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Abstract

We consider the well-known vertex coloring problem:
given a graph G, find a coloring of the vertices so that no
two neighbors in G have the same color. It is trivial to see
that every graph of maximum degree ∆ can be colored with
∆+1 colors, and distributed algorithms that find a (∆+1)-
coloring in a logarithmic number of communication rounds,
with high probability, are known since more than a decade.
This is in general the best possible if only a constant num-
ber of bits can be sent along every edge in each round. In
fact, we show that for the n-node cycle the bit complexity
of the coloring problem is Ω(log n). More precisely, if only
one bit can be sent along each edge in a round, then every
distributed coloring algorithm (i.e., algorithms in which ev-
ery node has the same initial state and initially only knows
its own edges) needs at least Ω(log n) rounds, with high
probability, to color the cycle, for any finite number of col-
ors. But what if the edges have orientations, i.e., the end-
points of an edge agree on its orientation (while bits may
still flow in both directions)? Does this allow one to pro-
vide faster coloring algorithms?

Interestingly, for the cycle in which all edges have the
same orientation, we show that a simple randomized algo-
rithm can achieve a 3-coloring with only O(

√
log n) rounds

of bit transmissions, with high probability (w.h.p.). This re-
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sult is tight because we also show that the bit complex-
ity of coloring an oriented cycle is Ω(

√
log n), with high

probability, no matter how many colors are allowed. The
3-coloring algorithm can be easily extended to provide a
(∆ + 1)-coloring for all graphs of maximum degree ∆ in
O(

√
log n) rounds of bit transmissions, w.h.p., if ∆ is a

constant, the edges are oriented, and the graph does not
contain an oriented cycle of length less than

√
log n. Using

more complex algorithms, we show how to obtain an O(∆)-
coloring for arbitrary oriented graphs of maximum degree
∆ using essentially O(log ∆ +

√
log n) rounds of bit trans-

missions, w.h.p., provided that the graph does not contain
an oriented cycle of length less than

√
log n.

1. Introduction

A fundamental problem in distributed systems is to com-
pute a proper vertex coloring. The importance of vertex col-
oring can be seen by observing that many distributed algo-
rithms use such a coloring as a sub-routine in higher-order
communication and computation tasks. Examples include
scheduling [16], resource allocation [3], and synchroniza-
tion. Vertex coloring has applications also in wireless net-
works to determine cluster heads, (see for example [22] and
the references therein), routing in wireless networks [16],
and in many parallel algorithms [14, 15]. Thus, it is not
surprising that this problem has been heavily studied not
only in the distributed setting but also in the PRAM model



of computation starting with Karp and Wigderson [15] and
Luby [18].

We consider distributed systems that can be modeled as
a graph G = (V, E) with nodes representing the proces-
sors and the edges representing the communication links.
Given a graph G = (V, E) with maximum degree ∆, the
vertex coloring problem is to find a color assignment for
the vertices of G so that no two adjacent vertices are given
the same color. The minimum number of colors required to
properly color a graph is called its chromatic number, and
is denoted by χ(G). While it is easy to see that a graph with
maximum degree ∆ can be colored using at most ∆+1 col-
ors, computing the chromatic number of a graph is NP–hard
[9]. Further, χ(G) cannot be approximated to any reason-
able bound in general [6]. Thus, efficient algorithms that
color using ∆ + 1 colors are of interest.

In the distributed model of computing, communication is
an expensive resource and distributed algorithms therefore
aim at using as little communication as possible. Distributed
algorithms for vertex coloring take the approach of mini-
mizing the number of communication rounds assuming that
in each round a reasonable number of bits can be commu-
nicated. Deterministic distributed algorithms for (∆ + 1)-
coloring that run in a polylogarithmic number of rounds are
not known. The best known deterministic algorithm [24] re-
quires nO(1/

√
log n) rounds where n is the number of ver-

tices. However, randomization can improve the runtime ex-
ponentially and in some special cases, such as highly dense
graphs, even double exponentially [12]. Randomized dis-
tributed algorithms that compute a (∆ + 1)–coloring in
O(log n) rounds, with high probability1, are known since
more than a decade [19, 13]. In this work we show that, in-
terestingly, if the underlying graph G is provided with an
orientation on its edges such that the orientation does not
induce oriented cycles of length at most

√
log n, then ver-

tex coloring with (1 + ε)∆ colors for a constant ε > 0, can
be obtained by exchanging essentially O(log ∆ +

√
log n)

bits, with high probability. Thus, we show that having orien-
tations on the edges significantly improves the performance
of distributed vertex coloring algorithms.

1.1. Model and Definitions

We model the distributed system as a graph G = (V, E)
with V representing the set of computing entities, or pro-
cessors, and E ⊆ V × V representing all the available
communication links. We assume that all the communica-
tion links are undirected and hence bidirectional. All the
processors start at the same time and time proceeds in syn-
chronized rounds. We let n = |V |. The degree of node u

1 With high probability (w.h.p.) means a probability that is at least 1 −
(1/nc) for c ≥ 1.

is denoted du and by ∆ we denote the maximum degree of
G, i.e., ∆ = maxu∈V du. When there is no confusion, du

will also be used to refer to the number of uncolored neigh-
bors of node u. By Nu we denote the set of neighbors of
node u and when there is no confusion, we use Nu to re-
fer to the set of uncolored neighbors of u. We do not require
that the nodes in V have unique labels of any kind. For our
algorithms to work, it is enough that each node knows a con-
stant factor estimate of the logarithm of the size of the net-
work apart from its own degree and neighbors. When we
consider graphs of constant degree, no global knowledge
is required for our algorithm and it suffices that each node
knows its own degree.

