C> depending only on ¢ but not on the
graph under consideration), we show that the converse fails: There exists a fam-
ily of c1-power spanners that are no weak C'-spanners and also a family of weak
co-spanners that are no C'-spanners for any fixed C' (and thus no uniform span-
ners, either). However the deepest result of the present work reveals that any
weak spanner is also a uniform power spanner. We further generalize the latter
notion by considering (c, §)-power spanners where the sum of the §-th powers of
the lengths has to be bounded; so (-, 2)-power spanners coincide with the usual
power spanners and (-, 1)-power spanners are classical spanners. Interestingly,
these (-, §)-power spanners form a strict hierarchy where the above results still
hold for any 6 > 2; some even hold for § > 1 while counterexamples exist for
§ < 2. We show that every self-similar curve of fractal dimension d > § is no
(C, §)-power spanner for any fixed C, in general.

1 Motivation

Spanners have appeared in Computer Science with the advent of Computational Geom-
etry [4, 18], raised further in interest as a tool for approximating NP-hard problems [13]
and, quite recently, for routing and topology control in ad-hoc networks [1, 12, 8,7, 11].
Roughly speaking, they approximate the complete Euclidean graph on a set of geomet-
ric vertices while having only linearly many edges. The formal condition for a c-spanner
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G = (V, E) is that between any two u, v € V, the edge (u, v) may be absent provided
there exists a path in G from u to v of length at most c-times the Euclidean distance
between u and v; see Figure 1(a). In particular, this path remains within a circle around
u of radius c. For applications in geometric searching [5], it has turned out that graphs
with the latter, weaker condition suffice; see Figure 1(b). In [10] such weak spanners
are used to approximate congestion-optimal radio networks. Several constructions yield
both spanners [6] and weak spanners [5] with arbitrarily describable approximation ra-
tio. Among them, some furthermore benefit from nice locality properties which led to
successful applications in ad-hoc routing networks [7,9, 17, 16]. However in order to
restrict the power consumption during such a communication (which for physical rea-
sons grows quadratically with the Euclidean length of each link), one is interested in
routing paths, say between u and v, whose sum of squares of lengths of the individual
steps is bounded by c-times the square of the Euclidean distance between u and v; see
Figure 1(c). Such graphs are known as c-power spanners [7, 9].

u \% u \%
(a) Bounded length (b) Bounded radius (c) Bounded energy

Fig. 1. Spanner, Weak Spanner and Power Spanner

Finally, when power consumption is of minor interest but the routing time is domi-
nated by the number of individual steps, sparse graphs are desired which between any
vertices u and v provides a path containing at most ¢ further vertices. These are the
so-called c-hop spanners [1]. In this paper, we investigate the relations between these
various types of spanners. Observe that any strongly connected finite geometric graph
is a C-spanner for some' value C. Therefore the question on the relation between span-
ners and weak spanners rather asks whether any weak c-spanner is a C-spanner for
some value C' depending only on c. Based on a construction from [3], we answer this
to the negative. For some weak c-spanners it is proved that they are also C'-power span-
ners for some value C' [7, 8] using involved constructions. One major contribution of
our work generalizes and simplifies such results by showing that in the plane in fact any
weak c-spanner is a C-power spanner with C' = O(c®). Moreover, we investigate the
notion of a (¢, §)-power spanner [7] which

! Consider for any pair u, v of vertices some path from u to v and the ratio of its length to the
distance between u and v; then taking for C' the maximum over the (finitely many) pairs u, v
will do.
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for 6 =1 coincides with c-spanners
— for =2 coincides with (usual) c-power spanners
for § = 0 coincides with c-hop spanners, i.e. graphs with diameter ¢
for § > 2 reflects transmission properties of radio networks (e.g., for § up to 6 or
even 8) .
We show that these form a strict hierarchy: For A > ¢ > 0, any (¢, §)-power spanner
is also a (C, A)-power spanner with C' depending only on ¢ and A/§; whereas we give
examples of (C, A)-power spanners that are no (¢, §)-power spanner for any fixed c.
Our main contribution is that any weak c-spanner is also a (C, d)-power spanner for
arbitrary 6 > 2 with C depending on ¢ and § only. We finally show that this claim is
best possible by presenting, for arbitrary § < 2, weak c-spanners which are no (C, d)-
power spanner for any fixed C.

