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Abstract. We investigate the problem of broadcasting information in a
given undirected network. At the beginning information is given at some
processors, called sources. Within each time unit step every informed
processor can inform only one neighboring processor. The broadcasting
problem is to determine the length of the shortest broadcasting schedule
for a network, called the broadcasting teme of the network.

We show that there is no efficient approximation algorithm for the broad-
casting time of a network with a single source unless P = N'P. More
formally, it is A"P-hard to distinguish between graphs G = (V, F) with
broadcasting time smaller than b € @(m) and larger than (2 — €)b
for any € > 0.

For ternary graphs it is AP-hard to decide whether the broadcasting
time is b € @(log |V]) or b + @(\/l;) in the case of multiples sources.
For ternary networks with single sources, it is A/P-hard to distinguish

between graphs with broadcasting time smaller than b € @(1/|V]) and

larger than b + c+/log b.
We prove these statements by polynomial time reductions from E3-SAT.

Classification: computational complexity, inapproximability, network
communication.

1 Introduction

Broadcasting reflects the sequential and parallel aspects of disseminating infor-
mation in a network. At the beginning the information is available only at some
sources. The goal is to inform all nodes of the given network. Every node may
inform another neighboring node after a certain switching time. Along the edges
there may be a delay, too. Throughout this abstract the switching time is one
time unit and edges do not delay information. This model is called Telephone
model and represents the broadcasting model in its original setting [GaJo79].
The restriction of the broadcasting problem to only one information source vg
has often been considered, here called single source broadcasting problem (SB).
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Note that the broadcasting time b(G, vg) is at least log, |V| for a graph G =
(V, E), since during each round the number of informed vertices can at most
double. The smallest graph providing this lower bound is a binomial tree Fy,
[HHL88]: Fy consists of a single node and Fj, ;1 consists of disjunct subtrees
Fo, ..., F,, whose roots rq,...,r, are connected to the new root r,41. Also the
hyper-cube C,, = {{0,1}"}, {{wOv, wlv} | w,v € {0,1}*} has this minimum
broadcasting time since binomial trees can be derived by deleting edges.

The upper bound on b(G) is |V| — 1, which is needed for the chain graph
representing maximum sequential delay (Fig. 1) and the star graph (Fig. 2)
producing maximum parallel delay. The topology of the processor network highly
influences the broadcasting time and much effort was given to the question how
to design networks optimized for broadcasting, see [LP88, BHLP92, HHL8S].

Throughout this paper the communication network and the information
sources are given and the task 1s to find an efficient broadcasting schedule. The
original problem deals with single sources and its decision problem, called SBD,
to decide whether the broadcasting time is less or equal a given deadline Tj,
is N'P-complete [GaJo79,SCHS1]. Slater et al. also show, for the special case
of trees, that a divide-and-conquer strategy leads to a linear time algorithm.
This result can be generalized for graphs with a small tree-width according to a
tree decomposition of the edges [JRS98]. However, SBD remains N P-complete
even for the restricted case of ternary planar graphs or ternary graphs with
logarithmic depth [JRS98].

Bar-Noy et al. [BGNS98] present a polynomial-time approximation algorithm
for the single source broadcasting problem (SB) with an approximation factor of

O(log |V]) for a graph G = (V, F). SB is approximable within O(%) if the
graph has bounded tree-width with respect to the standard tree decomposition
[MRSR95].

Adding more information sources leads to the multiple source broadcasting
problem (MB). It is known to be NP-complete even for constant broadcasting
time, like 3 [JRS98] or 2 [Midd93]. This paper solves the open problem whether
there are graphs that have a non-constant gap between the broadcasting time
b(G) and a polynomial time computable upper bound. In [BGNS98] this question
was solved for the more general multicast model proving an inapproximability
factor bound of 3 — € for any € > 0. In this model switching time and edge
delay may differ for each node and instead of the whole network a specified
sub-network has to be informed.

It was an open problem whether this lower bound could be transfered to the
Telephone model. In this paper, we solve this problem using a polynomial time
reduction from E3-SAT to SB. The essential idea makes use of the high degree
of the reduction graph’s source. A good broadcasting strategy has to make most
of its choices there and we show that this is equivalent to assigning variables of
an E3-CNF-formula. A careful book-keeping of the broadcasting times of certain
nodes representing literals and clauses gives the lower bound of % — €.

