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Abstract. We present an approach for the localization of passive nodes
in a communication network using ambient radio or sound signals. In
our settings the communication nodes have unknown positions. They
are synchronized but do not emit signals for localization and exchange
only the time points when environmental signals are received, the time
differences of arrival (TDOA). The signals occur at unknown positions
and times, but can be distinguished. Since no anchors are available, the
goal is to determine the relative positions of all communication nodes
and the environmental signals.
The Ellipsoid TDOA method introduces a closed form solution assum-
ing the signals originate from far distances. The TDOA characterize an
ellipse from which the distances and angles between three network nodes
can be inferred.
The approach is tested in numerous simulations and in indoor and out-
door settings where the relative positions of mobile devices are deter-
mined utilizing only the sound produced by assistants with noisemakers.

1 Introduction

The increasing mobility of computing devices like smart phones, PDAs, laptops,
and tablet computers is a motivation to revisit the localization problem from a
fresh perspective.

The usual approach is to include special hardware like GPS receivers, which
adds extra monetary cost and power consumption. However, in shielded areas
and for small distances such location hardware cannot solve the problem. This
is in particular the case for sensor networks in houses or tunnels. Then, the
standard approach is to use anchor points in the communication network and
calculate the positions by the time of arrival (TOA), time difference of arrival
(TDOA) or by the received signal strength indication (RSSI) of radio signals.

Our approach starts with the following idea. Suppose we have a number of
devices with microphones in a room which are connected by a communication
network, e.g. mobile phones or laptop computers. Now, somebody walks through
the room snapping fingers. Solely based on the time when these sound signals
are received, all distances and angles between network nodes are computed.

The practicability of our approach can easily be seen. Since most modern
computing devices like laptops and smart phones are equipped with everything
we need (microphone, wireless LAN) the software can be run without any cost
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or effort. Sound sources are widely available in crowded areas like market places
or in an open air concert. The noises of the people might already be sufficient
to be localized.

Or consider localization in a wireless sensor network which has been a time
consuming task. Our scheme enables the experimenter to automatize positioning
of sensor nodes equipped with microphones just by producing some sharp sound
signals before or after a field test to determine the locations of the sensors.

Our software might be extended to use with radio signals instead of sound
signals. This will require special hardware to detect time points of radio signals
which have to be more precise due to the speed of light. Given such hardware
it is possible to compute the relative positions of network nodes like notebook
computers, mobile phones, tablet computers or PDAs by using ambient radio
signals coming fromWLAN base stations, radio or TV broadcast, TV satellites or
lightnings. Of course such a localization method must be combined with anchors
which give absolute locations.

The special quality of our approach is that we do not have to know the
positions of the signal sources. We compute them as well. As a consequence, we
can make use of any signal for localization. Even encrypted GPS signal from an
unknown positioned satellite or just the signal of a mobile phone of a by-passer
will function as an information source. This clearly separates our approach from
prevalent approaches which use the information of time of flight, i.e. time of
arrival (TOA) or direction of arrival (DOA).

1.1 Related Work

Localization with known receiver or sender positions has been a broad and inten-
sive research topic with a variety of approaches. A popular application is GSM
localization of mobile phones. Various techniques exist, including angle/direction
of arrival (AOA/DOA), time of arrival (TOA, “time of flight”), and time dif-
ference of arrival (TDOA) [1]. U-TDOA is a provider-side GSM multilateration
technique that needs at least three synchronized base stations. As a client-side
implementation needs special hardware, it is hardly prevalent in common mobile
phones. Instead, many approaches introduce a distance function based on the
received signal strength indication (RSSI). Stable results in the range of meters
can be achieved by fingerprinting using a map of base stations [2].

Similar is localization using the RSSI function of WiFi signals. Methods
include Bayesian inference [3], semidefinite programming for convex constraint
functions [4][5] a combination of WiFi and ultra sound for TOA measurements
like the Cricket system [6] or combinations of methods [7].

RSSI evaluation usually comes with difficulties for indoor localization due to
the unpredictability of signal propagation [8]. We focus on TDOA analysis in
our approach. For TDOA localization of sound and RF signals there is a basic
scheme of four or more known sensors locating one signal source. This is solved
in closed form [9][10] or with iterative methods [11]. TDOA determination can
be done by cross correlation of pairs of signals. An optimal shift between signals
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is calculated, corresponding to the angle of the signal [12][13]. However, we use
signals with a characteristic peak.