Let us denote by [x] the set {1, 2, . . . , x} if x ∈ IN.
If x ∈ IR

+, then [x] would be the set {1, 2, . . . , dxe}.
Given a graph G = (V, E) a vertex coloring is a mapping
c : V → [C] such that if {u, v} ∈ E then c(u) 6= c(v), i.e.,
no two adjacent vertices receive the same color. Here C de-
notes the number of colors used in the coloring. We say that
a coloring is a local coloring if every node u with degree
du has a color in [εdu] when the coloring uses ε∆ colors.
The interest in local coloring arises from the fact that a lo-
cal coloring has nice implications when using the coloring
in scheduling and routing problems [16].

In our model, the measure of efficiency is the number
of bits exchanged. We also refer to this as the bit com-
plexity. We view each round of the algorithm as consist-
ing of 1 or more bit rounds. In each bit round each node can
send/receive at most 1 bit from each of its neighbors. We as-
sume that the rounds of the algorithm are synchronized. The
bit complexity of algorithm A is then defined as the num-
ber of bit rounds required by algorithm A. We note that,
since the nodes are synchronized, each round of the algo-
rithm requires as many bit rounds as the maximum num-
ber of bit rounds needed by any node in this round. In our
model, we do not count local computation performed by the
nodes. This is reasonable as in our algorithms nodes per-
form only simple local computation.

In our model, we assume that the edges in E have an ori-
entation associated with them. That is, for any two neigh-
bors v, w exactly one of the following holds for the edge
{v, w}: {v, w} is oriented either v → w or as w → v. In
the former we also call v superior to w and vice-versa in the
latter. Having orientation on the edges is a property that has
not been studied in the context of vertex coloring though
it is a natural property since networks usually evolve and
for every connection there is usually a node that initiated
it. We show that algorithms for symmetry breaking can be
greatly improved provided that the underlying graph is ori-
ented. The exact way in which orientation is used for sym-
metry breaking is explained in Figure 1. As shown, if nodes
v and w choose the same color during any round of the al-
gorithm, in the existing algorithms, both nodes remain un-



(a)
v w

(b) (c)
v wv w

Figure 1. Orientation helps in symmetry
breaking. In Figure (a) both v and w choose
the same color. In (b), for existing algorithms
both remain uncolored whereas in (c), when
using orientation, node v may get colored.

colored as in Figure 1(b) and have to try in a later round.
With orientation, if the edge {v, w} is oriented as v → w as
shown in Figure 1(c), then node v can retain its choice pro-
vided that there is no edge {u, v} oriented u → v and u also
chooses the same color.

One parameter that will be important for our investiga-
tions is the length of the shortest cycle in the orientation.
We formalize this notion in the following definition.

Definition 1.1 (`–acyclic Orientation) An orientation of
the edges of a graph is said to be `–acyclic if the mini-
mum length of any directed cycle induced by the orienta-
tion is at least `. Note that this is not the girth of the given
graph.

1.2. Related Work

The problem of vertex coloring in distributed systems
has a long and rich history. It is an open problem whether
deterministic poly-logarithmic time distributed algorithms
exist for the problem of (∆ + 1)-vertex coloring [24]. The
best known deterministic algorithm to date is presented in
[24] and requires nO(1/

√
log n) rounds. Following consid-

erations known from the radio broadcasting model [1] the
problem cannot be solved at all in a deterministic round
model without the use of unique identification numbers.
Hence, most of the algorithms presented are randomized al-
gorithms.

Luby [19] and Johansson [13] present parallel algorithms
that can be interpreted as distributed algorithms that provide
a (∆ + 1)–coloring of a graph G in O(log n) rounds, with
high probability. Recent empirical studies [7] have shown
that the constant factors involved are small. Algorithms for
vertex coloring are also presented in [10, 14] in the PRAM
model of computation.

Cole and Vishkin [4] and Goldberg et. al. [10] have
shown that a (∆+1)–coloring of the cycle graph on n nodes
can be achieved in O(log∗ n) communication rounds. This
was shown to be optimal in Linial [17] by establishing that
3-coloring an n–node cycle graph cannot be achieved in less
than (log∗ n−1)/2 rounds. When arbitrary amount of local

computation is allowed [17], De Marco and Pelc [20] show
that an O(∆) coloring can be achieved in O(log∗(n/∆))
rounds improving the results of Linial [17] in this model.

In a related work, Grable and Panconesi [12] present
a distributed algorithm in the message passing model
for edge coloring that runs in O((1 + α−1) log log n)
rounds provided that the degree of any node in the
graph is Ω(nα/ log log n) for any α > 0. Our analy-
sis of Phase I for arbitrary graphs follows the analysis of
Phase II in [12].

Distributed algorithms with the underlying graph
equipped with sense of direction have been studied in
[25, 8]. Sense of direction is a similar notion to that of ori-
entation on edges. Singh [25] shows that leader election in
an n-node complete graph equipped with sense of direc-
tion can be performed in a distributed setting via exchange
of O(n) messages. In [8], the authors show that hav-
ing sense of direction reduces the communication complex-
ity of several distributed graph algorithms such as leader
election, spanning tree construction, and depth-first traver-
sal.

1.3. Our Results

We start by investigating the bit complexity of distributed
vertex coloring algorithms. We first show that the bit com-
plexity of the coloring problem is Ω(log n) for an non-
oriented n-node cycle graph. That is, any distributed al-
gorithm in which all the nodes start in the same state and
know only about n and ∆ apart from their neighbors needs
Ω(log n) rounds with high probability to arrive at a proper
coloring using any finite number of colors. We then show
that when the edges in the cycle graph are provided with an
orientation, then the bit complexity of distributed vertex col-
oring algorithms is Ω(

√
log n), with high probability, when

using any finite number of colors. This leads us to the ques-
tion whether matching upper bounds can be shown for col-
oring oriented graphs.