We show for ternary graphs and multiple sources that graphs with a broad-
casting time b € O(log|V]) cannot be distinguished from those with broadcast-



ing time b + e/b for some constant ¢. This result implies that it is A"P-hard to
distinguish between ternary graphs with the single source broadcasting time of
b € O(\/]V]) and graphs with broadcasting time b + c¢\/Togb.

The paper is organized as follows. In Section 2 formal notations are intro-
duced, in the next section the general lower bound of SB is proved. We present in
section 4 lower bounds for the ternary case. Section b concludes and summarizes
these results.

2 Notation

Edges of the given undirected graph may be directed to indicate the information
flow along an edge.

Definition 1 Let G = (V, E) be an undirected graph with a set of vertices
Vo C V, called the sources. The task is to compute the broadcasting time
b(G. V), the minimum length T of a broadcast schedule S. This is a se-
quence of sets of directed edges S = (B, Es, ..., Er_1, Ep). Their nodes are in
the sets Vo, Vi, ..., Vp =V, where fori > 0 we define V; := Vi1 U {v | (u,v) €
E; and u € Vi_1 }. A broadcast schedule S fulfills the properties

1. E; C{(u,v) |ue Vi1, {u,v} € £} and
2 VueViiy: | Ein({u} x V)| < 1.

The set of nodes V; has received the broadcast information by round i. For
an optimal schedule with length T, the set Vp is the first to include all nodes of
the network. Ej is the set of edges used for sending information at round . Each
processor u € V;_1 can use at most one of its outgoing edges in every round.

Definition 2 Let S be a broadcast schedule for (G, Vy), where G = (V, E). The
broadcasting time of a node v € V is defined as bg(v) = min{i | v € V;}.
A broadcast schedule S s called busy if the following holds.

L Yv,wteE : bs(w) >bs(v)+1 = eV : (v,0)€ Eyyw)-1
2. Vo e VA\{vo} = |U; B N(V x{u})|=1

In a busy broadcasting schedule, every processor tries to inform a neighbor
in every step starting from the moment it is informed. When this fails it stops.
By this time, all its neighbors are informed. Furthermore, every node is informed
only once. Every schedule can be transformed into a busy schedule within poly-
nomial time without increasing the broadcasting time of any node. From now on,
every schedule is considered to be busy. In [BGNS98] this argument is generalized
(the authors call busy schedules not lazy).

A chain is defined by C, = ({v1, ..., 00}, {{vi,viz1}}) (Fig. 1), and a star
by Sp = ({v1,. ., vn}, {{v1, v} | i > 1}) (Fig. 2).
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Fact 1 There is only one busy broadcast strategy that informs a chain with k
winterior nodes. Let its ends v, w be informed in time b, — k < b, < by. Then
the chain is informed in time [(by + by + k)/2] assuming that the ends have no
obligations for informing other nodes.

There are n! busy broadcast schedules for the star S, that describe all per-
mutations of {1,...,n} by (bs(vy),...,bs(vy)).

3 The General Lower Bound

This section presents a polynomial time reduction from E3-SAT to SB and the
proof of the constant inapproximability factor. E3-SAT denotes the satisfiability
problem of Boolean CNF-formulas with exactly three literals in each clause.

Theorem 1 [Hast97] For any € > 0 it is N'P-hard to distinguish satisfiable E3-
SAT formulas from E3-SAT formulas for which only a fraction T/8 + ¢ of the
clauses can be satisfied, unless P = NP.

Let F' be a 3-CNF with m clauses ¢1,..., ¢, and variables zq, ..., z,. Let
a(i) denote the number of occurrences of the positive literal #; in F'. Tt is possible
to assume that every variable occurs as often positive as negated in F', since in
the proof of Theorem 1 this property is fulfilled. Let & := 2¢m/, where m’ =
>-i_, a(i) with ¢ being a large number to be chosen later on. Note that m = Zm’.

The formula F' is reduced to an undirected graph Gpy (see Fig. 5). The
source vy and its § neighbors xfmk form a star S5 (b € {0,1}, ¢ € {1,...,n},
Je{l, .. a®}, k € {1,...,£}). We call the nodes xfmk literal nodes. They
belong to ¢ disjunct isomorphic subgraphs G, ...,Gy. A subgraph G contains
literal nodes x?,j,ka representing the literal z? (2} = z;, 2¥ = 7).

