
Efficient Addition on
Field Programmable Gate Arrays

Andreas Jakoby and Christian Schindelhauer

Institut für Theoretische Informatik, Med. Universität zu Lübeck
jakoby@tcs.mu-luebeck.de

Heinz Nixdorf Institute and Depart. of Mathematics and Computer Science, Univ. Paderborn,
schindel@uni-paderborn.de

Abstract. We investigate average efficient adders for grid-based environments
related to current Field Programmable Gate Arrays (FPGAs) and VLSI-circuits.
Motivated by current trends in FPGA hardware design we introduce a new com-
putational model, called the -wired grid model. The parameter describes the
degree of connectivity of the underlying hardware. This model covers among oth-
ers two-dimensional cellular automata for and VLSI-circuits for .
To formalize input and output constraints of such circuits we use the notion of in-
put and output schemas. It turns out that the worst case time and area complexity
are highly dependent on the specific choice of I/O schemas. We prove that a set
of regular schemas supports efficient algorithms for addition where time and area
bounds match lower bounds of a broad class of I/O schemas.
We introduce new schemas for average efficient addition on FPGAs and show
that addition can be done in expected time for the standard VLSI
model and in expected time in the pure grid model. Furthermore,
we investigate the rectangular area needed to perform addition with small error
probability, called area with high probability. Finally, these results are generalized
to the class of prefix functions.

1 Introduction

To investigate the average time behavior of parallel systems we introduced the notion
of average-complexity for circuits [16]. It turns out that for many basic Boolean func-
tions like addition, threshold, or comparison there are special circuits, that provide a
substantial speedup in the average for a wide class of probability distributions. This
analysis was extended to a broader class of functions, the prefix functions, in [17, 12,
13]. It is not known how Boolean circuits with optimal average case behavior can be
used in practice. A straight-forward approach is to use these averagely efficient circuits
in asynchronous VLSI-design. However, new problems arise when it comes to verifi-
cation, efficient combination, and placement of such circuits. Note that the analysis of
expected time and worst time of a given circuit is a computationally infeasible task [14].
Determining these parameters is a precondition to predict hazards or to calculate local
clocks. Hence, it seems to be necessary to design new circuits reflecting the restrictions
given by the VLSI-environment.

A promising computational device for the implementation of average efficient circuits
are Field Programmable Gate Arrays (FPGAs). FPGAs evolved from programmable
array logics which can be configured to compute primitive Boolean functions, e.g. by
defining clauses of a conjunctive normal form. By the time more and more computa-
tional power was given to the basic logical units, called logic blocks, while the degree
of chip integration increased their number. Programmable Gate Arrays introduced in
[6] (see also [9–11] and [7, 20] for surveys) can be used as an alternative to traditional
hardware design: To implement the functionality of special processors it is cheaper and
faster to configure an FPGA-chip, e.g. for mobile telephones or hand-held devices, than
to make an Application Specific Integrated Circuit (ASIC). So, FPGAs extraordinarily
reduce integrated circuit manufacturing time and prototype costs. The FPGAs’ universal
layout allows the emulation of every specific hardware after appropriate configuration.
The underlying concept is a sea of gates: a uniform array of logic blocks with a regular
interconnection network.
FPGAs of the latest generation, e.g. [1, 2, 23, 24], provide up to some 60k free program-
mable logic blocks, some 64k bit RAM, and a clock frequency of 100 MHz, which on
first sight seems not much compared to the current generation of processors and mem-
ory chips. But FPGAs are inherently parallel and fully programmable (some are even
reconfigurable during computation). Furthermore, the integration of FPGAs has not yet
reached the same level as of ASICs.
FPGAs are used as co-processors for high speed designs by implementing a variety
of compute-intensive arithmetic functions including FFT, discrete-cosine transforms
(DCT), and interpolators [22]. Furthermore, they are useful for cryptographical and
cryptoanalytical applications: In [3] it is suggested to use FPGAs for a brute force at-
tack against the DES crypto-system. More computational power is only achievable by
a substantial longer development period and with higher costs.
There are two basic approaches to design the interconnection of gates within an FPGAs:
the routing and the mesh design. In the routing design logic blocks are arranged along
the boundary of the chip and the interior is completely occupied by a routing network.
In the mesh design logic blocks are positioned in a grid and each block is connected to
its direct neighbors. There is a restricted number of long wires facilitating long range
interconnections of logic blocks. The mesh design allows a greater number of logic
blocks. On the other hand its interconnection structure is more restricted than in the
routing design.
In the mesh design the interconnection between logic blocks vary widely between man-
ufacturers and between manufacturers’ chip series. Some offer connections to diagonal
adjacent neighbors, arbitrary zigzag-lines, buses for cells on the same row or column,
connections to the second next neighbor, connections to the forth next neighbor, and
so forth. Mesh based FPGAs provide a subset of these connection structures while not
every combination of these may be used in a certain configuration. Also there are dif-
ferences in the computational power of the logic blocks, in the number of clocks, and in
the distribution and amount of memory. For a general approach it is necessary to define
a computational model which covers a wide range of different FPGA designs.
In this paper we introduce a computational model for FPGAs, the -wired grid model
motivated by common FPGA design principles [7]. The parameter addresses the
amount of available long range interconnections. For it corresponds to the