We start with the case of constant degree
√

log n–acyclic
oriented graphs and present an algorithm to obtain a (∆ +
1)–coloring with a bit complexity of O(

√
log n) with high

probability. Thus, we show the following theorem.
Theorem 1.2 Given a

√
log n–acyclic oriented graph G =

(V, E) of maximum degree ∆, if ∆ is a constant, a (∆ +
1)–vertex coloring of G can be obtained in O(

√
log n) bit

rounds, with high probability.
The above theorem directly implies that oriented cycle

graphs can be 3–colored in O(
√

log n) bit rounds. Addi-
tionally, for the case of constant degree graphs we can also
arrive at a local coloring where the color of every node u is
in [du + 1].

We then extend our algorithm and analysis to the case
of arbitrary

√
log n–acyclic oriented graphs with maximum



degree ∆. Our main result is a distributed (1+ε)∆–coloring
algorithm for arbitrary

√
log n–acyclic oriented graphs of

maximum degree ∆. Our algorithm has a bit complexity
of O(log ∆) + Õ(

√
log n). By g(n) = Õ(f(n)) we mean

g(n) = O(f(n)polylog(f(n))). Specifically, we prove the
following theorem.

Theorem 1.3 Given a
√

log n–acyclic oriented graph G =
(V, E) of maximum degree ∆, a (1 + ε)∆–vertex color-
ing of G, for any constant ε > 0, can be obtained in
O(log ∆) + Õ(

√
log n) bit rounds, with high probability.

By further tightening the analysis, we show that the bit
complexity can be reduced to O(log ∆+

√
log n log log n),

with high probability, for
√

log n–acyclic oriented graphs
with ∆ ≥ log n.

For the case of arbitrary
√

log n–acyclic oriented graphs,
our algorithm and analysis can be modified easily to get a
local coloring such that every node u gets a color in [(1 +
ε)du].

1.4. Summary of our approach

We now provide a brief summary of our basic approach.
Our approach has the same flavor as existing distributed ver-
tex coloring algorithms [19, 13]. Given any

√
log n–acyclic

oriented graph G = (V, E) of constant degree ∆, the al-
gorithm for (∆ + 1)–coloring proceeds as follows. Com-
munication proceeds in rounds and in each round each yet
uncolored node v chooses a color cv among the available
colors in [∆ + 1] uniformly at random. Node v then com-
municates this color choice to all of its uncolored neigh-
bors. If a node chooses a color that is in conflict with any
of the choices of its neighbors, the conflict resolution rule
specifies the course of action. In the algorithm of Luby[19],
Johansson[13], and most other works, the conflict resolu-
tion rule is that uncolored nodes in conflict remain uncol-
ored and have to try again in subsequent rounds. The con-
flict resolution rule we use is based on the orientation on
the edges as explained in Section 1.1. Our algorithm is thus
similar to the existing distributed vertex coloring algorithms
[19, 13] except for the conflict resolution rule.

In our analysis, after O(
√

log n) rounds we arrive at the
situation where connected components of uncolored nodes
only have simple oriented paths of length less than

√
log n,

with high probability. Coupled with the
√

log n–acyclic ori-
entation, it can be shown that the nodes in each such con-
nected component can be organized into less than

√
log n

layers. The layering has the property that all the oriented
edges are from a node in a lower-numbered layer to a node
in a higher numbered layer. This property of the layering
guarantees a successful coloring of all remaining uncolored
nodes in less than

√
log n rounds. This gives us the result for

constant degree oriented graphs. (Theorem 1.2). To arrive

at the bit complexity for arbitrary graphs, (Theorem 1.3) we
need a few additional tricks as our analysis shows.

1.5. Organization of the paper

The rest of the paper is organized as follows. In Sec-
tion 2 we establish the lower bound results. In Section 3,
we present and analyze our algorithm for (∆ + 1)–coloring
constant degree oriented graphs. This will serve as a base
for the (1 + ε)∆–coloring algorithm for arbitrary oriented
graphs of maximum degree ∆ for any constant ε > 0, in
Section 4. The paper ends with conclusions in Section 5.

2. Lower Bounds

In this section we establish lower bounds on the bit com-
plexity of finding a proper vertex coloring. Recall that a Las
Vegas algorithm is a randomized algorithm that always pro-
duces a correct result, with the only variation being its run-
time. First, we prove a lower bound for non-oriented graphs,
and then we prove a lower bound for oriented graphs. No-
tice that both bounds hold for any finite number of colors.

Theorem 2.1 For every Las Vegas algorithm A there is an
infinite family of non-oriented graphs G s.t. A has a bit com-
plexity of at least Ω(log n) on G, with high probability, to
compute a proper vertex coloring.

Proof. Consider the cycle of n nodes, and let S` =
(u`, . . . , u1, v1, . . . , v`) be the set of nodes along a path of
length 2` of the cycle. Initially, every node in S` is in the
same state s0, with the only difference that for every i ∈
{1, . . . , `−1}, ui considers its left connection to go to ui+1

whereas vi considers its left connection to go to vi+1. (No-
tice that the cycle is non-oriented, so we can choose any ori-
entation we want for the individual nodes.) Associated with
s0 is a fixed probability distribution Pε = (pε

x)x∈{−,0,1} for
sending bit x along the right edge, where “−” represents the
case that no bit is sent and ε represents the empty history.
Since Pε has only three probability values, there must be an
x0 with pε

x0
≥ 1/3. Let E1 be the event that nodes u1 and v1

choose that option. Then u1 and v1 receive the same infor-
mation from their right neighbor. Let Py = (py

x)x∈{−,0,1}

be the probability distribution for sending bit x along the
right edge in the second round given that bit y was received
from the right edge in the first round. Then Px0

applies to
u1 and v1. Since Px0

has only three probability values, there
must be an x1 with px0

x1
≥ 1/3. Let E2 be the event that

nodes u1 and v1 choose that option. Then u1 and v1 again
receive the same information from their right neighbor.