As a basic tool for the construction of a sub-graph Gy, a chain Cp(v, w) is
used starting at nodes v and ending at w with p interior nodes that are not
incident to any other edge of the graph. Between the literal nodes corresponding



with a variable #; in G}, we insert chains Cg(l‘?]» i x%j, p) forallie {1,... n}
and j, 5 € {1,...,a(9)}.
For every clause ¢, = xfll V xfj V xfs’ we insert clause nodes ¢, which we
. . b
connected via three chains C’g/z(cyyk,xil’)’yjpyk) for p € {1,2,3} of length /2 to

their .corresponding literal nodes xfll,jl,k’ .xf;j%k, xf;jayk. This way every literal
node is connected to one clause node. This completes the construction of Gjy.
The main idea of the construction is that the assignment of a variable z;

indicates when the corresponding literal nodes have to be informed.
Lemma 1 If F is satisfiable, then b(Gp e, vo) < &+ 2m' + 2.

Proof: The busy schedule S informs all literal nodes directly by vg. Let a1, ..., ey
be a satisfying assignment of F'. The literal nodes xla} . of graph G}, are informed

within the time period (k—1)m/+1, ..., km’. The literal nodes xﬁyk are informed
within the time period § —km' +1,...,6 — (k — )m/.

Note that m’ is a trivial upper bound for the degree at a literal node. So, the
chains between two literal nodes can be informed in time é + 2m’ + 1. A clause
node can be informed in time km’ 4+ 6/2 4+ 1 by an assigned literal node of the
first type, which always exists since «q, ..., «, satisfies F'. Note that all literal
nodes corresponding to the second type are informed within § — (k — 1)m/. So
the chains between those and the clause node are informed in time é + 2m’ + 2.

Lemma 2 Let S be a busy broadcasting schedule for Gp,. Then,

1. every literal node will be informed directly from the source vy, and
_ . a @ . 5 . @
2. foreyr = xl; Vo Vet obs(er) > 5+ mmﬂ{bS(l‘i;]’p,k)}’

Proof:

1. Every path between two literal nodes that avoids vy has at least length 6+ 1.
By Fact 1 even the first informed literal node has no way to inform any other
literal node before time point é, which is the last time a literal node is going
to be informed by vyg.

2. follows by 1.

|
If only one clause per Boolean formula is not satisfied, this lemma implies
that if F' is not satisfiable, then 0(Gp e, {vo}) > &6+ £. A better bound can be
achieved if the inapproximability result of Theorem 1 is applied. A busy schedule
S for graph G'r defines an assignment for F'. Then, we categorize every literal
as high, low or neutral, depending on the consistency of the time of information.
Clause nodes are classified either as high or neutral. Every unsatisfied clause of
the E3-SAT-formula F' will increase the number of high literals. Besides this,
high and low literal nodes come in pairs, yet possibly in different subgraphs Gy
and Gy:. The overall number of the high nodes will be larger than those of the
low nodes.
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Theorem 2 For every € > 0 there exist graphs G = (V, E) with broadcasting
time at most b € O(\/|V|) such that it is N'P-hard to distinguish those from
graphs with broadcasting time at least (— —€e)b.

Proof: Consider an unsatisfiable E3-SAT-formula F', the above described graph
Gy and a busy broadcasting schedule S on it. The schedule defines for each
subgraph G an assignment #1,..., 2,1 € {0,1}" as follows. Assign the vari-
able z; , = « if the number of delayed literal nodes with bS(gfﬁj,k) > 6/2 is

smaller than those with bg(z¢, ) > §/2. If both numbers are equal, w.l.o.g. let
Tk = 0.

zyk

1. A literal node ¢} Sk is coherently assigned, iff bS( ) <é6/2 & mip =
All coherently assrgned literal nodes are neutral.

2. A literal node z'; | is high if it is not coherently assigned and delayed, i.e.
xlk_aandbg( ”k)>6/2

3. A literal node z{; 1s low if it is not coherently assigned and not delayed, 1.e.
% = @ and bS( ijk) < é/2.

4. A clause node ¢, 3 1s high, if all its three connected literal nodes are coherent
and delayed, i.e. Vp € {1,2,3} bs(x]'; ;) >6/2.