model of two dimensional cellular automata. For it describes the theoretical
model of VLSI-circuits as discussed in [21]. If is large enough it models FPGAs in
the routing design. Like in VLSI we investigate time and area as complexity measures
in the -wired grid model.
The computational complexity of basic functions like sorting, addition, multiplication,
and many more are well studied in the VLSI-circuit model [21]. One achievement was
to find ultimate lower bounds for time and area based on the planarity of chips and the
speed of light. But, matching upper bound results do not necessarily lead to practical
VLSI-algorithms. To achieve practical solutions input and output compatibility has to
be realized. Our approach to I/O compatibility is the notion of input and output schemas
to determine the meaning of an input or output bit at a pin position at any time.
We focus on the time and area complexity of the addition of long binary numbers as
well as on arbitrary confluent prefix functions as introduced in [17]. For a specific input
and output schema Brent and Kung [4] show that addition can be implemented in time

and area . This refers to the area occupied by the gates and the wires.
It implements the Ladner-Fisher carry-propagation network [18] for partially pipelined
input, i.e. an input is partitioned into a sequence of parallel blocks of equal length. In
this paper we show that this bound is best possible for a wide class of schemas, called
compact schemas. These bounds are also optimal, if the input and output schema are
not compact, but closely related and if , the degree of connectivity, is arbitrarily high.
We introduce new schemas for efficient addition on FPGAs and show that addition can
be done in expected time for the standard (1-wired grid) model and in
expected time in the pure grid model. Furthermore, we investigate the size
of a rectangular area that correctly performs addition with high probability, called area
w.h.p. Following the ideas in [19] area w.h.p. can help reducing the over-all area, e.g.
many adders using this smaller area share one large area consuming worst-case adder,
which is only necessary for a small fraction of the inputs.
This paper is structured as follows. In Section 2 we introduce the notion of I/O schemas
and a computational model for FPGAs, the -wired grid model. In Section 3 we present
efficient schemas and prove tight bounds for the computational complexity of addition
of two binary numbers. In Section 4 we focus on algorithms for the average case.

2 The -Wired Grid Model

An algorithm on a FPGA occupies a rectangular area consisting of
programmable gates , called logic blocks and an interconnection

network connecting each logic block to four neighbor gates. Inputs and outputs may
only occur at the frontiers
and (denotes the set). For the interconnection structure
we distinguish between the grid, where interconnections are allowed only between ad-
jacent gates, and the -wired connection network, where cells have a constant number
of wires connecting them with distant neighbors according to the configuration of an
FPGA connection network. The input and output occurs only on a subset of the fron-
tiers, called pins. We will address the input pins by . The computation of
a circuit is done in rounds (e.g. synchronized by a local clock). In each round a gate
receives the output of its neighbors and computes a pre-configured function depending

on these outputs and its state.
To obtain a high performance these algorithms should be integrated into a data flow.
Therefore, it is very important that input and output time behavior is compatible. Pins
may be used in a serial or parallel way to interchange input and output data. In general
serial I/O helps to reduce the area needed for computation, while parallel I/O reduces
the time needed for the whole computations. It is well known that a combination of
these communication patterns can provide both qualities [4]. Our formalism for I/O
compatibility is called input or output schema. We assume a unit time model for the
cycle time, i.e. at each time step a new bit may arrive at each pin.
Definition 1 An input or output schema (I/O schema) of a vector

for pins is a set of triples , that describes that input bit
is available at pin at time point . For a schema and pin we define

the start time and the final time by
and .