Moses et al. [14] use DOA and TDOA information to solve the problem of
unknown sender and receiver positions. Though sounding similar to our problem,
both problem settings differ fundamentally. The additional DOA information
enables the authors to apply some sort of “bootstrapping”: Initial starting points
can be found to solve the problem incrementally.

Raykar et al. locate unknown receivers with onboard audio emitters by time
of flight information [15]. Lim et al. locate mobile devices using the RSSI infor-
mation of unknown WiFi access points [16] given some anchor points in space.

To our knowledge our problem setting of unknown sender and receiver posi-
tions with no further information but TDOA has never been addressed so far.

1.2 Problem setting

Given a communication network of n synchronized nodes M1, . . . ,Mn, where
Mi ∈ R2 denotes the unknown position in two-dimensional Euclidean space. Now
m sound (or radio) signals are produced at unknown time points tS1 , . . . , tSm

and
at unknown locations S1, . . . ,Sm ∈ R2. Each signal Sj arrives at receiver Mi at
time tMi,Sj which is the only input given in this problem setting. We can measure
this time up to an error margin which we assume to be Gaussian distributed.
We assume that the signals propagate in a straight line from the sources to the
receivers with the constant signal speed c and that they are distinguishable.

The problem is to compute all the distances and angles between receivers,
solely from the times when environmental signals are received. Of course then,
the signal directions can be computed from this information. The mathematical
constraints can be described using the signal velocity c, the time tSj of signal
creation and the time tMi,Sj

when the signal is received at Mi:

c (tSj − tMi,Sj ) = |Sj −Mi|2 (1)

where |S−M|2 denotes the Euclidean distance in two-dimensional space.
By squaring the equations of form (1) we yield a quadratic equation system

which can be written in quadratic form. Depending on the number of signals and
receivers this system is under-defined, well-defined or even over-defined. It can
be rewritten as an optimization problem where a polynomial function of degree
four needs to be minimized. There is only small hope for an efficient solution for
such problems in general.

Our solution considers the case where the signal sources are so far from the
receivers that the time difference at two receivers depends only on the angle
between the signal beam and the line between the two receivers. The Ellip-
soid TDOA method is an elegant closed form solution for three receivers in the
two-dimensional space. The solution is tested in numerical simulations of sound
sources with realistic distributions of gaussian error.

Finally, we show how our algorithm performs in real-world indoor and out-
door experiments. Here, we generate series of signals at random positions on
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circles around the computers by clanking a bottle or two wooden planks. This is
the sole information we need to compute the relative distances of the computers.

2 Ellipsoid TDOA method for distant sources

We consider the case where the signal origins are very far from the receivers.
Under this assumption we develop an approximative approach to reveal distances
and angles between a fixed number of three receivers in two-dimensional space.
In this special case a smaller number of sound signals is sufficient to compute
the relative locations than in the general case. Furthermore, the solution of the
problem can be expressed in a closed form.

Once the receiver triangle ABC has been reconstructed we determine the
direction of the signal origins.

2.1 TDOA ellipse
For three receivers A, B, C in the plane and a distant source S the discrete
signal is received by the receivers at time points tA, tB and tC , see Fig. 1. Define

∆t1 = tB − tA (2)
∆t2 = tC − tA (3)

where ∆t1 and ∆t2 are the time differences of arrival (TDOA) between A and
B, resp. A and C. For α = ∠CAB and using the assumption of infinite distant
signal origins we state:

x := ∆t1 = d1 cos (γ − α/2) (4)
y := ∆t2 = d2 cos (γ + α/2) (5)

where γ denotes the direction of s with respect to the bisection of α. Combining
the equations we derive the following ellipse equation:

x2 1
d2

1
+ y2 1

d2
2

+ xy
−2 cosα
d1d2

= 1
2 −

1
2 cos 2α︸ ︷︷ ︸

sin2 α

(6)

Normalization by division by sin2 α (under the assumption α 6∈ {0, π}, i.e.
A,B,C are collinear) leads to the ellipse parameters

a = 1
d2

1 sin2 α
, b = 1

d2
2 sin2 α

, c = −2 cosα
d1d2 sin2 α

for ax2 + by2 + cxy = 1.
Ellipsoid TDOA localization requires at least three pairs of time differences

(∆t1, ∆t2) from different distant signal origins. From these points we compute
the ellipse equation with parameters a, b, c, see Fig. 2. Then, we use the above
equations to compute d1, d2, α which can be done by the following equations:

d1 = 2
√

b

4ab− c2 , d2 = 2
√

a

4ab− c2 , α = arccos −c
2
√
ab
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Fig. 1. Three receivers A,B,C and a
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Fig. 2. Multiple distant signal sources with
time difference pairs (∆t1,∆t2) in two di-
mensions form an ellipse.