This paper is organized as follows: Section 2 formally defines the different types
of spanners under consideration. Section 3 shows that, while any c-spanner is also a
weak c-spanner, a weak c-spanner is in general no C-spanner for any C' depending just
on c. Section 4 similarly reveals the relations between spanners and power spanners.
The central Section 5 of the this work investigates the relation between weak span-
ners and power spanners. Theorem 3 gives an example of a power spanner which is
no weak spanner. Our major contributions then prove that, surprisingly, any weak c-
spanner is also a C-power spanner with C' depending only on c. For different values
of §, we obtain different upper bounds to C' in terms of ¢: For 6 = 2 (power span-
ners in the original sense), we show C' < O(c®), see Theorem 5; for § > 2, we have
C < (’)(02+5/(1 — 22_5)), see Theorem 4. However for § < 2, we present counter-
examples of unbounded C, that is, in this case provably not any weak c-spanner is
a (C, 0)-power spanner. Further, we generalize our construction and analysis to self-
similar fractal curves. Section 6 finally shows that for different §, the respective classes
of (-, d)-power spanners form a strict hierarchy. In Section 7 we discuss extensions of
our results to higher-dimensional cases, before we conclude this work presenting appli-
cations of our results concerning power-efficient wireless networks in Section 8.

2  Preliminaries

We focus on the two-dimensional case, that is, directed graphs G = (V, E) with finite
V' C R2; extensions to higher dimensions are discussed in Section 7. Let |u — v| denote
the Euclidean distance between u, v € V. A path from u to v in G is a finite sequence
P = (u =uj,uy,...,uy = v) of vertices u; € V such that (u;_q,u;) € E for all
i =2,..., L. Occasionally, we also encounter the more general situation of a path from
u to v not necessarily in G; this means that u; € V still holds but the requirement
(u;,u;11) € E is dropped. The radius of a path P is the real number max’_, [u — u;|.
The (Euclidean) length of P is given by 2522 |u; — u;—1]; the hop length is £ — 1; for
6>0,

¢
IPI° = ) i =g M
=2
denotes the §-cost of P. The length is just the 1-cost whereas the hop length coincides
with the 0-cost.
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Definition 1. Let G = (V, E) be a geometric directed graph with finite V. C R? and
¢ > 0. G is a c-spanner, if for allu,v € V there is a path P from u to v in G of length
|P||t at most ¢ - |u — v|. G is a weak c-spanner, if for all u,v € V there is a path P
fromutovin G of radius at most ¢ - |u — v|. For 6 > 0, G is a (¢, 0)-power spanner if
forallw,v €V there is a path P fromu to v in G of §-cost || P||° at most ¢ - [u — v|°.
G is a c-power spanner, if G is a (c,2)-power spanner. The factor c is called length
stretch factor, weak stretch factor or power stretch factor, respectively.

Informally (see Figure 1), in a c-spanner there exists between two arbitrary vertices
a path of length at most c-times the Euclidean distance between these vertices (bounded
length). In a weak c-spanner, this path may be arbitrary long but must remain within a
disk of radius c-times the Euclidean distance between the vertices (bounded radius).
Finally in a c-power spanner, the energy consumed on such a path (e.g., the sum of
the squares of the lengths of its constituting edges) must be at most c-times the one
consumed on a putative direct link (bounded cost). Sometimes we shorten the notion
of spanner, weak spanner and power spanner and omit constant parameters. So, if we
say that a family of graphs is a spanner, then there exists a constant ¢ such that all its
members are c-spanners.

The attentive reader might have observed that our Definition 1 does not exactly
match that from [7]. The latter required that the 2-cost of some path P from u to v in
G is bounded by c-times the 2-cost of any path @) (not necessarily in ) from u to v.
However, both approaches are in fact equivalent:

Lemma 1. Ler G = (V, E) be a (c,§)-power spanner, u,v € V, and let QQ denote
some path Q) (not necessarily in G) from u to v of minimum d-cost. Then there is a path
P in G fromu to v of 6-cost | P||° at most c - ||Q||°.

Proof. LetQ = (u=qy,...,qr, = v).Foreachi =2, ..., L there exists by presump-
tion a path P; in G from q;_1 to q; of d-cost at most ¢+ |q; — q;—1 |5. The concatenation
of all these paths yields a path P from u to v in G with §-cost || P||° at most ¢ - [|Q||°.

3 Spanners Versus Weak Spanners

Every c-spanner is also a weak c-spanner. Our first result shows that the converse fails
in general.

V2 N e PN e TN

Fig. 2. Construction of EPPSTEIN provably yields no spanner but a weak spanner

Theorem 1. There is a family of graphs G = (V, E) with V. C R? all of which are
weak (\/3 + 1/2)-spanners but no C-spanners for any fixed C' € R.
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Proof. We show the claim using the fractal construction presented in [3] (see Figure 2).
We briefly review its recursive definition which is similar to that of a KOCH Curve. At
the beginning there are two vertices with distance 1. In the following steps we replace
each edge by 5 new edges of equal length as follows: one horizontal, one at angle
7/4, a second horizontal, another one at angle —m/4 and a third horizontal. After i
steps we have a graph consisting of 5% edges and 5¢ + 1 vertices. As shown in [3] this
graph has unbounded length stretch factor. We argue that there exists a constant ¢ such
that it is a weak c-spanner. It is known that the area under the constructed curve is
bounded by a constant and that the path between two vertices u, v € V' lies completely
in a disk around the midpoint of the segment between v and v with radius at most
(2- \/§/2) = /3 (see KOCH’s Snowflake, Figure 6). Applying Observation 2 proves
the claim.

