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Abstract

Broadcasting in processor networks means disseminating a single piece of information, which is
originally known only at some nodes, to all members of the network. The goal is to inform everybody
using as few rounds as possible, that is to minimize the broadcasting time.

Given a graph and a subset of nodes, the sources, the problem to determine its specific broadcast
time, or more general to find a broadcast schedule of minimal length has shown to be AP -complete.
In contrast to other optimization problems for graphs, like vertex cover or traveling salesman, little
was known about restricted graph classes for which polynomial time algorithms exist, for example
for graphs of bounded treewidth. The broadcasting problem is harder in this respect because it does
not have the finite state property. Here, we will investigate this problem in detail and prove that it
remains hard even if one restricts to planar graphs of bounded degree or constant broadcasting time.
A simple consequence is that the minimal broadcasting time cannot even be approximated with an
error less than 1/8, unless P = NP .

On the other hand, we will investigate for which classes of graphs this problem can be solved
efficiently and show that broadcasting and even a more general version of this problem becomes easy
for graphs with good decomposition properties. The solution strategy can efficiently be parallelized,
too. Combining the negative and the positive results reveals the parameters that make broadcasting
difficult. Depending on simple graph properties the complexity jumps from NC or P to NP.

Classification: graph algorithms, graph decomposition, computational complexity.

1 Introduction

Broadcasting in processor networks means disseminating a single piece of information, which is originally
known only at some nodes, called the sources, to all members of the network. This is done in a sequence
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of rounds by pairwise message exchange over the communication lines of the network. In one round each
processor can send a message to at most one of its neighbours. The goal is to inform everybody using as
few rounds as possible. This number is called the minimum broadcasting time of the network.

Broadcasting is a basic task for multiprocessor systems that should be supported by the topology of the
network. This problem has been studied extensively, mostly in the case of a single source — for an overview
see [HHLS8S]. In several papers the broadcast capabilites of well known families of graphs like hypercubes,
cube-connected-cycles, shuffle exchange graphs or de Bruijn graphs have been investigated and compared.
In [HIJM90] Hromkovi¢, Jeschke and Monien have studied the relation between the broadcasting time and
the time for solving the related gossiping problem for special families of graphs.

On the other hand, one has tried to find optimal topologies for networks with a given number of nodes
such that the broadcasting time is best possible. Here the worst case over all nodes as the single source
should be minimized. The problem gets more complicated when restricting to graphs of bounded degree.
In [LP88] Listman and Peters have studied several classes of bounded degree graphs in this respect, see
also [BHLP92]. Balanced binary trees already achieve a broadcasting time of logarithmic order, therefore
the question is the optimal constant factor in front of the logarithm.

In this paper we will investigate the optimization problem for arbitrary networks. That means, given
a graph and a subset of nodes as sources, determine its specific broadcast time or more general find a
broadcast schedule of minimal length. This problem in general is A'P -complete. We will show that this
property remains even if one restricts to planar graphs of bounded degree or constant broadcast time.
Furthermore, the problem cannot be solved approximately with an arbitrary precision unless P = AP .

On the other hand, we will investigate for which classes of graphs this problem can be solved efficiently.
All what seems to be known was that broadcasting is easy for trees shown by Slater, Cockayne, and
Hedetniemi in [SCH81]. Many combinatorial optimization problems for graphs have been shown to be
solvable in polynomial sequential time and even in polylogarithmic parallel time for more general classes
of graphs: graphs of bounded treewidth (see for example the paper by Arnborg, Lagergren and Seese
[ALS91]) and graphs of small connectivity ([R91a]) — an overview can be found in [R91b].

The broadcasting problem seems to be more difficult in this respect since it does not have the finite-
state-property or a bounded number of equivalence classes. Thus the methods of [ALS91] and [R91a]
are not directly applicable. Still, modifying the framework developed in [R91a] we can show that broad-
casting becomes easy for graphs with good decomposition properties. For this purpose we consider edge
decompositions of a graph. This notion seems more appropriate for the broadcasting problem than the
dual approach based on vertex decompositions. Furthermore, a careful inspection of the possibilities how
information can flow within a component and between different components of a graph will be required.
For the internal flow components that are connected behave most favourably, but in general connectivity
cannot always be achieved by an edge decomposition that generates small components. Disconnected
components complicate the analysis of the broadcasting problem significantly, whereas most other opti-
mization problems become easier in such a case. The algorithm even works for a more general version of
the broadcasting problem. Furthermore, it can be parallelized efficiently to yield AC -solutions.