Continuing with this argumentation, it follows that there
are events E1, . . . , E` with Ei having a probability of at
least 1/3 for all i so that u1 and v1 have received the same
information from their right neighbors. Algorithm A cannot



terminate in this case because in this case the same proba-
bility distribution for choosing a color applies to u1 and v1,
and hence, the probability that u1 and v1 choose the same
color is non-zero.

When choosing ` = log3(n/2 log2 n), the probability
for E1, . . . , E` to occur is at least

(

1
3

)log3(n/2 log2 n)
=

2 log2 n
n . Moreover, notice that E1, . . . , E` only depend on

the nodes in S` because information can only travel a dis-
tance of ` edges in ` rounds. Hence, we can partition the
n-node cycle into n/2` many sequences S where each se-
quence has a probability of at least 2 log2 n

n of running into
the events E1, . . . , E` that is independent of the other se-
quences. Thus, the probability that all node sequences can
avoid the event sequence E1, . . . , E`, which is necessary for

A to terminate, is at most
(

1 − 2 log2 n
n

)n/2`

≤ 1/n, which
implies that A needs Ω(log n) bit-rounds, with high proba-
bility, to finish. ut

Theorem 2.2 For every Las Vegas algorithm A there is an
infinite family of oriented graphs G s.t. A has a bit com-
plexity of at least Ω(

√
log n) on G, with high probability, to

compute a proper vertex coloring.

Proof. Consider the cycle of n nodes in which all
the edges are oriented in the same direction. Let
S` = (u`, . . . , u1, v1, . . . , v`) be the set of nodes
along a path of length 2` of the cycle. Initially, ev-
ery node in S` is in the same state s0. Associated with s0

is a fixed probability distribution P0 = (p0
x,y)x,y∈{−,0,1}

for sending bit x along the left edge and bit y along
the right edge, where “−” represents the case that no
bit is sent. Since P0 has only nine probability val-
ues, there must be an x0 and y0 with p0

x0,y0
≥ 1/9. Let

E1 be the event that all nodes in S` choose that option.
Then all nodes in S`−1 = (u`−1, . . . , u1, v1, . . . , v`−1) re-
ceive the same information and must therefore be in the
same state s1. Associated with s1 is a fixed probability dis-
tribution P1 = (p1

x,y)x,y∈{−,0,1} for sending bit x along
the left edge and bit y along the right edge. Since P1 has
only nine probability values, there must be an x1 and y1

with p1
x1,y1

≥ 1/9. Let E2 be the event that all nodes
in S`−1 choose that option. Then all nodes in S`−2 re-
ceive the same information and must therefore be in the
same state s2.

Continuing with this argumentation, it follows that there
are events E1, . . . , E` with Ei having a probability of at
least (1/9)2(`−i+1) for all i so that all nodes in S`−i are
in the same state si. Since these nodes are neighbors,
algorithm A cannot terminate within ` bit exchanges if
E1, . . . , E` are true because whatever probability distribu-
tion A chooses on the colors, the probability that two neigh-
boring nodes choose the same color is non-zero, which

would violate the assumption that A is a Las Vegas algo-
rithm.

The probability that E1, . . . , E` are true is at least
(

1
9

)

∑

`

i=1
2(`−i+1) ≥

(

1
9

)`2/2 and when choosing

` =
√

2 log9(n/2 log2 n), this results in a proba-
bility of at least (2 log2 n)/n. Moreover, notice that
E1, . . . , E` only depend on the nodes in S` because in-
formation can only travel a distance of ` edges in `
rounds. Hence, we can partition the n-node cycle into n/2`
many sequences S where each sequence has a probabil-
ity of at least 2 log2 n

n of running into the events E1, . . . , E`

that is independent of the other sequences. Hence, the prob-
ability that all node sequences can avoid the event se-
quence E1, . . . , E`, which is necessary for A to termi-

nate, is at most
(

1 − 2 log2 n
n

)n/2`

≤ 1/n , which implies
that A needs Ω(

√
log n) bit-rounds, with high probabil-

ity, to finish. ut

Thus, oriented graphs appear to be easier to color than
non-oriented graphs. In the next section we show that this
is indeed the case by providing a matching upper bound for
constant-degree graphs.

3. Upper Bound for Constant Degree Ori-
ented Graphs

In this section we present and analyze the algorithm for
(∆ + 1)–coloring constant degree oriented graphs. This
demonstrates the efficacy of using orientation in vertex col-
oring algorithms. We defer the case of arbitrary oriented
graphs to Section 4 as it requires more complicated argu-
ments than for constant degree graphs.

The algorithm for vertex coloring constant degree ori-
ented graphs is given in Figure 2. In the algorithm, the pa-
rameter Cu refers to the number of colors used in the col-
oring by node u. Each node executes the algorithm Color-
Random until it gets colored.