The following observation says that, up to constants, it makes no difference in the
definition of a weak spanner whether the radius is bounded with respect to center u (the
starting one of the two points) or with respect to center (u + v)/2 (the midpoint of the
segment between the two points).

Observation 2. Let P = (u = uy,...,uy = V) be a path in the geometric graph
G = (V,E) suchthat lu—u;| < c-|lu—v|foralli=1,... L Then, w := (u+v)/2
satisfies by the triangle inequality

lu—u;+(v—u)/2| < Ju—ui+jv—ul/2 < (c+%)~\u7v\.

|w—u,|
Conversely if P has |[w —u;| < ¢-|u — v| for all i, then

u-wl = woud@—v)/2 < fwewltuvl/2 < (D) uv] .

4 Spanners Versus Power Spanners

In [7] it is shown that, for § > 1, every c-spanner is also a (c¢°,J)-power spanner.
However, conversely, for any § > 1, there are (¢, §)-power spanners which are no C-
spanners for any fixed C: This follows from Theorem 3 as any C-spanner is a weak
C-spanner as well.

S Weak Spanners Versus Power Spanners

Now, we turn to the main contribution of the present paper and present our results
concerning the relation between weak spanners and power spanners. Surprisingly, it
turns out that any weak c-spanner is also a C-power spanner for some C' depending
only on c. But first observe that the converse in general fails:

Theorem 3. In the plane and for any § > 1, there is a family of (¢, 0)-power spanners
which are no weak C-spanners for any fixed C.

Proof. LetV :={u=wvy,...,v =v,} beaset of n vertices placed on a circle scaled
such that the Euclidean distance between u and v is 1 and |v; — v;41| = 1/ for all



810 C. Schindelhauer, K. Volbert, and M. Ziegler

i = 1,...,mn — 1. Now, consider the graph G = (V, E) with edges (v;, v;+1). First
observe that G is a (¢, d)-power spanner with ¢ independent of n. Indeed, its §-power
stretch factor is dominated by the d-cost of the (unique) path P in G from u to v which
amounts to

PP = s < S o= e
1=1 =1

a convergent series since § > 1. This is compared to the cost of the direct link from u
to v of 1. On the other hand, the Euclidean length (that is, the 1-cost) of the polygonal
chain from u to v is given by the unbounded harmonic series Z;:ll (1/i) = O(logn).
Therefore also the radius of this polygonal chain cannot be bounded by any C' indepen-
dent of n, either.

In the sequel, we show that, conversely, any weak c-spanner is a (C, ¢)-power span-
ner for both § > 2 (Section 5.1) and § = 2 (Section 5.2) with C' depending only on
c and J. A counter-example in Section 5.3 reveals that this however does not hold for
0 < 2.

5.1  Weak Spanner Implies Power Spanner for § > 2

In this subsection, we show that any weak c-spanner is also a (C, §)-power spanner for
any 6 > 2 with C' depending only on ¢ and 4. By its definition, between vertices u, v,
there exists a path P in G from u to v that remains within a disk around u of radius
¢+ Ju—v|. However on the course of this path, two of its vertices u’ and v’ might come
very close so that P, considered as a subgraph of G, in general is no weak c-spanner.
On the other hand, G being a weak c-spanner, there exists also between u’ and v’ a path
P’ of small radius. Based on such repeated applications of the weak spanner property,
we first assert the existence of a path which, considered as a subgraph of G, is weak
2c-spanner.

Definition 2. Ler G = (V| E) be a directed geometric graph and e; := (uy,vy),
es 1= (ug, va) two of its edges. By their distance we mean the number

min{\ul — g, [vi — val, [ur — val, vy —112\} )

that is, the Euclidean distance of a closest pair of their vertices (see Figure 3(b)).

Lemma 2. Let G = (V| E) be a weak c-spanner and u,v € V. Then there is a path P
fromu to v in G which, as a subgraph of G, is a weak 2c-spanner.

Proof. The idea is to take the path P asserted by the weak spanner property for u and
v and to, for any pair u’, v’ of vertices on P for which P violates that property, locally
replace that part of P by a path from u’ to v/ in G. However for these iterated improve-
ments to eventually terminate, we perform them in decreasing order of the lengths of
the edges involved.