2.2 Linear regression

Three ambient signals are sufficient to find the ellipse for two dimensions. Since
ambient radio or sound signals are no scarce resource the additional signals can
be used to overcome the inaccuracies caused by imprecise time measurements
and other error sources. Given a sufficient number of m ≥ 3 signal sources that
form a set of (x, y)-tuples we obtain a system of linear equations

ax2
i + by2

i + cxiyi = 1 (7)

where 1 ≤ i ≤ m. We use linear regression to reconstruct the parameters of this
ellipse. In matrix notation this is:x2

1 y2
1 x1y1

...
...

...
x2
m y2

m xmym


︸ ︷︷ ︸

Q

ab
c


︸ ︷︷ ︸

x

= 1 (8)

If m > 3 we use the least squares method and solve for the ellipse parameters:(
QTQ

)
x = QT1 ⇒ x =

(
QTQ

)−1 (QT1
)

(9)

If m = 3 we solve x = Q−11. For m < 3 the system is under-determined and
cannot be solved uniquely.

Then, we use the equations of the previous subsection to compute the geom-
etry of the triangle ABC. Since the assumption of infinitely far senders is not
realistic this approach results in an approximative solution of the problem.
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However, this is the best one can offer if only three signal sources are available,
since the problem for three general signal positions is under-defined. Later on,
we present simulations which indicate that the approximation behaves well if
the signals are a small constant factor farer than the longest edge of the receiver
triangle.

2.3 Simulation

We have tested the accuracy of this approximation algorithm with a computer
algebra system. A simulation cycle consists of a number of sound sources arbi-
trarily arranged on a circle with a fixed radius around the origin. Three micro-
phones A, B and C are positioned on a circle with a fixed radius of about 2.3m
forming a triangle with an edge length of 4m. The sound sources are received
by the microphones at time points tA, tB and tC depending on the distance and
the speed of sound. A probabilistic Gaussian error model has been added to each
timestamp to simulate measurement errors.

For a set of different radii up to 20m a series of 1,000 tests with 8 sound
sources is run. The distance results d1 and d2 and the angle α between A and B
are subtracted from the real values, which are read from the triangle properties.
Failed runs occur if the approximated quadratic equation does not describe an
ellipse. For successful runs we calculated the average and the standard deviation
of the distance and angle differences.

The results show a systematic under-estimation of the distances between
microphones for short ranges which improves after the perimeter of the micro-
phones has been left at about 5m (Fig. 3). The angle errors show high variance
within the perimeter of the microphones which stabilizes quickly upon leaving
it, at a range of 5m (Fig. 4). Failing localizations occur especially if the sound
source radius is equal to the microphone radius with up to 4%, but the rate
drops quickly to below 1% (Fig. 5).

A stress test was run to observe the behavior of the approximation in case of
runtime variances. Distant sound sources were assumed (radius of 1,000m) and
the gaussian runtime error was increased up to a standard deviation of 2.0ms.
For comparison: In 1.0ms a sound wave travels about 34 cm. Results show a slight
over-estimation of the microphone distances and a moderate increase in angular
variance. Failures increase to about 5%. However, a Gaussian distributed error
of 2ms ranges inside the limits of nearly 3m, which is a lot for a scenario with an
edge length of 4m. The time differences of this magnitude, drawn as x/y-plot, are
hardly recognizable as an ellipse any more (Fig. 6). In our real-world experiments
we observed runtime errors with a standard deviation of about 0.2ms, which is
way below the errors we induced here.

3 Real-world experiments

We have tested this theoretical approach in several real-world experiments. For
this we use a network of mobile devices as network nodes. Our software es-
tablishes UDP communication via local area network (LAN) between several
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Fig. 3. Increasing sound source distances
above 4m result in distance errors below
0.1m.
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Fig. 4. Increasing sound source distances
above 4m result in angle approximation
errors below 2°.
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sound source distance of 2.5m the fail-
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devices and assures precise time synchronization. With the built-in microphones
we record sound signals. The audio track is searched for sharp sound events,
like clapping or finger snapping and their points in time are determined. As a
peculiar mark for a sound event we use the moment when the signal rises above
a environment noise dependent threshold for the first time.