We analyze algorithm Color-Random for constant de-
gree oriented graphs with a

√
log n–acyclic orientation and

show that algorithm Color-Random can be used to obtain a
(∆ + 1)–coloring with a bit complexity of O(

√
log n). The

reduction in the bit complexity from Ω(log n) (due to The-
orem 2.1) to O(

√
log n) comes from the fact that once ev-

ery simple oriented path of length
√

log n has at least one
colored node, the

√
log n–acyclic orientation guarantees us

connected components of uncolored nodes where each such
component only has simple oriented paths of length less
than

√
log n. The

√
log n-acyclicity of the orientation al-

lows us to finish in a further
√

log n rounds.
Theorem 3.1 Given a

√
log n–acyclic oriented graph G =

(V, E) of maximum degree ∆, if ∆ is a constant, a (∆ +



Algorithm Color-Random(Cu)
While u is not colored do

1. Node u chooses a color cu from the available
colors in [Cu] uniformly at random.
2. Node u communicates its choice cu, from step 1,
to all of its uncolored neighbors that have a lower
priority over u, i.e. to nodes v such that u → v.
3. If node u does not receive a message from any
of its neighbors w with w → u and cw = cu, then
node u gets colored with color cu. Otherwise node
u remains uncolored.
4. If u is colored during step 3 of the current round,
then u informs all of its uncolored neighbors about
the color of u.
5. Node u updates the list of available colors accord-
ing to colors taken up by u’s neighbors.

Figure 2. Coloring constant degree oriented
graphs by random choices.

1)–vertex coloring of G can be obtained in O(
√

log n) bit
rounds, with high probability.

Proof. The analysis below cuts the time into two phases.
Phase I ends once every simple oriented path of length
` =

√
log n has at least one colored node, and phase II ends

once all nodes are colored. We show that phase I takes at
most r = 4

√
log n rounds, with high probability. For Phase

II, the proof uses the
√

log n–acyclic orientation to argue
that a further

√
log n rounds suffice to color all nodes. For

simplicity, we set Cu = 2∆ for every node u, but the anal-
ysis works, with minor modifications, for Cu = ∆ + 1, as
long as ∆ is a constant.

Consider any simple oriented path P of length `. For any
node u ∈ P with C ′

u remaining colors and d′
u remaining

uncolored neighbors, the probability that it chooses a color
that is identical to the choice of any of its uncolored neigh-
bors is at most

∑d′

u

j=1 1/C ′
u ≤ d′u/(2∆− (du −d′u)) ≤ 1/2

as C ′
u = 2∆ − (du − d′u) and d′

u ≤ du.
For any i ≥ 1, denote by EP,i the event that all nodes in

P have a color conflict in round i. Since each node chooses
the color independently and uniformly at random, and P
is oriented, one can identify a distinct witness for each
color conflict so as to upper bound Pr[EP,i | ∩i−1

j=0EP,j ]

as Pr[EP,i | ∩i−1
j=0EP,j ] ≤ (1/2)`.

Denote by EP the event that the event EP,i occurs for
r consecutive rounds. Then, Pr[EP ] = Pr[

⋂r
i=1 EP,i] =

Πr
i=1 Pr[EP,i | ∩i−1

j=1EP,j ] ≤ (1/2)`r.
Let E denote the event that for some simple oriented

path P the event EP occurs. The number of simple ori-
ented paths of length ` is at most n∆` by choosing the
first vertex from n available choices and choosing each of

Colored node

Uncolored node

Legend:
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0
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53

4
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Figure 3. Connected component of uncolored
nodes. The number at the uncolored nodes
within the connected component gives the
layer number they belong to.

the next ` vertices from the at most ∆ available choices.
Thus, Pr[E] = Pr[

⋃

P EP ] ≤ n∆` Pr[EP ] ≤ 1/n2, for the
above value of r since ∆ = O(1). This completes Phase I
of the analysis.

Consider connected components of uncolored nodes. At
the end of Phase I, since any simple oriented path of length `
has at least one colored node, each such component only has
simple oriented paths of length less than `, with high prob-
ability. Moreover, the input graph does not have oriented
cycles of length less than

√
log n which implies that each

such component can be organized into less than
√

log n lay-
ers with oriented edges going only from a node in a lower-
numbered layer to a node in a higher numbered layer. This
layering can be achieved by the following process. Nodes
with no superiors are assigned to layer 0. After removing
these nodes, nodes in the rest of the component with no su-
periors are assigned to layer 1, and so on, until there are no
nodes left. Such a procedure terminates in less than

√
log n

rounds, implying that the layer number of any node is less
than

√
log n. Otherwise, there must exist either a simple ori-

ented path of length at least
√

log n or an oriented cycle of
length less than

√
log n. Both of these conditions result in

a contradiction and hence the layering process must termi-
nate in less than

√
log n rounds. Figure 3 shows an example

along with the assignment of nodes to layers.
Now, in Phase II, during every round the uncolored

nodes assigned to the lowest layer number presently get col-
ored as the nodes assigned to the lowest layer can always re-
tain their color choice from Step 1. This implies that Phase
II can finish in less than

√
log n rounds.

Since in each round each uncolored node has to ex-
change O(log ∆) = O(1) bits, the bit complexity of the
algorithm Color-Random is O(

√
log n). ut



Algorithm Color(Cu)
Phase I
1. Set Cu := c1∆ for a constant c1 ≥ 3.
2. While du ≥ c2 log n for a constant c2 do

3. Use Algorithm Color-Random(Cu).
Phase II
4. Set Cu := min{2c2 log n, 2du}.
5. Use Algorithm Color-Random(Cu).

Figure 4. Algorithm for any node u.

We note that the same proof also holds for 3–coloring
cycle graphs, with any orientation, with minimal changes.
Coupled with the lower bound result in Theorem 2.2, our
analysis for the case of constant degree graphs is tight with
respect to the bit complexity, up to constant factors. The al-
gorithm and the analysis can be modified easily to achieve
a local coloring also.

