
Tree-Approximations for the
Weighted Cost-Distance Problem

(extended abstract)

Christian Schindelhauer and Birgitta Weber

Department. of Mathematics and Computer Science and Heinz-Nixdorf-Institute, Paderborn
University, 33095 Paderborn, Germany,

schindel@upb.de,
Institute of Theoretical Computer Science, ETH Zentrum, CH-8092 Zürich, Switzerland,

weberb@inf.ethz.ch

Abstract. We generalize the Cost-Distance problem: Given a set of sites in
-dimensional Euclidean space and a weighting over pairs of sites, construct a
network that minimizes the cost (i.e. weight) of the network and the weighted
distances between all pairs of sites. It turns out that the optimal solution can
contain Steiner points as well as cycles. Furthermore, there are instances where
crossings optimize the network.
We then investigate how trees can approximate the weighted Cost-Distance prob-
lem. We show that for any given set of sites and a non-negative weighting
of pairs, provided the sum of the weights is polynomial, one can construct in
polynomial time a tree that approximates the optimal network within a factor of

. Finally, we show that better approximation rates are not possible for
trees. We prove this by giving a counter-example. Thus, we show that for this
instance that every tree solution differs from the optimal network by a factor

.

1 Introduction

1.1 Problem and Motivation

Given terminal points in the Euclidean space we investigate the problem of con-
structing a network with small cost and short distances. This research is motivated by a
number of practical problems arising in network design for real traffic, as well as traf-
fic in communication networks. It is often observed that the cost of networks can be
described by a component depending only on the size of the network and by a compo-
nent growing with the demand of certain connections. Consider a street network: if one
minimizes only the network size to cover cost for building and maintenance, the con-
nections between terminals can grow by the diameter of the network. Then, additional
costs caused by detours outweigh the fixed costs.

In practice network designers model the demand in a network by a so-called origin-
destination matrix . For sites it describes the traffic starting at with desti-
nation . We model the cost of the network for each edge by a linear function

for , where denotes the Euclidean length

2

of the edge and is the set of all pairs such that the shortest path between
and contains . By summing over all edges we define the Weighted Cost-Distance

(WCD) of a network and a weighting :

WCD (1)

So, for a pair with large weight (frequent traffic) a detour between
and implies higher costs than between pairs with smaller weight.

There is a trade-off between cost and weighted distance. If we choose we
face the intensively studied minimum network problem. If we choose , the opti-
mal solution is a complete network. For sites in general position and positive weights.
As we scale the parameter from to , we see a gradual transformation from
the Steiner tree to the complete network. We are interested in the structure of the inter-
mediate states.

For simplicity we replace the above definition by the following. Since we only con-
sider , we can set if we simultaneously modify the weighting by

. This results in the following equivalent version of the Weighted
Cost-Distance:

WCD (2)

where denotes the cost of an edge and the length of the shortest path from
to in the network . We use this notation throughout this paper. The corresponding

optimization problem is defined as follows.

Definition 1. Let denote the minimum length of a path of vertex to in
graph .

– Weighted Cost-Distance Network problem (CDN): Given a set of sites in Eu-
clidean space and a weighting , find a network that
optimizes the Cost-Distance WCD (according to equation (2)).

– Weighted Cost-Distance Tree problem (CDT): Given and ,
find a tree that optimizes the Cost-Distance WCD .

In addition to the sites we allow the use of a non-terminal vertex set, if not explicitly
stated otherwise.

1.2 Previous Work

If the weights are set to zero, and no resctrictions for the non-terminals are given the
Weighted Cost-Distance problem reduces to the Euclidean Steiner Tree problem. It was
shown to be NP-hard by Garey, Graham and Johnson [GGJ76]. However, in his ground-
breaking paper Arora [Aro98] showed that this problem admits a polynomial time ap-
proximation scheme.

3

In [KRY95] the Balanced Spanning Tree problem was introduced. Here, the task is
to find a tree which optimizes the term

for a given root under a metric (not necessarily Euclidean). Non-terminal sites are
not available.

The authors prove the existence of trees, where the dilation of all vertices’ distances
from the root is bounded by any and the trees cost is at most times the cost of
the minimum spanning tree, where . This leads to a constant polynomial
time bounded approximation algorithm.

The Balanced Spanning Tree problem is a variant of the Weighted Cost-Distance
Network problem, if we allow general metrics and exclude non-terminal vertices. The
weighting is limited to and for . For this
problem in [KRY95] it is shown that a tree is always part of the optimal solution and
approximating networks can be pruned to trees. Hence, here the Cost-Distance Network
problem reduces to the Cost-Distance Tree problem.