Threshold comparisons showed to be the robustest approach with only little
drawbacks in precision. Maximum searches, either directly or derivative (edge
detection) showed to be slightly more precise but prove to be ambiguous with
fatal results in cases when hosts chose different maxima.

The detected signals are exchanged between the nodes. With this information
given each node can compute the relative locations using the algorithm described
before.

3.1 Time synchronisation

Common TDOA localization requires precise synchronization among receivers.
While unsynchronized localization is generally possible, time synchronization
reduces the number of required sound events. To get a global time reference the
nodes elect a master based on priority IDs and synchronize to the master clock.
The synchronization is achieved with a series of pings between master and all
other nodes to get a good estimation of the round trip time (RTT) to the master.
The exchanged reference timestamps are filtered for high RTT (outliers), which
results from network jitter, and corrected by 1/2 RTT, assuming the network
packet took the same runtime in both directions.

Our experiments pointed out that clock drift correction is essential even
with the utilized high precision event timer (HPET). Although running with
accurately constant speed, drift rates between different clocks of 0.03% were
observed, which is too high for our purposes, if untreated. Both time offset and
clock drift between client and master are obtained by linear regression of the
timestamp set. The precision we achieve is within 0.1ms in a wireless LAN with
an RTT of about 10ms and within 0.01ms in a wired LAN with an RTT of
about 1ms.

3.2 Experiments

The first real-world test was situated in a large lecture hall with a size of
17m× 13m at the University of Freiburg. We arranged 3 laptops A, B, and
C in a small triangle residing on a circle with radius 2.3m and connected them
with an ethernet based LAN switch for communication. The triangle was placed
in a corner of the hall to test far distant sound sources up to 16m. To examine
the measurement results we noted down the positions of the laptop microphones
with a precision of 2 cm and the sound sources with a precision of 10 cm. The
distances between the laptops were dAB = 4.30m, dAC = 4.14m and dBC =
3.47m, which results in ∠CAB = 48.6°.

In the experiment, we generated several sound events with an empty glass
bottle and a spoon on concentric circles with varying radii around the laptop
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Fig. 7. Series of random signals
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radii around the computers.
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Fig. 8. Time differences from the approxi-
mation experiment as x/y-plot. Sound sig-
nals from a distance of 13m arrive from
only one direction.

triangle. The audio signals were recorded with the built-in microphones to de-
tect timestamps for the sound events. The Ellipsoid TDOA method was exe-
cuted with the timestamps of a single radius as the only input to compute the
distances between the microphones. Implausible sound signals with a time dif-
ference of more than 20ms (corresponding to 6m) were filtered. This is to be
done automatically in the future.
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Fig. 9. Distance errors of d1 and d2 for
the indoor experiment. Errors decrease
quickly except for an outlier at 16m.
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Fig. 10. Angle error of α for the indoor ex-
periment. Angle errors decrease except for
a slight over-estimation of about 10°.

The evaluation showed a good convergence of the microphone distance ap-
proximations d1 and d2 at circle radii of 4m and above (Fig. 9). Errors fall
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below 0.5m. Angle α resides at about 58°, which is an over-estimation of 10°
(Fig. 8). With increasing sound signal distance results degrade, which we at-
tribute to the narrowing sector of sound origins. Due to limited room size they
come from only one direction, thus making it harder to describe an ellipse, see
Fig. 8. This seems to be a drawback of the technique. Obviously we need signals
from different angles to reconstruct the ellipse properly.

A second experiment was performed outdoors. We expected to find more
realistic conditions like wind noise, birdsong, and the nearby rapid transit sys-
tem. On the other hand there would be space to generate sound events from
all directions, facilitating the ellipse regression. Eight nodes, consisting of four
laptops and four Apple iPhones with our software running were placed randomly
on a green area of the campus in an area of 30m× 30m. Their positions were
measured precisely to within 20 cm. A WLAN access point established commu-
nication between nodes for synchronization and timestamp exchange.

A series of sound events was produced by an assistant circling the experiment
perimeter in varying distances. He generated clearly audible sound signals by
clapping two wooden planks. We obtained a series of 50 sounds of which none
were filtered.