4. Upper Bound for Arbitrary Oriented
Graphs

In this section we describe and analyze our algorithm for
vertex coloring an arbitrary

√
log n–acyclic oriented graph

G using (1 + ε)∆ colors for any constant ε > 0.
Our algorithm and the analysis in this case requires more

tools than that for constant degree graphs while having the
same flavor. Theorem 3.1 fails to hold once the degree of the
input graph is bounded away from any constant. Graphs be-
low logarithmic degree, but bounded away from a constant,
pose additional problems as graphs with degree below a cer-
tain threshold are not easily amenable to nice probabilistic
bounds. In many papers, for example [12, 23, 5], this prob-
lem was overcome by assuming that the number of colors
available is max{(1 + ε)∆, log n} so that sub-logarithmic
degree graphs are colored with log n colors. We instead take
the approach of coloring with (1 + ε)∆ colors as coloring
with few colors is more appealing when vertex coloring is
used as a sub-routine in other higher order tasks.

To arrive at our result, we proceed in stages. Based
on techniques from [12], we first show how to arrive at
a bit complexity of Õ(log ∆ +

√
log n). Later, using ad-

vanced techniques, we show how to arrive at a bit com-
plexity of O(log ∆) + Õ(

√
log n). Finally, for graphs with

∆ ≥ log n, we show how to arrive at a bit complexity of
O(log ∆ +

√
log n log log n).

Our algorithm for any node u is presented in Figure 4.
The parameter Cu denotes the number of colors each vertex
u can choose from. Each node runs the algorithm in Figure
4 while it remains uncolored.

We now provide a summary of our analysis of algorithm
Color. Our analysis cuts time into two phases. In the first

phase we show that for any vertex the number of uncol-
ored neighbors reduces to at most c2 log n for a constant c2,
in O(log log n) rounds, with high probability. In the second
phase we first show that the graph can be decomposed into
connected components of uncolored nodes such that each
such connected component only has simple oriented paths
of length less than

√
log n, with high probability. The anal-

ysis then proceeds to show that all the nodes can be colored
in a further

√
log n rounds.

In the algorithm and the analysis we also set Cu = c1∆
for a constant c1 ≥ 3, for every node u, for the sake of sim-
plicity. Using techniques from [12], it is possible to extend
the following analysis to use only (1 + ε)∆ colors, for any
constant ε > 0.

4.1. Analysis for Phase I

In this phase, we show that the number of uncolored
neighbors of any node u reduces in a double-exponential
fashion, (i.e., in O(log log n) rounds) to c2 log n. This anal-
ysis has strong connections to occupancy problems [21,
Problem 3.4],[2], and the edge coloring algorithm of [12].

Let du(i), Nu(i), Cu(i) refer to the number of uncolored
neighbors, the set of uncolored neighbors, and the size of
the color palette of node u respectively, at the beginning of
round i. Also, let d̂(i) = maxu du(i).

Lemma 4.1 If du(1) ≥ c2 log n then du(c′ log log n) ≤
c2 log n, with high probability for some constant c′ ≥ 1.
Proof. The intuition behind the proof is that at the end of
every round, the number of remaining uncolored neighbors
decreases double-exponentially.

During round i the probability that an uncolored
node u fails to get colored can be computed as:
Pu(i) := Pr[u does not get colored during round i] ≤
∑du(i)

j=1
1

Cu(i) ≤ d̂(i)
α∆ , as, for c1 sufficiently large, it holds

that Cu(i) ≥ α∆ for α = c1 − 1.
The expected number of neighbors of u that are still un-

colored after round i is, E[du(i + 1)] =
∑

v∈Nu(i) Pv(i) ≤
d̂(i)2/α∆.

Consider the following recurrence relation between d̂(i+

1) and d̂(i) for a constant c′′.

d̂(i + 1) ≤ d̂2(i)

α∆
+

√

c′′d̂(i) log n. (1)

Using a large deviation bound [11, 12], it can be shown
that du(i + 1) exceeds its expected value by more than
√

c′′d̂(i) log n with probability less than n−2 for some con-
stant c′′. Thus, it holds that du(i + 1) ≤ d̂(i + 1) w.h.p.,
for all nodes u. Solving the recurrence relation (cf. [12])
in Equation 1 for a value of i∗ such that for any node u,
du(i∗) ≤ d̂(i∗) ≤ c2 log n results in i∗ = O(log log n). ut



Thus, at the end of O(log log n) rounds of the algorithm,
the number of uncolored neighbors for every node is at most
c2 log n. This completes Phase I of the analysis.

4.2. Analysis for Phase II

The analysis in this phase consists of two sub-phases.
In sub-phase II(a), we argue that along any simple oriented
path of length

√
log n there exists at least one colored node,

with high probability. In the second sub-phase we show that
all the remaining uncolored nodes successfully get colored
within

√
log n rounds. Notice that since the number of un-

colored neighbors of any node at the beginning of this phase
is at most c2 log n, nodes can use a color palette of size
min{2c2 log n, 2du} for this phase as shown in the algo-
rithm in Figure 4.

4.2.1. Analysis for Phase II(a)
We now establish the following lemma which shows that

every simple oriented path of length
√

log n has at least
one colored node after O(

√
log n) rounds, with high prob-

ability. Let ∆∗ denote the maximum number of uncol-
ored neighbors for any node u. After phase I, it holds that
∆∗ ≤ c2 log n.

Lemma 4.2 For arbitrary
√

log n–acyclic oriented graphs
G at the end of O(

√
log n) rounds, any simple oriented

path of length ` =
√

log n will have at least one colored
node, with high probability. Further, the bit complexity of
this phase is O(

√
log n log log n).