W.Lo.g. we assume |u — v| = 1. Since G is a weak c-spanner there exists a path
P = (u = uy,...,uy = v) from u to v in G that lies completely within a disk



Spanners, Weak Spanners, and Power Spanners 811

\ui —Ujl 2‘ 1/2
1

ler — ez] ‘ 2c
(a) Improving paths (b) Edge distance (c) Counting edges

Fig. 3. Construction and analysis of a path with low power stretch in a weak spanner

around u of radius c. In particular, any edge on this path has a length of at most 2c, see

Figure 3(a).
Now, consider all edges on this path of length between c and 2c. For any pair e; =
(uj,w;41) and ez = (uj,u;41) with j > 4 closer than % (Definition 2), improve

that part of P by replacing it with a path according to the weak c-stretch property.
Observe that, since the improvement is applied to vertices of distance at most %, this
sub-path remains within a disk of radius ¢/2; in particular any edge introduced to P has
length at most ¢ and thus does not affect the edges of length between c and 2c¢ currently
considered. Moreover, after having performed such improvements to all edges of length
between ¢ and 2c, the resulting path P’, although it might now leave the disk around u
of radius c, it does remain within radius ¢ + ¢/2.

Next, we apply the same process to edges of length between ¢ and ¢/2 and perform
improvements on those closer than i. The thus obtained path P” remains within a disk
of radius ¢+ ¢/2+ c¢/4 while, for any pair of vertices u’ and v’ improved in the previous
phase, the sub-path between them might increase in radius from ¢ - [u’ — v’| to at most
(c+¢/2) - Ju' ~ V.

As G is a finite graph, repeating this process for edges of length between ¢/2 and
¢/4 and so on, will eventually terminate and yield a path P from u to v remaining
within a disk of radius ¢ + ¢/2 + ¢/4 + ... = 2¢. Moreover, for any pair of vertices
u’, v’ in P, the sub-path between them has radius at most (c+¢/2+c¢/4+...)-|[u’ = V|
which proves that P is indeed a weak 2¢-spanner.

Lemma 3. Let P = (uy, ..., uy) be a weak 2c-spanner; u; € R?, [u; —uy| = 1. Then,
P contains at most (8c+1)? edges of length greater than c; more generally, P contains
at most (8¢ + 1)? - 4% edges of length greater than c/2F.

Proof. Consider two edges (u;, u;4+1) and (u;,u;41) on P both of length at least ¢
with j > 4. P being a 2c-weak spanner implies that, between vertices u; and uj,
the sub-path in P from u; to u; (which is unique and passes through u;1), satisfies
¢ < |lu; —uiq1| < 2¢- Ju; — uj; hence, [u; — u;| > %, see Figure 3(c). In particular,
placing an Euclidean disk B; of radius i around each starting vertex u; of an edge of
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length at least c results in these disks being mutually disjoint. If m denotes the number
of edges of length at least c, these disks thus cover a total area of mﬂ'( )2. On the other
hand, as all u; lie within a single disk around u; of radius 2¢, all disks B; together
cover an area of at most 7(2c + $)?. Therefore,

(2 + 1)?
mos TP serap
(1)
For edges (u;,u;41) and (u;,u;j;1) on P longer than ¢/2*, one similarly obtains
\uifuj | > 2—%=1 g0 that, here, Euclidean disks of radius 2~%~2 can be placed mutually
disjoint within the total area of 7(2c 4 27F72)2,

Theorem 4. Let G = (V, E) be a weak c-spanner with V. C R2. Then G is a (C,)-
(20)°

power spanner for § > 2 where C := (8c +1)? - 1_92-3"

Proof. Fix u,v € V, wlo.g. |[u — v| = 1. In the following we analyze the J-cost of
the path P constructed in Lemma 2 for § = 2 + ¢. We consider all edges on this path
and divide them into classes depending on their lengths. By Lemma 3, there are at most
(8¢ + 1)? edges of length between ¢ and 2¢, each one inducing J-cost at most (2¢)°.
More generally, we have at most (8c+1)2 - 4¥ edges of length between ¢/2* and 2¢/2*
and the J-cost of any such edge is at most (2¢/2%)°. Summing up over all possible
edges of P thus yields a total §-cost of P of at most

2¢ (2¢)°

52  Weak Spanner Implies Power Spanner for § = 2

The preceding section showed that, for fixed § > 2, any weak c-spanner is also a (C, 9)-
power spanner. The present section yields the same for § = 2, a case which, however,
turns out to be much more involved. Moreover, our bounds on C in terms of ¢ become
slightly worse. In fact, the deepest result of this work is the following:

Theorem 5. Let G = (V, E) be a weak c-spanner with V. C R2. Then G is a (C,2)-
power spanner for C := O(c®).