The grid model, defined below, is the basic computational model for FPGAs in the mesh
design (see Fig. 1). It is similar to two-dimensional cellular automata.

Logic Blocks

Pins
Frontiers

Input

Output

Fig. 1. The Grid-model Fig. 2. The -wired grid model

Definition 2 An algorithm in the grid model consists of an gate array
and frontiers and

which are grid like connected by

In the configuration phase each logic block can be configured to implement any
function for a finite alphabet . The computation phase starts at
time . At every time step describes the state
of a gate . The internal state is given by . Each of the other four values is
transmitted to the corresponding neighbor. Unless gates are pins, for all values
are initialized with a special symbol . This symbol also describes the values of all
non-pin frontiers. In each round the following computation takes place

The values of the pins are determined by the input string and an input schema. Unused
positions of the I/O schema are indicated by the special symbol .

FPGAs in the mesh design have an additional number of long wires for fast interconnec-
tions. The potential of high functionality of logic blocks results in larger area and slower
time compared to a hardware layout of the same functionality. In FPGA design this is
compensated by the number of wires which can be interconnected by switches. Such
a switch connects the ends of four wires named by the cardinal directions.
It features the following three configurations, which describe all three possible two-
by-two connections, i.e. , , and . To
simplify our model we assume bidirectional communication along the wires.
Definition 3 For a switch or logic block let be its port to the cardinal direction

. For a port let be the input value received by from
direction at time and the corresponding output value. If two ports

and are connected we have and .
There is no common design principle in practice for the use of switches. For an overview
see [7]. It turns out that many mesh based FPGA designs support the -wired connec-
tion model which is defined as follows:
Definition 4 The -wired connection network connects logic blocks for

with the switches , and for
, , . The definition of the connections follows

analogously to Fig. 2. For a configuration of all switches, the resulting connection
network describes a matching of all ports of logic blocks .
In practice there is a variety of connection networks for FPGAs which essentially
provide similar features like the -connection network. The parameter varies for
different FPGA designs, e.g. on the Xilinx XC4000E one can directly implement a
-connection network and for the Xilinx XC4000X one can achieve (The

switches used in the Xilinx architecture correspond to our model).
Note that the parameter also describes the relationship between size of logic blocks
and area needed for wires, since for many hardware designs the area allocated for logic
blocks is approximately as large as the area needed for wiring. We combine this con-
nection network with the grid model:
Definition 5 An algorithm in the -wired grid model consists of an gate
array and a corresponding -connection network. In the configuration a function

is assigned to the logic block and a configuration of the
network is chosen. The computation proceeds analogously to the computation in the
grid-model except that in each round the following computation takes place

For the -wired grid model is equivalent to the grid model. An algorithm in
the -wired grid model computes a function w.r.t. I/O schemas and if for
every input given in accordance with it outputs using schema .
Unlike for machine models like Turing machines or directed acyclic circuits it is not
clear which notion of time for computation is most important for FPGAs. We use the
following notions: The over-all time is the number of all time steps needed to compute
the function, i.e. the time difference between the first input appears and the last out-
put is delivered. The latency is the time difference between the first given input

and the first valid output. The follow-up time is the time difference between the
last available input bit and the last output. Of course the standard measure is the over-
all time. The follow-up time is the decisive measure for pipelines consisting of many
sub-circuits. The latency gives a measure for the best possible speedup, e.g. if another
algorithm waits for the outputs of a computation and ’s computation depends only
on one input element. ’s computation may start even before the preceding computa-
tion (with small latency) is finished. To be able to take advantage of such effects we
assume that there are acknowledgement mechanisms as presented in [8, 16].
Since we consider the (potentially long) wires and the mechanism controlling the I/O
of an algorithm as a valuable resource we prefer schemas that use every pin in every
step of a time interval. We call such a schema -compact, or simply compact. If only a
fraction of of all input (or output) possibilities is used during the schema’s term, we
call the schema -compact.