As a conclusion we can say that combining these new negative and positive results the parameters that
make broadcasting difficult are determined quite precisely. The complexity of this problem jumps from
P to NP depending on the internal structure of the networks.

2 Definitions and Previous Results

A formal definition of the broadcasting problem can be given as follows.



Definition 1 Let G = (V,E) be a (directed) graph with a distinguished subset of vertices Vo C V', the
sources, and T* € IN be a deadline. The task is to decide whether there exists a broadcast schedule,
that is a sequence of subsets of edges Ei,FEs, ..., Ep-_1, Ep« with the property Vp- = V , where for
i>0 wedefine V; == Viy U {v|(u,v)€E anduecV,_1} andrequire E; C{(u,v) € E|uc¢€
Vici} and YeueVi: |Esn({ulxV) < 1.

Let us distinguish between the general multiple source problem MB and the restricted version with only
a single source SB. a

The meaning of the sets FE; and V; is the following: V; denotes the set of nodes that have received the
broadcast information by round ¢. For ¢ = 0 this is just the set of sources. By the deadline 7™ the set
Vr+ should include all nodes of the network. FE; is the set of edges that are used to send information at
round i, where each processor u € V;_; can use at most one of its outgoing edges.

MB (denoted by ND49 in [GJ79]) has shown to be AP -complete.

Theorem A: MB for graphs with unbounded degree is N'P -complete, even if restricted to a fized dead-
line T* > 4.

For a fixed deadline the number of sources obviously has to grow linearly in the size of the whole graph.
But even the single source problem is difficult, in this case the deadline has to grow at least logarithmically.

Theorem B: SB for graphs with unbounded degree is NP -complete.

The proofs of both results were published by Slater, Cockayne, and Hedetniemi ([SCH81]). For the second
result, their reduction of the 3-dimensional matching problem to SB requires a deadline of order {/|V|
for the broadcast problem. Furthermore, in the same paper it is shown

Theorem C: SB can be solved in linear time for trees. This also holds for the constructive version of
this problem finding an optimal broadcast schedule.

3 New Results

All theorems above can be improved significantly. For the lower bounds it suffices to consider undirected
graphs, the upper bounds given below also hold for the more general case of directed graphs.

3.1 Lower Bounds
Designing more complicated reductions of the 3-dimensional matching problem and the 3-SAT problem

we can show

Theorem 1 MB restricted to planar graphs with bounded degree at least 4 and a fixed deadline T* at
least 3 is NP -complete.



The reduction to prove this result uses graphs of a specific kind that are guaranteed to have a broadcast
schedule of length 4. Now consider an approximation algorithm that for a network G gives an estimate
of its minimum broadcast time T(G). The estimate T(G) may be an arbitrary real number, but is
required to be within a precision v of the correct value: (1++)"*-T(G) < T(G) < (1+7)-T(G). In
this case, any estimate with a precision v < % could be used to solve the decision problem. Thus we

also get

Theorem 2 There exists no polynomial-time approzimating algorithm for MB with a precision 1/8,
unless P= NP.

If for this minimization problem one restricts to integer values and approximations from above then the
statement of the theorem can be improved from precision 1/8 to any value less than 1/3.

Broadcasting with a single source does not become substantially easier, even for bounded degree graphs
with a logarithmic diameter.

Theorem 3 SB restricted to graphs G = (V, E) with bounded degree at least 3 is NP -complete, even
if the deadline grows at most logarithmically in the size of the graph.

Also planarity does not make things much simpler as the following result shows.

Theorem 4 SB restricted to planar graphs G = (V, E) of degree 3 is NP -complete (in this case the
deadline grows like +/|V| ).

3.2 Upper Bounds

On the positive side, we will extend the classes of graphs for which the broadcasting problem can be
solved fast. The general approach is to partition a given graph into smaller components and then solve
a generalized broadcast problem on each component separately and later combine the partial solutions.
A split into smaller components can be done by removing edges (edge separators) or by removing nodes
(node separators). In general, edge separation seems to be a weaker notion since graphs that contain
nodes of very large degree cannot be split into small pieces by separators of small size, whereas small
node separators may exist (consider a star). However, for graphs of bounded degree both notions are
closely related. Here we will restrict ourself to edge separators because then the analysis of the broadcast
problem is somewhat easier. But similar algorithmic techniques can also be used for graph decompositions
based on node separators.