Proof. First recall that between vertices u, v € V there is a path P in G fromu to v
which remains inside a square of length ¢ := 2c¢-|u— v| and center u. We denote such a
square by Sy (¢). By s we denote the starting point of the path and by t the end (target)
point. We denote by V' (P) the vertex set of a path and by F/(P) the edge set of a path.
We give a constructive proof of the Lemma, i.e. given a path in G obeying the weak
spanning property we construct a path which obeys the (O(cg), 2) -power spanner prop-
erty. For this we iteratively apply a procedure called clean-up to a path, yielding paths
with smaller and smaller costs. Besides the path P in G this procedure has parameters
L,d,D € R*. Hereby, L denotes the edge length of a square with middle point s con-
taining the whole path. The parameters d, D are in the range 0 < 3(cv/3+2)d < D < L
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Procedure clean-up (P, L, d, D)
begin
while three edges exist in P longer than 2v/2cd

starting or ending in the same cell of Gy

do
Let C be such acell in Gy
P — contract(P, C)

od

Procedure contract (P = (vi,...,vm) : path, A : area)
begin
Let vj be the first vertex of P in A
Let vj be the last vertex of Pin A

Let P = (w1, ..., wk) be a path between vi = w1
and vj = wy satisfying the weak spanner property
return (Vi, ..., Vi—1, Wi,..., Wk, Vj4+1,...,Vm
end

while there exists a cell in Gp where at least one vertex of P
lies in each of its Gg-sub-cells
do
Let C be such a cell of Gp
Let rankp (u) denote the position of a vertex u in P
Sortall cells Zy, .. ., Z(D/d)2 of Ggin C
according to miny e z; nv (p) {rankp (1)}
Sortall cells Z7, . .., ZéD/d)Q of Ggin C

according to maX,cz/av (p) {rankp (u)}
i1
while cell Z; is not horizontally neighbored
to one of the cells { Z7, ..., Z{ }
nor Z; is horizontally neighbored d g
toone of the cells { Z1, ..., Zi}
do
ie—1+41
od
Let z and 2’ be the two neighbored cells
from {Z1,..., Zitand {Z},..., Z{}
P « contract(P, z U 2')
od
return P
end

Fig. 4. The clean-up and the contract procedures and the idea for the Proof of Theorem 5

and can be chosen arbitrarily, yet fulfilling D/d € N and L/D € N. These parameters
define two edge-parallel grids G4 and G p of grid size d and D such that boundaries
of Gp are also edges of G4. These grids fill out the square Sy, (L), while the boundary
edge of Sy (L) coincides with the boundary of G4 and G p, see Fig. 4 The outcome of
the procedure clean-up is a path P’ = clean-up(P, L, d, D) which reduces the cost of
the path while obeying other constraints, as we show shortly.

In Figure 4 we describe the procedure clean-up which uses the procedure contract
described in Figure 4. Let D(A) denote the diameter of the area A.

Lemma 4. The procedure P’ = contract(P, A) satisfies the following properties.
— Locality: YVu € V(E(P)\ E(P')): minpe 4 [u—p| < ¢+ D(A) and maxpeca [u—

p| <(c+1)-D(A).
— Continuity of long edges: Ve € P’ : |e| > 2c- D(A) = e € P.

Proof. The maximum distance between v; and v; is at most D(A). The replacement
path (w1, ..., wy) is inside a disk of radius ¢ - D(A). Hence for all vertices u of this
replacement path we have [u—v;| < ¢D(A) and therefore minpe 4 [u—p| < [u—v;| <
¢D(A). From the triangle inequality it follows

max|u—p| < D(A)+minju—p| < D(A)+ |u—v;| < (c+1)D(A).
pPEA peA
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The second property follows from the fact that all new edges inserted in P’ lie inside
a disk of radius D(A).

Lemma 5. For D > 3(c\/3 + 2)d the procedure clean-up satisfies the four properties
power efficiency, locality, empty space, and continuity of long edges.

1. Locality For all vertices u € V (P') there exists v € V(P) such that
u—v| < (V2+V3)c+2)-d.

2. Continuity of Long Edges For all edges e of P’ with |e| > 2+v/3cd it holds e €
E(P).
3. Power Efficiency For all k > 2+v/3c:

> (le)* < k* d* #F(P,Gq) ,

e€E(P):2v/3cd<|e|<kd

where #F (P, G4) denotes the number of grid cells of G4 where at least one vertex
of P lies which is the end point of an edge of minimum length 2+/3d.

4. Empty Space For all grid cells C of Gp we have at least one sub-cell of G p within
C without a vertex of P’.

Proof. All cells of G4 are called sub-cells in this proof for distinguishing them from
the cells of G p.

Observe that the clean-up procedure uses only contract-operation to change the
path. As parameters for this procedure we use either a grid sub-cell C' of edge length
d and diameter D(C') = v/2d or two horizontally neighbored grid sub-cells Z and Z’
with edge lengths d with diameter D(Z U Z').

Further note, that in the first loop each sub-cell C of the grid G4 will be treated by
the contract-procedure once. The reason is that from the contract procedures edges with
lengths less than 2v/2d are produced, while each sub-cell will loose all but two edges
of P with minimum length 2v/2d. This also proves that the first loop always halts.