Definition 6 An schema with elements using pins is called -compact, if
. We call 1-compact schemas compact. A schema is

called a one-shot schema, if every input bit occurs only once in .

Such a rigid notion of input and output behavior is not suitable for average-efficient
circuits where some outputs may occur earlier. We allow earlier outputs if it does not
disturb the chronological order of outputs at a pin.

Definition 7 A relaxed schema is defined by a schema and
a set of functions with strictly monotone increasing w.r.t.
time, the second parameter.

A -relaxed schema is a relaxed schema where the set of
functions is restricted by , for all .

There are situation where it is reasonable to allow an output schema to change the
topological and chronological order at the output pins. We call these kind of schemas
general relaxed schemas as a specific union of schemas (we restrict ourselves to rea-
sonable schemas, where the position and time of the transmitted string can be easily
determined).

3 Efficient Schemas for the Addition
3.1 Definitions
First of all, we assume that for given binary input numbers bits and
arrive at a logic block at the same time. In the next step this logic block computes

, using the mapping
, called the -representation of and . Then

the standard parallel prefix operation for addition has to be computed on the vec-
tor to determine the result of the addition. For this we define the operator

by for the empty string and
for any string define ,

, and . The standard parallel prefix operator on an input
is defined by where . The

sequence directly describes the sum .
Given the precalculated vector we investigate the time and area complexity of
the schemas bit-parallel word-serial (orWS for short), bit-serial word-parallel (orWP
for short), bit-serial snakelike word-parallel (or SWP for short), snakelike bit-parallel
word-serial (or SWS for short), and offset bit-parallel word-serial (or OWS for short)
(see Fig 3). For converting a given schema into another schema for example WS into
WP see e.g. [5].

Fig. 3. Graphical description of the schemas: from left to right a) bit-parallel word-serial, b) bit-
serial word-parallel, c) bit-serial snakelike word-parallel, d) snakelike bit-parallel word-serial, e)
offset bit-parallel word-serial, and f) relaxed bit-serial snakelike word-parallel. In these diagrams
the time is growing from the bottom to the top.

Definition 8 Let be the input or output string. For pins and
we define the following schemas.

-WS (1)
-WP (2)
-SWP and is odd

and is even (3)
-SWS

and is odd
and is even

(4)

-OWS is a general relaxed schema with pins with starting times
and lengths , where . The th non-
empty element at pin corresponds to the element for .

(5)

3.2 Upper Bounds
Theorem 1 In the grid model the addition of two bit numbers with input schema
and output schema can be computed in
a) for -WS ,
b) for -SWP ,
c) for -SWS ,
d) , , , for -WS and

-OWS .
Sketch of the algorithms: For all algorithms pins are located only in .
a) The algorithm for the WS I/O schema consists of three phases: In the first phase the
algorithm stores the input of each pin by using a FIFO-data structure . Further-
more, it applies to all inputs received at yielding . Then, it
computes . Finally, it generates the output for each pin
by applying the prefix operator with initial value to the elements in .

d) We use a similar strategy for the OWS output schema. In first phase the algorithm
counts the number of leading pros at each pin . While this counting takes place
no output is generated at . If the algorithm receives a non-propagate symbol at , it
generates the output on-line at determined by the rest of the input on . As in the
WS output schema, it computes the partial results . In the second phase it computes