5. All other clause nodes are neutral

Every high literal node with broadcasting time §/24¢; for €5 > 0 can be matched
to a neutral delayed literal node ', , with broadcasting time bg(af xi e =
8/2 4 €5 for e5 > 0. Fact 1 shows that the chain between both of them can be
informed in time & + 51;52 at the earliest.

For a high clause node with literal nodes xzil,jp,k and broadcasting times
bg(xy i y) = 0/2+ ¢, with €¢,¢3,e3 > 0, Lemma 2 shows that this high
clause node gets the information not earlier than é + min{ey, €2, €e5}. So, the



chain to the most delayed literal node will be informed at 6 + (min{ey, €2, s} +
max{ey, €2, €31)/2 at the earliest.

Lemma 3 Let q be the number of low literal nodes, p the number of high literal
nodes, and p’' the number of high clause nodes. Then the following holds:

1. p=gq,

2. bs(Gpe,v0) > §+p,

3. bs(Gre,v0) > 6+ (p+3p")/2.

Proof:

1. Consider the set of nodes ', ,, for j € {1,...,a(¢)} and « € {0, 1}. For this
set let p;  be the number of high nodes, ¢; ; the number of low nodes and
7; 1 the number of nodes with time greater than §/2. By the definition of
high and low nodes the following holds for all i € {1,...,n}, k€ {1,...,¢}:

ik = Pik t qi gk = a(i) .
Fact 1 and Lemma 2 show that half of the literal nodes are informed within
8/2 and the rest later on:
S ik =106/2= ali),
It then it follows that:
¢—p= Zm’,k —pik+qik—a(@)=0.
ik

2. Note that we can match each of the p high (delayed) literal node af;p toa
coherent delayed literal node l‘fj/,h Furthermore, these nodes have to inform
a chain of length 6. If the latest of the high nodes and its partners is informed
at time 6/2 + ¢, then Fact 1 shows that the chain cannot be informed earlier
than 6 + ¢/2.
The broadcasting time of all literal nodes is different. Therefore it holds
€ > 2p, proving bg(Gre,v0) > 6§+ p.

3. Every high clause node 1s connected to three neutral delayed literal nodes.

The task to inform all chains to the three literal nodes is done at time é+¢’/2
at the earliest, if 6/2 4 ¢’ is the broadcasting time of the latest literal node.
For p’ high clause nodes, there are 3p’ corresponding delayed neutral literal
nodes. Furthermore, there are p delayed high literal nodes (whose matched
partners may intersect with the 3p’ neutral literal nodes). Nevertheless, the
latest high literal node with broadcasting time §/2 + ¢” causes a broadcast
time on the chain to a neutral delayed literal node of at least § + ¢’/ /2.

From both groups consider the most delayed literal node vy,x. Since every
literal node has a different broadcasting time it holds that ¢’/ > 3p/ + p, and
thus bg(vmax) > 6 + (3p" +p)/2. |



Suppose all clauses are satisfiable. Then Lemma 1 gives an upper bound for
the optimal broadcasting time of b6(Gr e, vo) < 6§+ 2m' + 2.

Let us assume that at least km of the m clauses are unsatisfied for every
assignment. Consider a clause node that represents an unsatisfied clause with
respect to the assignment which is induced by the broadcast schedule. Then at
least one of the following cases can be observed:

— The clause node is high, i.e. its three literal nodes are coherently assigned.
— The clause node is neutral and one of its three literal nodes is low.
— The clause node is neutral and one of its three literal nodes is high.

Since each literal node is chained to one clause node only, this implies
wlm < p'4+p+q =p'+2p.

The case p > 3p' implies p > %(Qp—l—p’). Then it holds for the broadcasting time
of any busy schedule S:

bs(Gpe,vo) > §4p > 6+ 2(p +2p) .
Otherwise, if p < 3p’, then %(p +3p) > %(21) +p') and
bs(Gre,vo) > 6+35(p+3p) > 6+ 2(p +2p) .
Note that 6 = 3mf. Combining both cases, it follows that
bs(Gre,vo) > 6+ 2ktm = 6(1+1k) .