For the purpose of decomposing a graph G it suffices to consider only the case of undirected graphs.
Thus, if G is directed in the following definition we simply mean the corresponding undirected graph.

Definition 2 A graph H = (Vg,Eg) is an edge decomposition graph of a graph G = (V, E) if the
following conditions hold:

e The nodes G; of Vy represent induced subgraphs G; = (V;,E;) of G such that the V; are
pairwise disjoint and V = Jqg.cv,, Vi -

e {G;,G;} € En iff there is an edge between a node of G; and a node of G,;.



H is called an edge decomposition tree of G if H is a tree.
Define the cut of an edge {G;,G;}, the cut of a node G;, and the cut of H as those edges of G that
connect G; and G;, resp. connect G; to other components, or connect any pair of components:

cut(G;,G;) = {{u,v}eE|lueViandveV;} fori#j,
cut(G;) = U cut(G;, Gj) and cut(H) := U cut(G;) .
{Gi,G;}€En Gi€Vh

A graph G = (V,E) is (k,p,c)—edge decomposable if there exists an edge decomposition graph
H = (Vy,Eg) such that for all G; € Vi :

| cut(G;) | < &, [Vil < and cc(Gi) <c,

where cc(G;) denotes the number of connected component of G . a

The decomposition process partitions a graph into different components. Each component G; itself
may be connected or fall into several connected components. When constructing an optimal broad-
cast schedule this issue turns out to be important. For example, a /n x /n— 2-dimensional grid is
(O(y/n), (O(y/n),1) —edge decomposable into a tree. For a circle of length n the parameters are (4,2,2).
Taking the number of connected components within each component into consideration will allow us to
determine good upper bounds for the algorithmic effort to solve the broadcasting problem.

Other approaches have been proposed how to decompose a graph into smaller components, based on the
notions of treewidth ([RS86]), see for example [ALS91, BK91, L90], and k -connected components using
minimal node separators [H90, HR89]. In general, it is NP -complete to construct optimal decompositions
with respect to the relevant parameters. However, suboptimal solutions can be found in polynomial time.

In the following we assume that an arbitrary edge decomposition of the network is given and analyse
only the complexity of constructing an optimal broadcast schedule with the help of that decomposition.
Note that the broadcast time will always be best possible, only the complexity of finding the schedule
will depend on the parameters of the decomposition.

Theorem 5 For a graph G = (V,E) of mazimal degree d with a given (k,u,c)—edge decomposition
tree the MB-problem can be solved in time

O(IVIe- 205+ )™ - (V|- (u+ &) - (d+ 1) +|EI))
< expO(c-log|V| + k-log(k +pu) + u-logd) )
The algorithm we have designed actually works for a more general version of the broadcasting problem,
in which the sources may receive the broadcast information at different rounds and each node of the

network may have its individual deadline. Let us call this the general broadcasting problem GB (see
definition 3).

The time bound becomes polynomial for classes of graphs that can be decomposed into smaller compo-
nents using not too large separators. Let llog and lllog denote the logarithm function iterated twice,
resp. three times.

Corollary 1 Restricted to graphs G = (V, E) with

. (O(lllzggrr‘l), O(ﬁii%),O(l)) —edge decomposition trees or



logn
llog n

e to graphs with bounded degree and (O( ), O(logn), O(1)) —edge decomposition trees

the MB-problem (and even the GB—problem) can be solved in polynomial time.

So far, we have only considered the decision version of the MB-problem, resp. the task to determine the
minimal length of a broadcast schedule. But applying ideas similar to the one in [R91a] one can also
design an algorithm for constructing an optimal broadcast schedule by using the same techniques as for
the decision problem.

Theorem 6 Constructing an optimal broadcast schedule can be done in the same time bounds as stated
for the decision problem in Theorem 5.