Now consider the second while-loop and concentrate on the part inside the loop be-
fore the contract-operation takes place. Since in every sub-cell of C' we have a vertex
of P we can compute the ordering Z; and Z! as described by the algorithm. The main
observation is that until the first two neighbored sub-cells Z and Z’ from these sets are
found, no two sub-cells Z and Z’ from Z € {Z;};<; and Z' € {Z}};<; are horizon-
tally neighbored. Hence, in the 2d-surrounding of every point there is an empty sub-cell
without any points of P.

The situation changes slightly if we apply the contract-operation. Then, an interme-
diate path will be added and possibly some of the empty sub-cells will start to contain
vertices of the path. However, only sub-cells in a euclidean distance of cv/3d from sub-
cells Z and Z' are affected by this operation. Now consider a square @ of (cv/3+2)d x
(C\/§ + 2)d sub-cells in the middle of C. Then, at least two horizontally neighbored
sub-cells will not be influenced by this contract-operation and thus remain empty.

One cannot completely neglect the influence of this operation to a neighbored grid
cell of C. However, since D > 3(cv/3 + 2)d the inner square @ is not affected by
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contract-operation in neighbored grid cells of C because of the locality of the contract-
operation.

This means if a cell C' was object to the second while-loop, then an empty sub-cell
will be produced which remains empty for the rest of the procedure. Hence, the second
loop also terminates.

We now check the four required properties.

Locality. After the first loop the locality is satisfied even within a distance of v/2(c +
1)d. For this, observe that all treated cells contain end points of edges longer than
21/2¢d which cannot be produced by contract-operations in this loop. Hence, if a cell
is object to the contract-operation it was occupied by a vertex of P from the beginning.
Then, from Lemma 4 it follows that for all new vertices of the path P there exists at
least one old vertex in distance v/2(c + 1)d after the first loop.

For the second loop we need to distinguish two cases. First, consider a cell C' where
in the inner square an empty sub-cell exists. In this case this cell will never be treated
by this second loop. If new vertices are added to the path within this cell, then this will
be caused by a contract-operation in a neighbored cell and will be considered in the
second case.

Now consider all cells with preoccupied inner squares (preoccupation refers to the
outcome of the first loop). These cells can be object to contract-operations of the second
loop. However, they will add only vertices to their own sub-cells or to the outer sub-
cells of neighbored cells. So, new vertices are added within a distance of (/3¢ + 1)d of
vertices in the path at the beginning of the second loop. As we have seen above every
such vertex is only v/2(c + 1)d remote from an original vertex of a path. This gives a
locality of distance ((v/3 + v/2)c + 2)d.

Continuity of Long Edges. Since the parametrized areas for the contract operation
have a maximum diameter of v/3d this property follows directly from Lemma 4.

Power Efficiency. After the first loop the number of edges longer than 2+/2¢d is bounded
by #F(P,Gg), because in every occupied sub-cell at most two edges start or end and
each edge has two end points. Clearly, this number is an upper bound for edges longer
than 2v/3cd. In the second loop no edges longer than 2v/3cd will be added. This, di-
rectly implies the wanted bound.

Empty Space. As we have already pointed out the second loop always halts. Therefore
the empty space property holds.

Lemma 6. Given a path Py with source s and target t such that Vu € V(P) : ju —
s| < ¢- L, where L = ¢ - |u — v|. Now iteratively apply P;y1 = clean-up(P;, L +
S o Dirdi, D;) for i = 1,2,... where D; = LB, d; = L3~ for = 20V/3c.
Then, Py, for m = [loggming vev [u — V|| is path connecting s to t obeying the
(O(c®),2) power spanner property.

Proof. For this proof we make use of the four properties of the clean-up procedure. By
assumption ¢ > v/3 we have 3 > 60.
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First note that the the square of edge length L; containing all vertices of path P;
can increase. However we can bound this effect by the locality property, giving L;; <
L;+2d;, where d; = L-37%. By assumption we have ¢ > v/3 and therefore d; < L47%,
which gives an upper bound of L; < 2L for all <.

Let F; = #F(P;,Gy,). Then A; = (d;)*F; denotes the area of all grid cells in G,
with a vertex of the path P; which is the end point of an edge with length of at least
2+/3d. In the next iteration in each of this cells an empty space will be generated with
an area of (d;;1)2. Because of the locality property at least the following term of the
edge length is subtracted

= 1
22\/§di+j < §di .

j=1

Hence,anemptyareaof at least i (d;)? remains after applyingall clean-up-procedures.
Let E; be the sum of all these areas in this iteration. Therefore we have A; < 43%E;.
Clearly, these empty areas in this iteration do not intersect with empty areas in other ar-
eas (since they arise in areas which were not emptied before). Therefore all these spaces
are inside the all-covering square of side length 2L yielding Y, E; < 412

Because of the long edge continuity property, edges of minimum length 2v/3d; do
not appear in rounds later than . Therefore, the following sum .S gives an upper bound
on the power of the constructed path.