For any € > 0 this gives, choosing ¢ € @(m) for sufficient large m

b 142

s(Gre, vo) > —1_27,H2 > 1—1—%.%—6 .

bW(Grye,v0) — 142242 =
Theorem 1 states k = % — ¢"” for any ¢’ > 0 which implies claimed lower bound
of % — € for any € > 0. Note that the number of nodes of G, is in @(m4) and

5 € O(m?). |

4 Inapproximability Results for Ternary Graphs

The previous reduction used graphs G'r, with a large degree at the source node.
To address ternary graphs with multiple sources we modify this reduction as
follows.

The proof uses a reduction from the E3-SAT-6 problem: a CNF formula with
n variables and m = n/2 clauses is given. Every clause contains exactly three
literals and every variable appears three times positive and three times negative,
but does not appear in a clause more than once. The output is the maximum
number of clauses that can be satisfied simultaneously by some assignment to
the variables.



Lemma 4 For some ¢ > 0, it is N'P-hard to distinguish between satisfiable
3CNF-6 formulas, and 3CNF-6 formulas in which at most a (1 — €)-fraction of
the clauses can be satisfied simultaneously.

Proof: Similar as Proposition 2.1.2 in [Feig98]. Here, every second occurrence of
a variable is replaced with a fresh variable when reducing from E3-SAT. This
way the number of positive and negative literals remains equally high. |

How can the star at the source be replaced by a ternary sub-graph that
produces high differences between the broadcasting times of the literal nodes?
It turns out that a good way to generate such differences in a very symmetric
setting is a complete binary tree. Using trees instead of a star complicates the
situation. A busy broadcasting schedule informs (f) leaves 1n time d 4 ¢ where
in the star graph only one was informed in time ¢. This is the reason for the
dramatic decrease of the inapproximability bound.

The ternary reduction graph G ,, given a 3CNF-6-formula F' and a number
£ to be chosen later, consists of the following sub-graphs (see Fig. 7).

1. The sources vq,...,v, are roots of complete binary trees By,..., B, with
depth 6 = log(12¢) and leaves v}, ..., vis. £ will be chosen such that ¢ is an
even number.

A constant fraction of the leaves of B; are the literal nodes «f; , of a subgraph
G- The rest of them, yi*; is connected in pairs via 6-chains. For an accurate
description we introduce the following definitions.

sources

complete
binary trees

chains between
nodes y

mapping
to literal

535551 Tooboa S5 o0D| nodes

G; G 12 . G’@ subgraphs

reduced
from F

Fig.7. The reduction graph G ,.

/2t ] : ] ° § o
Let fs(p,6) := Zz’:&/§+1 (Z) Since (66/2) < % and (&/2+\/E) > ﬁg it holds
forpe {1,...,V/6}: 1%% < fs(p) < p\z/—g. For g4(z) := min{p | f(p,d) > =} this



implies for € [0, %]: g < gs(e) < 101‘%. Note that fs and gs are monotone
increasing.

Every node of B; is labeled by a binary string. If » is the root, label(r) is
the empty string A. The two successing nodes vy, v2 of a node w are labeled by
label(w)0 and label(w)1 Two leaves z,y are called opposite if label(#) can
be derived from label(y) by negating every bit. For a binary string let A(s) :=
|[#1(s) — #0(s)| be the difference of occurrences of 1 and 0 in s. Consider an
indexing v}, . ..,vgé of the leaves of B; such that for all j € {1,...,2° =1} :
A(label(v;)) < A(label(v;,)), and v; and Uns 41 have opposite labels for all

jed{l,..., 2%

2. For every binary tree B; according to these indices the literal nodes of Gy
are defined by x?,j,k = 1}225_1+3(k_1)+]. and le,j,k = 1;225_1_3(]6_1)_],_'_1 for
je{l,...,3,and k€ {1,... ¢}

3. The other leaves of B; are connected pairwise by chains of length § such
that opposite leaves of a tree represent free literal nodes y?yj and yilyj. These
nodes are not part of any sub-graph GYy.

4. The sub-graphs Gy for k € {1,...,k} described in the previous section have
a degree 5 at the literal nodes. These nodes are replaced with rings of size b
to achieve degree 3 (see Fig. 4).