Using the machinery developed in [R91a] we can also derive a fast and processor efficient parallel al-
gorithm. Even if the decomposition tree is not nicely balanced using path compression techniques the
problem can be solved with a logarithmic number of iterations (with respect to the number of com-
ponents) on a standard parallel machine model like a PRAM with concurrent write capabilities. The
basic task one has to solve is how a chain of 2 components can be replaced by a single component that
externally behaves identically with respect to broadcasting.

Theorem 7 For a graph G = (V,E) of mazimal degree d with a given (k,u,c) —edge decomposition
tree MB can be solved in parallel time

O(log V|- (c-log|V]| + k-log(k+pn) + p-log d))
with a processor bound of expO(c log |V + k-log(k+p) + p-log d) .
For nicely decomposable classes of graphs these bounds put MB into ANC .

Corollary 2 Restricted to graphs G = (V, E) with

° (O(ﬁ—‘(’)ggin), 0(111_3%)’0(1)) —edge decomposition trees or

logn
llog n

e to graphs with bounded degree and (O( ), O(logn), O(1)) —edge decomposition trees

MB is in NC?.

All these bounds apply to the GB—problem as well. Also the constructive variant can be solved with the
same effort.

In the remaining part of this extended abstract we can only present some of the basic ideas to prove these
results. For a complete version see [JRS93].



4 Proofs of the Lower Bounds

The NP -hardness of the minimum broadcasting time problem will be obtained by a reduction of the
3DM problem (3-Dimentional Matching, see [GJ79]). The graph G' = G(A,B,C,M) of an instance
(A,B,C,M) with M C A x B x C of the 3DM problem is defined as follows: Each element of the sets
A, B, and C and each triple of M is represented by a vertex. The membership relation between set
elements and triples defines the edges between these vertices.

G' = (V,E') with Vs := {a,|z € A}, Vg := {B.|z € B},
Vo ={{le e C}, Vu = {uly € M}, V' := V3UVUVcUVy,
E' = {(py,v2) |y € M, v, e VAUVBUVe and z € y}

The reduction will use a restricted planar version of the 3DM problem, which is still NP -complete
[DF86]. For an instance (A, B,C, M) the following properties are required:

e G(A,B,C, M) is planar.

e For each element z of AU B UC there are at most 3 triples in M containing z (thus, |M| is
bounded by 3¢ where ¢ :=|A| =|B| =|C|).

Proof of Theorem 1 and 2: Planar 3DM will be reduced to the broadcasting problem as follows:
Let (A,B,C,M) be an instance of 3DM with |A| = ¢ and let G' = G(A4,B,C,M) be the matching
graph. The corresponding broadcasting graph G is obtained by replacing each node «; € V, of G' by
a chain a;1, a2, and a;3 of length 3 (see Figure 1). The other nodes and edges remain unchanged.
Va1 is chosen as the set of sources, and the deadline is set to 3.

Observe that G has degree 4 and is planar if G’ is planar.

Lemma 1 G has a broadcast schedule of length 3 iff the q sources in round I send the information to
a subset of the nodes in Vi that defines a matching.

Theorem 1 and 2 now follow easily. |

Proof of Theorem 3: Consider the tree T, in figure 2, where its root is the only source and ¢ < expt/3
outgoing edges «; . It has the following properties:

e Within ¢ := 3[logg] —1 rounds T,, can reach a state such that in the next round the information
of the source can be propagated simultaneously over all outgoing edges «; .

e If a broadcast schedule for T} finishes by round ¢ then none of these edges can propagate the
information before round 6 + 1.

Connect each leaf of the tree with a node of V41 of the graph G defined above and call this new graph
G'. Let t:=3[logq] +3 and let w be the the root of Ty ;. Then, G' with source w has a broadcast
schedule of length at most 3logg+3 iff M contains a matching. The resulting graph has degree 5, but
is not necessarily planar. By additional effort G’ can be modified to decrease the node degree to 3. N

Proof of Theorem 4: To achieve planarity in the single source case we construct a direct reduction
for the satisfiability problem 3SAT. Although a planar version of 3SAT remains NP -complete it does
not help much in this case because the connections to the source will destroy the planarity. A simple
exchange of an edge crossing by a planar subgraph with 4 input/output-edges also does not seem to work
for the broadcasting problem.