5= S (el

ecE(P;):
2v/3cd; <|e|<2v3cBd;

oo
1=

1

From the power efficiency property it now follows

S <Y 12PB(di)*#F (P, Ga,) = 12737 (di)*Fy = 12¢°8° Y A,

=1 =1 =1

< 48BN B <192 7B <192 1B (|s — t])* = O(P([s — t])?)

i=1
This lemma completes the proof of the theorem.

53  Weak Spanner Does Not Imply Power Spanner for § < 2

Theorem 6. 7o any § < 2, there exists a family of geometric graphs G = (V, E) with
V' C R? which are weak c-spanners for a constant c but no (C, §)-power spanners for
any fixed C.

Proof. As § < 2,thereisa k € Rsuchthat 2 < k < 4179 We present a recursive
construction (see Figure 5). Fix u! = (1/2,1/2) € R2. In each following recursion
step j, we replace every existing vertex u’ = (u?,c7 ul) by four new vertices u4i_?f =
(uf, — d,ul, + d), w2 = (ul + d,ul, + d), u*~" = (u}, + d,ul, — d), and u* =
(uf, — d,ul, — d) where d := 1/(2k7). Finally, we consider the graph G; := (V}, E;)
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ly . GJ —1
| L . (3
Gi-1|| Gj-1
(a) Idea (b) After 4 steps (c) After 7 steps

Fig. 5. Recursive construction: The underlying idea and two examples for k = 2.1

with V; :={u’ |i € {1,...,47}} and E; := {(u’,u’") | i € {1,...,47 — 1}}. The
resulting graph after 4 recursion steps with k = 2.1 is given in Figure 5(b). Let u = u!
and v = u?’.

Lemma 7. The graph G is a weak c-spanner for c := % independent of j.

Proof. We prove the claim by induction over j. For j = 1 the weak stretch factor is
dominated by the path between u and v. The distance between u and v is 1/k. The
farthest vertex on the path from u to v is us. It holds that |u — uz| < v/2/k. Hence,
we get the weak stretch factor V2 < % = c. Now, we consider G; for any
j. We can divide the graph G into four parts G}, ceey G;*. By the definition of our
recursive construction each part equals the graph G;_;. For two vertices in one part the
required weak c-spanner property holds by induction. We have to concentrate on two
vertices which are chosen from two different parts. Since Gé- is connected to G;"’l it
is sufficient to consider a vertex from Gjl- and a vertex from G;*. On the one hand, the
weak stretch factor is affected by the shortest distance between such chosen vertices.

On the other hand, this distance is given by (see also Figure 5(a))
1 A | k-2
.14+ == 1yiy _) 2> =
(3 0+ ;(k)) 2 = RE-D)

The entire construction lies in a bounded square of side length 1, and hence we get

a weak stretch factor of at most % =c

Lemma 8. The graphs G; are no (C, 0)-power spanners for any fixed C.

Proof. Tt suffices to consider the d-cost of the path from u to v. The direct link from u
to v has §-cost at most 1. For any path P from u to v in G, it holds that

Pz s @) = ()

which goes to infinity if j — oo for k < 41/9.

Combining Lemma 7 and Lemma 8 proves Theorem 6.
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54 Fractal Dimension

The present section generalizes the construction and analysis used in Lemma 8. To
this end, consider a self-similar polygonal fractal curve I" as the result of repeated
application of some generator K being a polygonal chain with starting point u and end
point v. This is illustrated in Fig. 2 showing a generator (left) and the resulting fractal
curve (right part); see also [14, 2]. But other examples are plenty: the KOCH Snowflake
or the space filling HILBERT Curve (Fig. 6). Recall that the fractal dimension of I is
defined as
log(number of self-similar pieces)

log(magnification factor)

Theorem 7. Let K be a polygonal chain, I, the result of n-fold application of K, and
I the final self-similar polygonal fractal curve with dimension d. Then, for all 6 < d,
there is no fixed C such that I, is a (C, §)-power spanner for all n.

Proof. Let p denote the number of self-similar pieces in I, and m the magnification
factor. Then by definition, we have d = log(p)/ log(m). Now consider the §-cost of the
(unique) path P in I3, from u to v. Since I, is constructed recursively we get in the

n-th step:
6 n
A= (@) - ()
|| || p (m) ms

Note that || P||° is unbounded iff p/m? > 1, that is, iff § < log(p)/log(m) = d.