. Finally, it generates copies of on pin .
b) For the SWP I/O schema we pipeline the input through an -field. For the
first row we define the internal values , which appear according to the SWP
schema. In the -th row we calculate . Note that diagonal connec-
tions can be simulated by an appropriate encoding, e.g. increasing the alphabet . In
the last row of the field no values pro remain unless the input contains a pro-chain of
length at least . If then the last non-pro value that was computed at this
logic block determines the output value . Using standard techniques one can
fold this field such that inputs and outputs are placed on the same side of the array.
c) The algorithm for the SWS I/O schema is a straight-forward combination of the al-
gorithms for the SWP and the WS schema.
For the -wired grid model we omit the WS and the SWS schema since they do not
provide more efficient algorithms than the WP and the OWS schemas neither in the
worst case nor in the average case.
Theorem 2 For in the -wired model addition of two bit numbers can be
performed with input schema and output schema as follows:
1. if and are -WP schemas then ,

, and .
2. if is a -WS and is a -OWS schema then ,

, , and .
The algorithms for the -wired model corresponds to the grid-based algorithms except
that we use a tree structure as described in [4] to compute the carries of parallelly
received input elements (for the WP schema) or to compute (for the
OWS schema). The algorithm presented in [4] pipelines through a tree structure to
improve the area. For the OWS schema we use the carry computation tree only once
to compute . Hence, we can reduce the area needed to implement the
tree structure by a factor of . This does not help for the WP schema since we cannot
compress information processed in the pipeline. The following corollary improves the

bound of shown in [4] for high connectivity parameter (
).

Corollary 1 In the -wired-model the addition of two bit numbers with
input schema -WS and output schema -OWS needs area

and over-all time , thus .

3.3 Lower Bounds
Here, we investigate the question whether improved I/O schemas exist which enable
more efficient adders than those presented in the previous section. The only restric-
tions are that either the input and output behaviors are similar or that both schemas are
compact. The two following theorems show that indeed the presented schemas and al-
gorithms are optimal w.r.t. time and area. Since both Theorems use similar arguments
we present a proof sketch after Theorem 4.

Theorem 3 In the grid model any algorithm adding two bit numbers using pins
and schema duration has an over-all time of at least for any input schema
and for any one-shot compact input schema. Furthermore, it has
1) at least area for any one-shot compact -relaxed input
schema and relaxed output schema of the same type;

2) at least area for any one-shot compact input schema and any one-
shot compact output schema;

3) at least area for and for any one-shot compact input
schema and one-shot -compact output schema.

Theorem 4 For the -wired grid model any algorithm adding two bit numbers
using pins and schema duration the over-all time is at least for any
one-shot compact input schema. Furthermore, it has
1) at least area for any one-shot compact -relaxed input
schema and relaxed output schema of the same type;

2) at least area for any one-shot compact input schema and any
one-shot compact output schema;

3) area for and for any one-shot compact input schema
and one-shot -compact output schema.

Proof Sketch: 1.: Let be a one-shot compact input schema and . Let
and

Note that . For define
We choose for all and we select for all the value of

such that the inputs in has a high Kolmogorov complexity.
Note that each output with either depends on an input bit in or on
a pro-chain containing at least input elements received by the algorithm at
the beginning on different pins. Hence, each of these outputs is delayed by at least

steps, resp. by steps in the grid model. This im-
plies that every output element at this pin is delayed by at least this number of steps.
Therefore, also the output elements corresponding to will be delayed and have to
be stored. Because of the high Kolmogorov complexity of the input sequence addressed
by the algorithm needs a memory of size at least for the
-wired model, resp. for the grid model.

A -relaxation of the input schema w.r.t. a compact schema reduces this bound by
because elements addressed by can be delayed by steps in the input schema.

2. and 3.: Now let be one-shot compact schemas and be
the sequence of indices of the input which arrive at time step . Define

if
if

For all we choose and for all we choose
such that this sequence has a high Kolmogorov complexity. Note that the last position
in can only be determined after steps. Assume that is -compact
with for an appropriately chosen . Then, any algorithm cannot

generate the first output element before time step . Hence, the
algorithm has to withhold the output corresponding to . Note that addresses the
input elements received within the first steps. Note that at least half of these are not
in and possess high Kolmogorov complexity. This implies .
By choosing the claim follows.