We have found a way to make such a replacement legal under special circumstances, namely if the
direction of the information flow over the edges is known in advance and if at most one of the two input
edges is used. The first property can easily be achieved for 3SAT, while the second requires special coding
tricks. The details are quite long and can be found in the full version [JRS93]. |
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5 [Efficient Algorithms for Decomposable Graphs

We start with a generalization of the broadcast problem. So far, each source node has got the broadcast
information at round 0. In the more general case, a source may get the information with an arbitrary
delay of o(v) rounds. Furthermore, we require that the information has to reach each node v by round
p(v) , instead of a global deadline T* identical for all nodes. This generalization may be of less interest
with respect to practical applications. Nevertheless, it is necessary in order to apply an approach based
on graph decompositions, as it has been for several other graph theoretic decision and optimization
problems.

Definition 3 General Broadcasting Problem GB:
Given a graph G = (V, E) and two partial functions o,p : V. — IN, decide whether there exists a
broadcast schedule Ei,E,,..., with

Vi = ViqagU{v|(ww)eE andueV; 1} U {veV]|oWw =i},
E; C {(wv)eE|ueVi,} and  VueVigi: |EN({u}xV) <1

such that Yv €V : v € V) . a
The following exponential upper bounds can be achieved by standard enumeration methods.

Lemma 2 GB can be solved in time O (|V|>(d +1)V1), where d denotes the degree of the graph G =
(V,E) . |

Lemma 3 GB restricted to graphs G = (V, E) with mazimum degree d can be solved by a CRCW-
PRAM with O (V|- (d+ 1)V processors in time O (|V]?). |



Definition 4 Let a graph G = (V,E) and a broadcast schedule € = Ey, E»,... for G be given. The
round in which a node receives the information to be broadcasted first is called its starting round. A
node u is called active at a round t if sends the information to another node v ({u,v} € E; ) at this
round. A node u is called busy if it is active after its starting round until all its neighbors have received
the information. £ is busy if all nodes are busy and no node receives the broadcast information several
times. a

Observe that each broadcast schedule can easily be tranformed into a busy broadcast schedule of the
same or smaller length.

Proof of Theorem 5: Let H = (Vy,Eg) be a (s, pu,c)—edge decomposition tree of the graph G =
(V,E) with Vg = {G4,...,Gy}. Figure 3 shows a component G5 which is connected to three other
components G, G3 and G4 .

Figure 3: A node G2 of an edge decom- Figure 4: A possible information flow
position tree and its neighbors. within a broadcast schedule: from Gs
to other components in one or in both
directions, some edges may not be used.

Let G; := {G},...,G{" } with G¢ = (V,*,E®) be the set of connected components of the G; and
define cut(G?) as the set of edges of cut(G;) with one endpoint in G¢ .
cut(GY,G;) = cut(Gi, Gy) Neut(GY),  cut(GY,GY) = cut(GY,G;) Neut(GY) .

To describe a broadcasting schedule of G, each edge {u,v} of G is labelled by a tupel (7(u,v),r(u,v)).
The first value 7(u,v) denotes the round when this edge is used and the second r(u,v) the direction
(from u to v or form v to w if uw and v are connected in both directions). If this edge is not used we
set 7(u,v) := —1.

If we restrict £ to cut(G¢,G") it suffices to denote the round 7(G¢,GY%) when an edge of cut(G¢,GY) is
used for the first time and for each other edge {u,v} with 7(u,v) > 0 the relative round 7(u,v) :=

7(u,v) — 7(G¢,GY) . If no edge in cut(G¢,GY) is used let 7(G¢,GY) = —1. For G} let 7(G$) be
the first round when a node of G receives the broadcast information. Similarly define 7(G¢, G?) =
m(GY,GY) — 7(GY) if 7(G¢,GY) >0, elselet 7(Gf,Gh) = —1.

The following two lemmata show that with the help of the relative rounds 7 the number of possible
protocolls of information exchange between two components can be bounded quite substantially. This
property will be basic for the time efficiency of the algorithm described below. It serves as a replacement
for the ”finite state property” shared by graph theoretic problems like independent set or vertex cover,
for which efficient solutions based on the decompositional approach have been given before.