[

Fig. 6. Two Generators and the Fractal Curves they induce due to KOCH and HILBERT

S

The fractal dimensions of the KOCH and HILBERT Curves are well-known. There-
fore by virtue of Theorem 7, the KOCH Curve is not a (-, d)-power spanner for any
0 < log(4)/log(3) ~ 1.26; similarly, HILBERT’s Curve is not a (-, d)-power spanner
for any 6 < 2. One can show that KOCH’s Curve is a weak spanner (the proof is analo-
gous to Theorem 1). However HILBERT s Curve is no weak spanner as its inner vertices
come arbitrarily close to each other. Further examples for self-similar polygonal curves,
e.g., SIERPINSKIS’s triangle, can be found in [14, 2].
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6 Power Spanner Hierarchy

In the following we show that for A > § > 0, a (¢, d)-power spanner is also a (C, A)-
power spanner with C' depending only on ¢ and A/§. Then we show that the converse
fails in general by presenting to each A > ¢ > 0 a family of graphs which are (¢, A)-
power spanners for some constant ¢ but no (C, §)-power spanners for any fixed C.

Theorem 8. Let G = (V, E) be a (c,§)-power spanner with V.C R%, 0 < § < A.
Then G is also a (C, A)-power spanner for C' = ¢/,

Proof. Letu,v € V be two arbitrary vertices. Since G is a (¢, §)-power spanner there
exists a path P = (u = uy,...,w; = v) with [|[P||® = 3120w, — u ] < c-
lu — v|J. The function f(z) = 22/ being convex on [0, oo, one may apply JENSEN’s
Inequality:

-1 1 -1 a/ls
A A 5\ /9 - 5 AJs A
IPI4=) w4 =) <\ui*um\ ) <D i) <™ u—v|T.
=1 =1

=1

Theorem 9. Let 0 < § < A. There is a family of geometric graphs which are (c, A)-
power spanners but no (C, d)-power spanners for any fixed C.

Proof. We slightly modify the construction from the proof of Theorem 3 by placing n
vertices u = uy, ..., U, = Vv on an appropriately scaled circle such that the Euclidean
distance between u and v is 1 and |v; — v; 1| = (1/i)Y/% foralli=1,...,n — 1.
Now, in the graph G = (V| E) with edges (v;, vi4+1), the unique path P from u to v
has A-cost

n—1

IPI% = D@ < R/t = e

i=1

a convergent series since A/d > 1. This is to be compared to the cost of the direct link
from u to v which amounts to 1 both w.r.t. A and . On the other hand, the §-cost of P
is given by the harmonic series Z?;ll (1/4)%/% = ©(logn) and thus cannot be bounded
by any C' independent of n.

7 Higher-Dimensional Case

For simplicity, most results in this work have been formulated for the case of (not neces-
sarily planar) geometric graphs in the plane. They immediately apply to higher dimen-
sions as well, however with the exception of Section 5 (Weak versus Power Spanners).
In fact, similar techniques yield that, for instance in 3D, each weak c-spanneris a (C, 9)-
power spanner for § > 3 with C' depending only on ¢ and ¢ whereas to any § < 3, there
are counter-examples of weak c-spanners that are not (C, §)-power spanners for any
fixed C; analogously in higher dimensions.
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8 Conclusions

We investigate the relations between spanners, weak spanners, and power spanners. In
the plane, for § > 2 it turns out that being a spanner is the strongest property, followed
by being a weak spanner and finally being a (-, d)-power spanner. For 1 < § < 2,
spanner is still strongest whereas weak spanner and (-, §)-power spanner are not related
to each other. For 0 < § < 1 finally, (-, d)-power spanner implies both spanner and
weak spanner. For higher dimensions, similar relations/independencies hold. All stretch
factors in these relations are constant and are pairwise polynomially bounded.

In [9, 7] a geometric graph called YY or SparsY-Graph was investigated as a topol-
ogy for wireless networks. It is constructed by dividing the area around each vertex into
k € N non-overlapping sectors or cones of angle § = 27/k each. In each sector of a
vertex, there is at most one outgoing edge and if there is one, then this goes to the near-
est neighbor in this sector. A vertex accepts in each of its sectors only one ingoing edge
and this must be the shortest one in this sector. For this graph the relation between weak
and power spanner is exemplarily investigated in [9, 15] by performing experiments on
uniformly and randomly distributed vertex sets. They conclude that the SparsY-Graph
might be a spanner and also a power spanner. The first conjecture is still open, while
the latter was independently proven in [8] and [7].

Observe that SparsY is well-known to yield a good weak spanner already for k > 6
[7]. Regarding that our Theorem 5 asserts any weak spanner to be also a (-, §)-power
spanner for 6 > 2, this includes the above result and weakens the presumption from
k>120[8]to k > 6.

Although our results are exhaustive with respect to the different kinds of geometric
graphs and in terms of §, one might wonder about the optimality of the bounds obtained
for C’s dependence on ¢; for instance: Any c-spanner is a (C,d)-power spanner for
C =%, 6§ > 1; and this bound is optimal. But is there some C' = 0(04) such that any
weak c-spanner is a (C, §)-power spanner as long as § > 2 ? Is there some C' = o(c®)
such that any weak c-spanner is a (C, 2)-power spanner ?
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