Meyerson et al. [MMP00] generalize this problem by introducing a positive vertex
weighting, and by allowing two different metrics for cost and distance: the length metric
and the cost metric . The Cost-Distance measure is given by

for a root . They present a polynomial time bounded randomized algorithm that ap-
proximates the problem within a factor of . Furthermore, they show that the
optimal solution is always a tree.

A -spanner is a connected partial graph of a given graph such that for all vertices
the corresponding shortest path in the -spanner is at most times longer

than in . There exist -spanners in Euclidean space, whose sizes are bounded linearly
by the size of the minimum spanning tree [ADD 95]. It turns out that these spanning
networks already allow us to state constant factor approximation algorithms for the
Weighted Cost-Distance Network problem.

Theorem 1 ([ADD 95]). In -dimensional Euclidean space, for any there exists
a -spanner with size MST , which can be computed in time .

This immediately implies that -spanners allow constant factor approximation for
the CDN-problem.

Corollary 1. For Euclidean space the Weighted Cost-Distance Network problem can
be approximated by a constant factor within time .

For the two-dimensional Euclidean space we can pin down the constant very accu-
rately by using the result of [LL89].

Lemma 1. [LL89] For , there exists a -spanner of the complete
graph, whose size is at most times the costs of the minimal spanning tree.

4

Optimizing the choice of leads to the following result:
Theorem 2. For the Euclidean plane there exists a polynomial time approximation of
the Weighted Cost-Distance Network problem, where we do not allow non-terminal
vertices, by a factor of .

A complete proof can be found in [Web01].
Using the results in [Bar98] and [CCG 98] one can transfer the -spanner result of

[ADD 95] to arbitrary metrics. However the cost is increased by a logarithmic term.
Such -spanners give an approximative solution for CDN:

Corollary 2. For metric costs and distances the Weighted Cost-Distance Network prob-
lem can be approximated in polynomial time within a factor of .

1.3 The Optimal Network is not a Tree
For the minimum network problem it is known that introducing non-terminal vertices
helps to reduce the network costs (i.e. size) by a constant factor. The optimal choice of
such vertices are Steiner points.

Many properties are known for these Steiner networks. First of all minimum net-
works are trees. Further, in the plane Steiner points have degree three and the angle
of neighbored edges is . The number of these non-terminal points is bounded by

.
A complete analysis of even small graphs shows that non-terminal sites also allow

an improvement of a constant factor for the CDN-problem. Nevertheless, the angles
between the adjacent edges may differ from .

In contrast to the Cost-Distance Problems investigated so far, it turns out that the
optimal solution is not a tree. We will prove in section 3 that a tree can differ by at least
a factor of from the optimal network. Even more surprisingly, non-terminal
(quasi-Steiner points) may be involved in cycles and there may be cycles that connect
only quasi-Steiner points.

Another interesting observation is that the optimal network may include crossing
edges, where the placement of a quasi-Steiner point onto the crossing point does not
improve the solution. This reminds of the open problem whether optimal dilation trees
contain crossings.

For a more detailed discussion of the topics, addressed in this introductory section
we refer to [Web01]. Examples for crossing and quasi-Steiner points can be seen in
figures 1, 2 and 3. In the following section we will prove that the optimal Cost-Distance
network can be approximated by a tree within a factor of . Furthermore, there
is a polynomial time bounded algorithm that computes such a tree, given the weighting
and the sites in Euclidean -dimensional space. In section 3 we prove the optimality
of this approximation factor. We finally conclude these results and present some open
problems for further research.

2 A Tree-Approximation by Factor of

Note that for -dimensional Euclidean space the quality of the minimum networks dif-
fers from the minimum spanning tree only by a constant factor. For the Cost-Distance

5

Fig. 1. The optimal WCD-
network contains a quasi-
Steiner point.

Fig. 2. The optimal WCD-
network contains a cycle.

Fig. 3. An instance where a
crossing is part of the opti-
mal solution.

problem the situation is similar. Therefore we will not use any non-terminals in the
following construction.

We use the notion of a split tree [ADD 95]. A split tree is a tree that stems from
a hierarchical decomposition of a point set into -dimensional rectangles of bounded
aspect ratio, say in the range . We start with the smallest possible rectangle,

, including the point set . Let be the root of the split tree. This rectangle
is split into two smaller rectangles and . Let be the subset of vertices in
rectangle . The split tree of is the split tree for the vertices , and similary
for and . These subtrees are connected to the root .

We will construct a fair split tree (FST) where each sub-tree with vertex set has
a diameter of , where . Let be the length
of the longest edge of a rectangle . We will use the following recursive construction
given a rectangle , a root and a weighting such that for some :

.