The Ellipsoid TDOA method was applied to all combinations of three nodes
with a total of n(n−1)(n−2) = 336 combinations. From every Ellipsoid method
run only the two distance measures d1 and d2 were used while angle α was
discarded. Symmetric duplicates were removed, which resulted in 12 measures
for each of the 28 node pairs. The measures belonging to the same node pair
were averaged. They form a complete graph of known node distances.

By optimization we calculated the relative positions (xi, yi) of the micro-
phones from the node distances dij :

min
x,y

 n∑
i=1

n∑
j=i+1

(xi − xj)2 + (yi − yj)2 − d2
ij


The resulting point set was mapped onto the real-world positions by a congru-
ent rotation and translation. This was done by calculating the SVD (Singular
Value Decomposition) of the point set correlation which provides an optimal
transformation to minimize distances of associated points in the least squares
sense.

The average distance from ground truth after mapping was 38 cm with a
standard deviation of 14 cm. Fig. 11 shows the mapped point set and the real-
world positions. Fig. 12 depicts the ellipse for node (1), (3) and (8) as an example.
For the distant sound signals the marks reside on the ellipse. Only when the
assistant came closer to the microphones the infinite distance assumption was
violated and the marks lie inside the ellipse. However, this did not affect the
robust ellipse regression. Neither did the environmental noise affect our results,
as they have no influence on the sound velocity and our signals were loud enough
to predominate the noise.
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Index x Ellipsoid meth Ground truth data
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2 12.901 3.527
3 -5.963 -6.904
4 -2.581 3.936
5 5.302 -12.9
6 3.603 10.475
7 19.842 -8.368
0 -0.56 -4.97
1 18.27 0
2 13.05 3.9
3 -6.33 -6.64
4 -2.45 3.54
5 5.11 -12.6
6 3.62 10.68
7 20.21 -8.68

Outdoor experiment microphone positions

-15

-10

-5

0

5

10

15

-10 -5 0 5 10 15 20 25
x (meters)

y 
(m

et
er

s)

Ellipsoid method
Ground truth data

6

8

7

2

4
1

35
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Fig. 12. Ellipse of time differences for the nodes (1), (3) and (8) with the distances
d(1)(3) and d(1)(8). Nearby sound events deform the ellipse, instead of residing on the
ellipse border (lower right sector).
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4 Conclusion

To our knowledge, we are the first to consider the problem of relative localization
of nodes using nothing but TDOA information of ambient signals. The Ellipsoid
TDOA method does not need any anchor points in space. In our method, we
only need distinguishable sound events which we assume to travel with a constant
speed on a direct line.

Our considerations about the degrees of freedom point out that position
reconstruction without any given anchors cannot be done with less than four
receivers. However, the approximation scheme enables us to state some propo-
sitions about the receiver positions and the direction of the signal sources even
with three receivers.

The technique requires a minimum number of three signals in two-dimen-
sional space. However, it directly benefits from an increased number of signal
events. These are cheaply available in many environments. Then, our technique
becomes very robust, even for noisy data.

Simulation and real-world tests suggest that our assumption of infinitely
remote signal sources is not far-fetched. The parallax decreases quickly, as soon
as we are outside the receiver perimeter. This allows us to use the approximation
even in close-ranged scenarios.

The approximation scheme fails if receiver positions collapse on a line or a
plane. In this case, the time differences form a line of which no ellipse can be
extracted. However, this singular case can be detected and treated particularly.

In some cases of noisy data we found a slight, systematic over-estimation
of receiver distances and angles. For the stress test runs this resulted in higher
variance. Visual analysis of the time differences showed that the resulting ellipse
does not fit the corpus of the noisy data properly. This seems to be a result of
deficient ellipse regression.

4.1 Future work

It is very obvious that time synchronization is hard to achieve for radio signals
due to the much higher speed of light. The Ellipsoid TDOA method can be
extended to work without time synchronization between computers. Then, the
minimum number of sound signals increases from three to five. However, sound
signals are not a scarce resource.

We have also seen some room for improvement in the approximation of the
TDOA ellipse. While our regression minimizes the error “in some least squares
sense” [17], there are more sophisticated techniques available like geometric fit
proposed by Gander et al. [17].

Further research will involve the use of non-discrete continuous signals, e.g.
voices, traffic noise or analogous radio signals. By testing for best overlaps of such
signals it should be possible to compute a time difference analogously to sharp
signals. This would dramatically increase the information basis of the algorithm.
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