4 Efficient on the Average
In this section we investigate average bounds for over-all time and follow-up time. Fur-
thermore, we measure the area necessary with high probability (area w.h.p) defined as
follows. Consider a partition of the over-all area of an algorithm into two rectangles
and with area and where all pins are adjacent to . The algorithm needs
area w.h.p. if for a random input of length the communication between and

consists only of special symbols with probability for some constant .
Synchronizing output elements is an area-consuming task. For this reason, we use re-
laxed output schemas allowing results to be given out as soon as they are available.
However, all of the here presented algorithms except the OWS schema produce com-
pact (non-relaxed) output schemas w.h.p.

Lemma 1 For any the probability that the -representation
of two uniformly chosen binary numbers contains a contiguous prop-
agate sequence of length is bounded by .

The algorithms used for averagely efficient addition are similar to the algorithms as
presented in section 3 except that they generate outputs as soon as they are available.
Intuitively, Lemma 1 implies that for the algorithm for the SWP schema presented above
it is sufficient w.h.p. to use a -field. For the OWS schema the counters
can be bounded by w.h.p. For the relaxed WS and OWS output schema the
algorithm has to resolve -chains , which are shorter than w.h.p.

Theorem 5 In the grid model the addition of two bit random bits with input schema
and output schema can be computed within time and:

w.h.p.
-WS rel. -WS
-WS -OWS
-SWP rel. -SWP
-SWS rel -SWS

It turns out that the algorithm addressed by the following Lemma is a basic building
block for the design of average efficient adders for -wired grids.

Lemma 2 There exists an area and time bounded algorithm in
the 1-wired grid model that computes the addition of two bit random numbers w.h.p.
if the input and output is given in parallel (-WP).

Proof Sketch: We partition the input into blocks of length
for an appropriately chosen constant and compute for

each using the algorithm of [4]. Let be the suffix of the result
of this computation. Lemma 1 implies that is the correct result whp.

Using the worst-case algorithms one can improve time and area by replacing all sub-
routines computing by the algorithm of Lemma 2. To guaranty correctness if a
propagate-chain of length occurs, the computation is delayed in such a case,
and a worst-case algorithm takes over for the rest of the calculation.

Theorem 6 In the -wired model adding two bit random numbers with input schema
and output schema can be computed in over-all time , where

, whp
for -WS and -OWS resp.

and whp
for -WP and rel. -WP .

For a generalization, we observe that only the algorithm constructed for the OWS output
schema uses a special property of the addition. All other bounds, presented here, can
be generalized to a broader class of prefix functions. The worst case upper bounds
presented in Section 3 holds for any prefix function. The average bounds presented in
Section 5 hold for a sub-class of these functions, the so-called confluent prefix functions,
introduced in [17]. Furthermore, the algorithms provide the same average complexity
measures if the input probability distribution is generalized to binomial approximable
distributions as dicussed in [13]. The lower bounds presented in Section 4 also apply
for diffluent prefix functions introduced in [13]. Because of space limitation we omit the
definitions of diffluent and confluent prefix functions.
As already noted, the algorithms for the offset schemas cannot be applied directly to
general prefix functions. The following Theorem shows that there exists an alternative
average efficient algorithm using this I/O schema for confluent prefix functions.
Theorem 7 In the grid model the computation of confluent prefix function for a random
input of length with input -WS input schema and -offset output schema can
be computed within area w.h.p. and expected follow-up time

. In the -wired grid model the corresponding area bound
w.h.p. is while the expected follow-up time is

.
The key idea of the proof is to replace the counters of the corresponding adders by an
area efficient data structure for storing intermediate values.

5 Conclusions
The results presented above can be used to optimize the average behavior of an FPGA
if an appropriate schema is chosen. Table 1 summarizes the results of Theorem 5. In Ta-
ble 1 we optimize the time implied by the output schema. If schemas have equal asymp-
totic expected time behavior we present the one with smaller area. The expected follow-
up time of the relaxed SWS schema is minimized by choosing .
From Theorem 6 it follows for the -wired grid model there is no asymptotical differ-
ence in the expected over-all time for the relaxed WP and OWS
output schema. Only for and connectivity parameter the OWS
schema provides a more area efficient algorithm than the relaxed WP. For other pa-
rameters it seems that the relaxed WP schema should be preferred. Note that the corre-
sponding algorithm produces a compact (non-relaxed) WP output schema w.h.p.

rel. SWP
rel. SWS OWS

rel. WS, rel. SWP
rel. SWS rel. SWS, OWS

whp whp
Table1: Output schemas which allow expected time efficient algorithms for grids.