1. If , then we choose an arbitrary vertex and connect all vertices
directly to .

2. Otherwise, we partition the rectangle by a hyperplane orthogonal to an edge
with length . The distance between the hyperplane and the ends of the longest
edge is at least . The exact position depends on the weighting and will be
described in the proof of Theorem 3.
The resulting two axis-parallel adjacent rectangles partitioning are called and
.

(a) If is in let and take an arbitrary vertex and vice versa if
. Insert the edge .

(b) Recursively, proceed with and .

Note that and observe that after rounds the length of the longest
edge is reduced by at most a factor of . So there are only rounds until the
size of the rectangles is bounded by . The length of every path in the resulting tree

6

is bounded by : starting from the vertex of the path closest to the root, following
the path downwards in both directions, the lengths of the edges and
are upper bounded by .

Lemma 2. Fair split trees have diameter and weight MST .

Proof. We apply the Lemma of [Epp00,DHN93] using the isolation property. If we
add non-intersecting cylinders to all edges with radius and distance to the end
points, then the cost of the corresponding network is linearly bounded by the cost of the
MST. (The isolation property also holds if the cylinder is replaced by other geometric
objects). Note that for the edges of each recursion step, we can attach such a cylinder to
an edge such that the cylinder is completely in the corresponding rectangle. Since there
are at most recursion steps this implies the claim.

We have not presented where we place the split. The following Lemma helps us to
make a good selection.

Lemma 3. Given rectangle and a weighting . There exists parti-
tion of into rectangles and with vertex sets , such that

where .

Proof. Define adjacent parallel rectangles of thickness ,
where . These rectangles have distance of at least to
the left and right end of the longest edge of . We will partition between a pair and

.
Next consider pair a pair of vertices with and . Then, we have

. Measure which is the weight of all connections crossing the
right border between and :

Let denote the index of the rectangle with . Note that

Hence, for at least one of the rectangles we have .

Of course, this split can be found in polynomial time if the number of partitions
is not too high. If we use rectangles, then a random partition fullfills this property
with probability of at least . However, the number of sites is a lower bound of the
number of different values . Using this observation one can find an algorithm that
always determines such a split in polynomial time, even if is arbitrarily small.

7

Theorem 3. Given a set of sites in -dimensional Euclidean space and a non-
negative weighting such that the sum of all weights is polynomial in ; there
exists a tree with a weighted distance that differs by the optimal Weighted Cost-Distance
by at most a factor of . Such a tree has size and can
be computed in polynomial time.

Proof. We construct a fair split tree using the partition introduced in Lemma 3. We
consider the vertex pair sets , , and .

It holds for pairs in :

where is a lower bound for the weighted distance of the
optimal network. For the disjoint pair sets and we apply this technique recur-
sively for at most rounds. As we have already observed, the length of
the longest edge of the sub-rectangles is at most . Then we face parti-
tions with partial weight sums ().
The sum of all weights is bounded by a polynomial .
Therefore, . The corresponding normalized weighted distances

are bounded by , which is the length of the longest
edge of the partition ’s rectangle. Note that

MST

for a suitable constant . This and the recurrency over rounds imply

MST

WCD

for a suitable constant and and every network .

3 A Lower Bound for Tree-Approximations

Trees cannot approximate the optimal Weighted Cost-Distance graph better than stated
in Theorem 2. To show this, we construct a counter-example where the sites are uni-
formly distributed and the weighting supports only neighbored sites.

In particular, we consider an unit square grid and the following weighting
function:

8

Clearly, the weighted Cost-Distance of the grid consisting of all positive weighted edges
is and since the minimum spanning tree has at least cost , this network is
optimal up to a constant factor. We will show that every spanning tree has weighted
distance even if we allow to use non-terminal vertices.

Let be the set of vertices with distance to the convex hull of the grid, i.e.
is the convex hull and is the convex hull of .

Lemma 4. For every spanning tree of the grid and for all there exist two
grid neighbors such that the connecting path in has at least length .

Proof. Assume the contrary and consider the upper row of . Note that neighbored
vertices (in the grid) are connected by a path which is too short to reach the other half
of the grid. Therefore in the upper row the leftmost and the rightmost vertex must be
connected by a path, which is completely in the upper half of the rectangle.

For symmetry reasons the analogous property is true for the the left column, the
lower row, and the right column. Therefore there exists a cycle that encloses the center
of the grid, contradicting the tree property.

Definition 2 (spanning cut). A spanning cut splits a tree by a straight line
into trees and . These sub-trees are entirely

in the left or right half-space defined by . All vertices in (resp.) are orthogonally
projected onto and will be used as non-terminals in (resp. in). All edges
in trees and are copied from the original tree.