Proof. The proof of this lemma is similar to the proof of
Phase I of Theorem 3.1. Consider any simple oriented path
P of length ` =

√
log n. Let EP,i denote the event that all

the nodes in P are in a color conflict during a given round
i. Then, along the lines of Phase I of Theorem 3.1, it holds
that Pr[EP,i | ∩i−1

j=1EP,j ] ≤ (1/2)`. Define EP to be the
event that the event EP,i occurs for r = 4

√
log n consecu-

tive rounds. Then, it holds that Pr[EP ] = Pr[∩r
i=1EP,i] =

Πr
i=1 Pr[EP,i | ∩i−1

j=1EP,j ] ≤ (1/2)`r.
Let E denote the event that there exists such a path P

for which the event EP occurs. Since the number of sim-
ple oriented paths of length P is at most n∆`

∗, Pr[E] ≤
∑

P Pr[EP ] ≤ n∆`
∗

(

1
2

)r`. As r = 4
√

log n and ` =√
log n and ∆∗ ≤ c2 log n, the above probability is poly-

nomially small.
The bit complexity of this phase is O(

√
log n log log n)

as each round, each uncolored exchanges O(log log n) bits.
ut

4.2.2. Analysis for Phase II(b)
Consider connected components of uncolored nodes. At

the end of Phase II(a), since any simple oriented path of
length

√
log n has at least one colored node, w.h.p., it holds

that each such component has only simple oriented paths of

length less than
√

log n with high probability. Also, the in-
put graph G does not have oriented cycles of length less than√

log n. For Phase II(b), we show the following lemma.

Lemma 4.3 In Phase II(b), after less than
√

log n rounds,
all nodes in G are colored properly. Further, the bit com-
plexity of Phase II(b) is O(

√
log n log log n).

Proof. The proof of this lemma is similar to that of the
proof of Phase II in Theorem 3.1. This phase requires less
than

√
log n rounds and each node exchanges O(log log n)

bits during every round of this phase. Thus the bit complex-
ity of this phase is O(

√
log n log log n). ut

From the above discussion, the following theorem holds.

Theorem 4.4 Given a
√

log n–acyclic oriented graph G =
(V, E) of maximum degree ∆, for any constant ε > 0, a
(1+ε)∆–vertex coloring of G can be obtained in Õ(log ∆+√

log n) bit rounds, with high probability.

Proof. Phase I has a bit complexity of O(log ∆ log log n)
as for O(log log n) rounds, each node exchanges O(log ∆)
bits. For Phase II, the bit complexity is O(

√
log n log log n).

Adding the bit complexity of both the phases, we arrive at
the theorem. ut

4.3. Further Improvements
In this section, we show that the bit complexity of Phase

I can be reduced to O(log ∆) thereby reducing the bit com-
plexity of the algorithm for arbitrary

√
log n–acyclic ori-

ented graphs to O(log ∆) + Õ(
√

log n). We then show a
tighter analysis for high degree graphs to arrive at a bit
complexity of O(log ∆+

√
log n log log n). By high degree

graphs, we mean graphs with ∆ ≥ log n.

4.3.1. Improvements to the Analysis of Phase I
The tightness of the analysis stems from a gradual reduc-

tion in the number of colors during Phase I. This results in
savings in the bit complexity of Phase I. For this purpose,
phase I is divided into sub-phases as follows. For j ≥ 1,
sub-phase j starts when the number of uncolored neigh-
bors of u is at most D

(j)
u , where D

(j)
u acts a threshold on

the number of uncolored neighbors of node u. D
(j)
u is de-

fined as D
(1)
u = du and D

(j)
u =

√

D
(j−1)
u for j ≥ 2. Let

C
(j)
u denote the size of the color palette of node u during

sub-phase j. At the beginning of sub-phase j node u re-

duces the size of its color palette so that C(j)
u = c1

√

C
(j−1)
u

with C
(1)
u = c1∆.

This effectively reduces the number of bits required
to be sent in each sub-phase by a factor of 2 but the
proof of Lemma 4.1 holds with minimal changes. Thus,
in Phase I, it can be seen that over the O(log log n)
sub-phases the number of bits each node u sends is at



Algorithm PhaseI
1. Du :=

√
du, Cu := c1∆.

2. While du ≥ c2 log n do
3. Run Algorithm Color–Random(Cu).
4. If du ≤ Du then

5. Du :=
√

Du, Cu := c1

√
Cu

end-while.

Figure 5. Improved algorithm for Phase I.

most
∑O(log log n)

j=1 log C
(j)
u ≤ ∑O(log log n)

j=1 2 log c1 +

((log ∆)/2j) = O(log log n + log ∆). Thus, the bit com-
plexity for Phase I reduces to O(log log n + log ∆).

The modified algorithm for Phase I for node u is de-
scribed in Figure 5. Using the tighter analysis for Phase I
and Lemmata 4.2–4.3, we arrive at the following theorem.

Theorem 4.5 Given a
√

log n–acyclic oriented graph G =
(V, E) of maximum degree ∆, a (1 + ε)∆–vertex coloring
of G for any constant ε > 0, can be obtained in O(log ∆)+
Õ(

√
log n) bit rounds, with high probability.

4.3.2. Improvements to Phase II
For the case of high degree graphs, we now show

how to reduce the bit complexity of Phase II to
O(

√
log n log log n). The algorithm for Phase II re-

mains the same as shown in Figure 4. The analysis of Phase
II now consists of 3 sub-phases. In sub-phase II(a), we show
that the number of uncolored neighbors of any node de-
creases to O(

√
log n log log n) after O(

√
log n/ log log n)

rounds with high probability. In sub-phase II(b) we
then show that every simple oriented path of length
√

log n/ log log n has at least one colored node, with high
probability, after O(

√

log n/ log log n) rounds. In the fi-
nal sub-phase, we show that every node can be colored in
a further O(

√

log n/ log log n) rounds. In this phase, ev-
ery node can use a color palette of size 2c2 log n.