Lemma 4 If £ is a busy broadcast schedule then for all {u,v} € cut(G?,G?) holds: the numbers
?(G‘},Gg’-) + 7(u,v) and ?(G;’-, G?) + 7(u,v) are smaller than |cut(G;)|+ |Vi| < K+ u. |



Let G;,G; be neighbouring components and G§ and G;’. connected components of G;, resp. G; with
nonempty cut(G?, Gg’) . Define a state between the two neighbours as a tupel

i = ([FGLENA(G, G | ent(GEGY) £ 0], [(Fle),r(e) | e € cut(Gi Gy ).

Figure 4 illustrates a complex information flow between a component and its neighbours. The surface
I';; is the set of all possible states 7;; of busy broadcast schedules. A state S; of a component G;
is a vector consisting of the starting round 7(G%) for all connected components of G; and tupels ~; ;
for all neighbouring components of G;. As above, let I'; be the set of all possible states S; that may
appear in busy schedules.

Lemma 5 For a component G; with cutsize |cut(G;)| < k;, size |Vi| < p; and ¢; = cc(G;) connected

components, the size of T; is bounded by (ki pi,ci) = V] - (2(k; + pi))3" .
Proof: T < H V| - H | Tij |
G?Egi Cut(Gi,Gj)750
< v H (ki + 'ui)2|0ut(Ginj)\ S (2(ks + Mi))\cut(GiﬁGJ‘)l

cut(G;,G;)#0
20k + )

IN

\%

The following strategy solves the minimum broadcasting time problem for graphs G = (V, E) with a
given (k,p,c)—edge decomposition tree H = (Vg, Eg). Let A(G;,S;) denote the minimal schedule
length of the local broadcast problem for the graph G; and external information exchange as specified
by state S; (= oo if there is no schedule for state S;). Observe that this value is independent of the
structure of G outside of G; .

Step 1: For each component G; and each state S; € I'; determine A(G;,S;) .

Step 2: Choose an arbitrary component G, and declare G, as the root of H. Let G;o be the father
of G; in H according to the orientation with respect to G, . Let G} denote the subgraph of
G containing G; and all its descendents. Evaluate the function A(G}, S;o) for all G; and S;
starting with the leaf components of H .

Lemma 6 Let G;1,...,Giy, denote the sons of G; and let S;; be a state connecting G; and G, .
For all G; the minimal deadline for the general broadcast problem for G} with respect to external
information exchange S;o can be computed as

A(G},Sip) = min max {A(G};,S;:)} U {A(G;,Si)} .
Si:(Tl,...,TCC(Gi), JE[L...li] ’
Si,0,---»S4,¢;) €T
Proof: This property can be shown by induction on the depth of the subgraphs G; . |

Therefore, A(GZ) = A(G*,)\) denotes the minimal schedule length for the graph G itself.

The correctness of step 1 follows directly from the definition of a surface and the definition of the general
broadcast problem. The correctness of step 2 follows directly from Lemma 6.
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According to lemma 2 for each G; and S; the computation of A(G;,S;) requires at most O ((u; + #;) -
(d + 1)*) many steps. Since lemma 5 gives a bound on the number of states of each component step 1
can be executed in time

> ylis iy i) - O (s + i) (d + 1)) < O(IVITH @0k 4+ ) - (1 + 0)* - (d+1)"}).

The computation of A(GF,Sio) is independent of the remaining structure of G'. Thus for each G;,

given all values A(G;, S;) and A(G7 ;,S;4,i) the computation of all A(G7,Sip) can be executed in time

O(y(ki, pti,¢;) - £;) - Summing up over all G; gives the bound

ZO "Culhacz Kt) < O( YR, |4, C Ze) < O |E| |V|c( (H‘HL))%)-

By using tree contraction methods the evaluation of the A -function can also be done in parallel requiring
only a logarithmic number of iterations. The details are described in [R91a].

Conclusions

We have shown that the single source broadcasting problem remains hard for planar graphs with high
internal connectivity. After we have presented the lower bound in Theorem 1 Middendorf was able to
improve our construction to degree 3 and deadline 2 [M93].

On the other hand, even a much more general version with many sinks and individual deadlines can be
solved efficiently on graphs with moderate internal connections.

The algorithms described are based on edge decomposition of graphs. The same technique with a slightly
worse time bound due to a larger number of states also works for other graph decomposition methods,
for example based on treewidth. These issues are included in the full paper [JRS93].
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