Fig. 4. A spanning cut and the resulting sub-tree in the lower halfspace

So, we copy every tree into both half spaces without increasing any edge length, for
an example see Fig. 4.
Lemma 5. For a spanning cut of in to and we have for all
and :

and

Theorem 4. For every spanning tree of the -grid, where if and
are neighbored vertices and elsewhere, the weighted Cost-Distance is

at least , while the optimal Cost-Distance network has cost and weighted
distance .

9

Proof. We will split this grid into 16 sub-grids of size by 15 spanning cuts
(Fig. 5). By Lemma 5 the sum of the weighted distances of the sub-grids is a lower
bound for the over-all grid (We also split the weightings into 16 local weightings).

Lemma 4 implies that in every subset there are paths between
neighboring vertices with length of at least . Furthermore, we can choose these
paths such that the spanning cut reduces the lengths of all of them by at least , since
they reach the other side of the grid.

This way, we can account the length of these paths for this recursion level. This
leads to the following recurrency for the weighted distance of spanning trees of
a -grid:

W W

Resolving this recurrency proves the claim.

Applying the algorithm of Section 2 to this instance produces trees structured simi-
lar to the U-Layout shown in Fig. 6. Such trees optimize the weighted Cost-Distance of
an grid by a factor of .

Fig. 5. The white marked p̀-shaped area induces long paths
for a number of neighbored pairs. For the lower bound the
grid is tiled into 16 sub-grids

Fig. 6. The U-Layout approximates
the Cost-Distance of this instance by
a factor of

4 Conclusions and Future Research

As an immediate implication of Theorem 3 we can state the following approximation
result:

10

Corollary 3. For polynomial weights the Weighted Cost-Distance-Tree problem can be
polynomially approximated within a factor of .

There is some hope that the approximation techniques introduced by Arora [Aro98]
may lead to a polynomial time approximation scheme. Another follow-up result may
be the extension to general metrics. We conjecture that the results of [Bar98] lead to an

approximation.
An interesting open question is: if , the sum of all weights, is super-polynomial,

does the upper bound of section 3 also apply? Or can the lower bound factor be in-
creased for such weightings? This mirrors the case in the original setting (Equation (1))
that the fixed costs are sub-polynomial compared to the linear costs.

Another extension of these results may be to consider different metrics for cost
and distance as introduced in [MMP00]. They proved a -approximation for the
two-metrics Cost-Distance problem with weights only on the root-vertex pairs. We have
shown that for pairwise weight trees do not approximate better than , while for
vertex-root weightings Meyerson et al. [MMP00] showed that a tree is always part of
the optimal solution. It is an interesting open question whether trees approximate this
Weighted Cost-Distance problem with different metrics within a factor of .

References

[ADD 95] S. Arya, G. Das, D.M.Mount, J.S. Slowe, and M. Smid. Euclidean spanners: Short,
thin, and lanky. In Proc. 27th ACM Symp. Theory of Computing. ACM, 1995.

[Aro98] Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling
salesman and other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

[Bar98] Bartal. On approximating arbitrary metrics by tree metrics. In ACM Symposium on
Theory of Computing, 1998.

[CCG 98] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a finite
metric by a small number of tree metrics. In Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science, 1998.

[DHN93] Gautam Das, Paul J. Heffernan, and Giri Narasimhan. Optimally sparse spanners in
3-dimensional euclidean space. In Symposium on Computational Geometry, pages
53–62, 1993.

[Epp00] David Eppstein. Spanning trees and spanners. In Jörg-Rudiger Sack and Jorge Urru-
tia, editors, Handbook of Computational Geometry, chapter 9, pages 425–461. Else-
vier Science Publishing, 2000.

[GGJ76] M. R. Garey, R. L. Graham, and David S. Johnson. Some NP-complete geometric
problems. In ACM Symposium on Theory of Computing, pages 10–22, 1976.

[KRY95] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning trees and
shortest path trees. In Algorithmica, 14, pages 305–321, 1995.

[LL89] C. Levcopoulos and A. Lingas. There are planar graphs almost as good as the com-
plete graphs and as short as minimum spanning trees. In Proc. Internat. Symp. on
Optimal Algorithms, volume 401 of LNCS, pages 9–13. Springer-Verlag, 1989.

[MMP00] A. Meyerson, K. Munagala, and S. Plotkin. COST-DISTANCE: Two metric network
design. In Proc. 41st Symp. Foundations of Computer Science. IEEE, 2000.

[Web01] Birgitta Weber. Netzwerke optimiert für lokale Kosten-Distanzen. Lübeck University,
Diploma Thesis, 2001.