References
1. Actel Corporation, ProASIC 500K Family, Product Spec., October 2000.
2. Atmel Corp.,AT 40K FPGAs with FreeRAM , Rev. 0896B-01/99, Prod. Spec., Jan. 1999.
3. M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson, M. Wiener, Mini-

mal key lengths for symmetric ciphers to provide adequate commercial security: A report by
an ad hoc group of cryptographers and computer scientists, 1996, www.bsa.org.

4. R. Brent, H.T. Kung, A Regular Layout for Parallel Adders, IEEE Transaction on Computers,
C-31, 1982, 260-264.

5. W. P. Burleson, L. L. Scharf, Input/Output Design for VLSI Array Architectures, Proceedings
VLSI’91, 8b2.1-10, 1991.

6. W. Carter, K. Duong, R. Freeman, H. Hsieh, J. Ja, J. Mahoney, L. Ngo, S. Sze, A User
Programmable Gate Array, Proc. CICC’86, 1986, 233-235.

7. K. Compton, S. Hauck, Configurable Computing: A Survey of Systems and Software, North-
western University, Dept. of ECE Technical Report, 1999.

8. I. David, R. Ginosar, M. Yoelli, An Efficient Implementation of Boolean Functions and Finite
State Machines as Self-Timed Circuits, ACM SIGARCH, 1989, 91-104.

9. K. El-Ayat, A CMOS Electronically Configurable Gate Array, Proc. ISSCC, 1988, 76-77.
10. A. El Gamal, An Architecture for Electronically Configurable Gate Arrays, Proc. CICC’88,

1988, 15.4.1- 15.4.4.
11. H. Hsieh, K. Duong, J. Ja, R. Kanazawa, L. Ngo, L. Tinkey, W. Carter, and R. Freeman, A

Second Generation User Programmable Gate Array, Proc. CICC’87, 1987, 515-521.
12. A. Jakoby, Die Komplexität von Präfixfunktionen bezüglich ihres mittleren Zeitverhaltens,

PhD dissertation, University of Lübeck, 1998.
13. A. Jakoby, The Average Time Complexity to Compute Prefix Functions in Processor Net-

works, Proc. 16th STACS, 1999, 78-89.
14. A. Jakoby, C. Schindelhauer, On the Complexity of Worst Case and Expected Time in a

Circuit, Proc. 13th STACS, 1996, 295-306.
15. A. Jakoby, R. Reischuk Average Case Complexity of Unbounded Fanin Circuits, Proc. 15th

Conference on Computational Complexity (CCC), 1999, 170-185.
16. A. Jakoby, R. Reischuk, C. Schindelhauer, Circuit Complexity: from the Worst Case to the

Average Case, Proc. 26th SToC, 1994, 58-67.
17. A. Jakoby, R. Reischuk, C. Schindelhauer, S. Weis The Average Case Complexity of the

Parallel Prefix Problem, Proc. 21st ICALP, 1994, 593-604.
18. R. Ladner and M. Fischer, Parallel prefix computation, J. ACM, 27 (4), 1980,831–838.
19. J. Reif, Probabilistic Parallel Prefix Computation, Comp. Math. Applic. 26, 1993, 101-110.
20. R. Tessier, W. Burleson, Reconfigurable Computing for Digital Signal Processing: A Survey,

to appear in Y. Hen Hu (ed) Programmable Signal Processors, Marcel Dekker Inc., 2001
21. J. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984.
22. J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard, Programmable Active

Memories: Reconfigurable Systems Come of Age, IEEE Trans. VLSI Systems 4 (1), 1996.
23. Xilinx Corp., XC4000E and XC4000X Series Field Programmable Gate Arrays, Prod. Spec.,

Version 1.6, 1999.
24. Xilinx Corp., Virtex-II Platform FPGA Data Sheet (DS031), Prod. Spec., Ver. 1.5, 2001.