Analysis for Phase II(a)
For sub-phase II(a), we show the following lemma.

Lemma 4.6 In Phase II(a), in O(

√
log n

log log n ) rounds,
the number of uncolored neighbors of any node de-
creases to

√
log n log log n, with high probability. Further,

the bit complexity of this sub-phase is O(
√

log n).

Proof. Consider any node u. At the end of phase I, it
holds that du ≤ c2 log n, with high probability. Since the
number of colors used by u is 2c2 log n, it also holds that
Pr[node u fails to get colored in a given round] ≤ 1/2.

Consider any subset A of the uncolored neighbors of
u. Let EA denote the event that all the nodes in A re-
main uncolored after r =

4
√

log n

log log n consecutive rounds.

Then, it holds that Pr[EA] ≤ (1/2)r|A| using the ori-
entation and the witnessing scheme of Theorem 3.1.
Let Eu,s denote the event that for node u, there ex-
ists a set of s uncolored neighbors at the end of r
rounds. Then, Pr[Eu,s] = Pr[

⋃

A⊆Nu,|A|=s EA] ≤
⋃

A⊆Nu,|A|=s Pr[EA] =
(

du

s

) (

1
2

)rs.
Denote by Eu the event that for node u there exist more

than
√

log n log log n uncolored neighbors. Using Boole’s
inequality, Pr[Eu] ≤ ∑du

s=
√

log n log log n
Pr[Eu,s] ≤

∑du

s=
√

log n log log n

(

du

s

)

· (1/2)rs ≤ 2du · (1/2)4 log n ≤ 1
n3

as rs ≥ 4 log n. Now, denote by E the event
that for some node u, the event Eu occurs. Then,
Pr[E] = Pr[

⋃

u∈V Eu] ≤ 1/n2. Thus, the number of un-
colored neighbors of any node decreases to

√
log n log log n

with high probability after 4
√

log n/ log log n rounds.
During this phase, each uncolored node exchanges

O(log log n) bits in each round as the palette size is
2c2 log n. Thus, the bit complexity of this sub-phase is
O(

√
log n). ut

Analysis for Phase II(b)
At the end of sub-phase II(a), it holds that the number of un-
colored neighbors of any node u is at most

√
log n log log n.

Recall that ∆∗ = maxu du. After sub-phase II(a), it holds
that ∆∗ ≤ √

log n log log n.

Lemma 4.7 In Phase II(b), in 16
√

log n/ log log n rounds,
in every simple oriented path of length

√

log n/ log log n
there is at least one node that gets colored, with high
probability. Further, the bit complexity of this sub-phase is
O(

√
log n log log n).

Proof. Consider any simple oriented path P of un-
colored nodes of length ` =

√

log n/ log log n. De-
note by EP the event that no node in P gets colored in
16

√

log n/ log log n rounds. Then, it holds that (cf. Theo-

rem 3.1) Pr[EP ] ≤
(√

log n log log n

2c2 log n

)`·16
√

log n/ log log n

≤
(

log log n

2c2

√
log n

)

16 log n

log log n

≤ 1
n4 , if n is sufficiently large. In the

above, the first inequality holds since the number of un-
colored neighbors is

√
log n log log n and the number of

colors that u can choose from is 2c2 log n.
Let E denote the event that there exists a simple ori-

ented path P of length ` such that for path P , the event
EP occurs. The number of simple oriented paths of length
` =

√

log n/ log log n is at most n · ∆`
∗. Thus, Pr[E] =

Pr[
⋃

P EP ] ≤ ∑n∆`

∗

j=1 1/n4 ≤ ∆`
∗/n3.

The above probability is polynomially small since ∆∗ ≤√
log n log log n. Thus, along any simple oriented path of

length
√

log n/ log log n, at least one node gets colored



with high probability at the end of 16
√

log n/ log log n
rounds.

The bit complexity of this sub-phase is easily seen to be
O(

√
log n log log n) as in each round, each uncolored node

exchanges O(log log n) bits. ut

This completes the analysis for Phase II(b). In Phase
II(c), using arguments similar to that of Lemma 4.3, it can
be shown that in a further

√

log n/ log log n rounds, every
node gets colored, with high probability. The bit complex-
ity of Phase II(c) is O(

√
log n log log n). Putting together

everything, we arrive at the following theorem.

Theorem 4.8 Given a
√

log n–acyclic oriented graph G =
(V, E) of maximum degree ∆ ≥ log n, for any constant
ε > 0, a (1 + ε)∆–vertex coloring of G can be obtained in
O(log ∆ +

√
log n log log n) bit rounds, with high proba-

bility.

Notice that for Theorem 4.8 to hold, the input graph only
needs to be

√

log n/ log log n–acyclic, but we stated the
theorem with the

√
log n–acyclicity assumption for the sake

of consistency.
The following corollary can be easily obtained showing

that for the case of dense
√

log n–acyclic oriented graphs,
our result on the bit complexity is close to the worst-case
optimal.

Corollary 4.9 Given an arbitrary
√

log n–acyclic oriented
graph G = (V, E) with ∆ = Ω(2

√
log n log log n), for any

ε > 0, a (1 + ε)∆-vertex coloring can be obtained in
O(log ∆) bit rounds, with high probability.

5. Conclusions
We presented algorithms for distributed vertex coloring

using a simple and natural model. While our results are
tight in general, a related question to ask is whether any
further conditions on the orientation would result in bet-
ter bounds or whether certain orientations outperform other
orientations. For example, if the orientation or the graph is
known to be acyclic, would it be possible to color in fewer
bit rounds?
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