Theorem 3 [t is N'P—hard to distinguish ternary graphs G = (V, E)) with mul-
tiple sources and broadcasting time b € O(log|V|) from those with broadcasting
time b+ e\/b for any constant c.

Proof sketch: If F is satisfiable, then there is a coherently assigning broadcast
schedule with 6(G%,) < 26 + 4.

An analogous observation to Lemma 2 for a busy broadcasting schedule S
for G’ , is the following.

1. Every literal node will be informed directly from the source of its tree;
2. Foralli e {1,...,n} and for all t € {0,...,6} it holds
[Ge{l .2 Y bs()) =t +68} = ()

1 SrovarE L ibg(epr) = %+minp{b5(1‘;”7jpyk)}—|—0(1).

3. For Cvb = Tk Y Tigjak 3,53,

Again literal nodes are defined to be either low, high, or neutral. Clause nodes
are either high or neutral. For the number ¢ of low literals, p of high literals,
and p’ the number of high clauses it holds p = q. There are 2p, resp. 3p’ nodes
in different chains that are informed later than 26 — 1. Therefore there is a tree
By, that is involved in the delayed information of 2p/n, resp. 3p’/n nodes. Using
gs 1t 1s possible to describe a lower bound of the time delay caused by Bj as

follows. )
1 2 3
bs(Gre) > 26— 1+ —maX{ga (—p) g5 (i)} :
2 n n

Let us assume that at least xm clauses are unsatisfied for every assignment.
The constant fraction of y-leaves of trees T; can be seen as an additional set of



unused literal nodes. Now consider a clause node that represents an unsatisfied
clause with respect to the assignment which is induced by the broadcast schedule.
Then there is at least a high clause node, a neutral clause node connected to a
low literal node, or a neutral clause node connected to a high literal node.
Since each literal node is chained to at most one clause node, this implies

wlm < p'4+p+q =p'+2p.

Note that 24¢ > 2°. The observations above now imply

1 [t
bs (Gl {01, .. o)) > 26—1+§g5<2—m) > 95+ eV/6
’ n

for some € > 0. Since for the set of nodes V of G, it holds [V| € O(fmlog?) it

1s sufficient to choose £ as a non constant polynomial of m. |

Theorem 4 [t is NP — hard to distinguish ternary graphs G = (V, E) with
single sources and broadcasting time b € O(\/|V]) from those with broadcasting
time b+ c/logb for some constant c.

Proof: We start to combine the reduction graph of the preceding theorem with a
ternary pyramid (see Fig 3). The single source vg is the top of the pyramid. The
n leaves have been previously the sources. Note that the additional amount of
broadcasting time in a pyramid is 2n for n — 1 nodes and 2n — 1 for one node for
any busy broadcasting schedule. Thus, the former sources are informed nearly
at the same time.

For the choice ¢ € @(%) the number of nodes of the new graph is bounded

by ©(m?). The broadcasting time increases from @(logm) of G to ©(m) and
the indistinguishable difference remains @(y/logm). |

5 Conclusions

The complexity of broadcasting time is a key for understanding the obstacles
to efficient communication in networks. This article answers the open question
stated most recently in [BGNS98], whether single source broadcasting in the
Telephone model can be approximated within any constant factor. Until now, the
best upper bound approximation ratio for broadcasting time is known O(log |V])
[BGNS98] and the lower bound was known as one additive time unit. Thus, a
lower constant bound of a factor of % — ¢ 18 a step forward. Yet there is room
for improvement.

It is possible to transfer this result to bounded degree graphs. But the recon-
struction of sub-graphs with large degree decrease the lower bound dramatically.
Nevertheless, this paper improves on the inapproximability ratio in the single

source case up to 1 + @( 1O|gvl?/| , instead of 1 4+ 1/@(/|V]) known so far

[JRS98]. The upper bound for approximating the broadcasting time of a ternary




graph is a constant factor. So matching upper and lower bounds remain un-
known.

From a practical point of view, network structures are often uncertain because
of dynamic and unpredictable changes. And if the network is static, it is hardly
ever possible to determine the ratio between switching time on a single processor
and the delay on communication links. But if these parameters are known for
every processor and communication link it turns out that an inapproximability
factor 3 — € applies [BGNS98]. For the simplest timing model, the Telephone
model, this paper shows that developing a good broadcasting strategy is also a
computationally infeasible task.
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