The Non-Recursive Power of Erroneous
Computation

Christian Schindelhauer!'?® and Andreas Jakoby??3

1 1CSI Berkeley, 1947 Center Street, Berkeley, U.S.A. schindel@icsi.berkeley.edu'
2 Depart. of Computer Science, Univ. of Toronto, Canada jakoby@cs.toronto.edu
® Med. Univ. zu Liibeck, Inst. fir Theoretische Informatik, Liibeck, Germany

Abstract. We present two new complexity classes which are based on a
complexity class C and an error probability function F. The first, F-ErrC,
reflects the (weak) feasibility of problems that can be computed within
the error bound F. As a more adequate measure to investigate lower
bounds we introduce F-Erri, C where the error is infinitely often bounded
by the function F'. These definitions generalize existing models of feasible
erroneous computations and cryptographic intractability.

We identify meaningful bounds for the error function and derive new
diagonalizing techniques. These techniques are applied to known time
hierarchies to investigate the influence of error bound. It turns out that in
the limit a machine with slower running time cannot predict the diagonal
language within a significantly smaller error prob. than %

Further, we investigate two classical non-recursive problems: the halt-
ing problem and the Kolmogorov complexity problem. We present strict
lower bounds proving that any heuristic algorithm claiming to solve one
of these problems makes unrecoverable errors with constant probability.
Up to now it was only known that infinitely many errors will occur.

1 Introduction

The answer of the question whether AP equals P is a main goal of computational
complexity theory. If they differ, which is the widely proposed case, a polynomial
time bounded deterministic algorithm cannot correctly decide an A“P-complete
problem. Hence, the correctness of such an algorithm is the most reasonable
requirement. Nevertheless, in the desperate situation where one wants to solve
an infeasible problem one may accept errors, provided their influence can be
controlled somehow. The quality of such an error can be exploited in more detail.
Probabilistic error: It i1s common sense that BPP can be seen as a class
of efficiently solvable problems. Unlike an P-algorithm a BPP-algorithm can
make errors, but on every input this error probability has to be bounded by
%. So, BPP-algorithms can be modified to decrease this error probability to
an arbitrarily small non-zero polynomial. Furthermore, BPP-algorithms solve
problems for which no P-algorithm is known yet, i.e. test of primalty.

! parts of this work are supported by a stipend of the “Gemeinsames Hochschulson-
derprogramm III von Bund und Lander” through the DAAD.

FErpected time: A valid enhancement of the notion of efficiency is to mea-
sure the expectation over the running times of different inputs according to a
probability distribution over the input space. E.g. it turns out that the Davis-
Putnam-algorithm [DaPu 60] solves SAT for randomly chosen Boolean formulas
in polynomial expected time, if the probability distribution fulfills certain re-
quirements [PuBr 85,SLM 92]. Note that, since this algorithm is deterministic,
the probability refers only to the way of choosing the input. Probabilistic al-
gorithms (using random bits) have been investigate in this relationship, too
[Hoos 98]. An algorithm which is efficient with respect to its expected time be-
haviors has to compute a function always correctly, but its computation time
can exceed the expected time bound for some inputs, enormously.

Average complexity classes: It turns out that complexity classes defined by ex-
pected time bounds are not closed under polynomial time bounded simulations.
For this reason Levin defined polynomial on the average [Levi 86], a superset of
expected polynomial time that initiated the average-case branch of computa-
tional complexity. Using Levin’s measure for the average complexity there exists
a reasonable notion of N'P-average-case-completeness.

Traditionally, one investigates the worst case of resources over an input length
needed to solve a problem. In average case complexity theory these resources are
weighted by a probability distribution over the input space. As a consequence,
in worst case theory it is only necessary to consider functions f : IN — IN for an
entire description of the considered complexity bound. In average case complex-
ity theory there are a variety of ways to average over the resource function. Here
it is necessary to examine pairs of resource functions f : 2* — IN (e.g. time)
and probability distributions over the set of inputs. A variety of different con-
cepts are investigated to define average complexity measures and corresponding
classes [Levi 86,Gure 91,BCG 92,ScWa 94,CaSe 99,ReSc 96]. All these concepts
have in common that the running times of all possible input values with posi-
tive weights account for the average behavior. An important result in average
complexity is that if average-P (AvP) covers NP, then NE = £ [BCG 92]. Fur-
thermore, the fraction of non-polynomial computations of an algorithms solving
an N'P-problem can be bounded under this premise.

Benign faults: Here the algorithm outputs a special symbol “?” on inputs
where 1t fails, yet produces correct outputs in polynomial time for all other
inputs. An algorithm for an A"P-problem producing only a small quantity of so-
called benign faulls can be transformed into an AvP-algorithm [Imp2 95]. This
observation is intuitively clear. Since, if an algorithm “knows” that it cannot
solve a certain instance of an AP-problem, it can use the trivial exponentially
time-bounded simulation of the nondeterministic Turing-machine. If the proba-
bility for these instances is exponentially small, the resulting average-case time
stays polynomial.

Similar questions were considered in [Schi 96], e.g. Schindelhauer introduces
the class MedDistTime(T,F") which is strongly related to the statistical p-th
quantile. Here, a machine M may violate the time bound T'(|z|) for at most
F(£) of the £ most likely inputs . But the machine has to decide on the lan-

guage correctly. This setting of correctness is equivalent to benign fault when we
consider time-bounded complexity classes.

Real faults: In [ImWi 98 Schi 96,ScJa 97, Yam1 96,Yam2 96] a different ap-
proach is introduced. They investigate the number of inputs for a given machine
causing an erroneous computation or breaking the time limit respectively. Note
that for a fix time bound exceeding the time limit causes an error.

Yamakami proposed the notion of Nearly- P and Nearly- BPP (see [Yam1 96]
and [Yam2 96]). Here the error probability has to be smaller than any polynomial
in the input length. More precisely, even a polynomial number of instances (cho-
sen according to the probability distribution) induces a super-polynomial small
error bound again. Thus, Nearly-P and Nearly- BPP define reasonable efficient
complexity classes if the corresponding algorithm is only used for a polynomial
number of inputs for each length.

Independently, Schindelhauer et al. in [Schi 96,ScJa 97] introduced a similar
approach. Based on a T-time decidable languages L and an error probability
function F' they investigate pairs of languages L’ and probability distribution
where for all £ € IN the number of the £ most likely inputs z € X* (according to
p) with I'(x) # L(z) is bounded by F'(¢).

Impagliazzo and Wigderson in [ImWi 98] investigate the relationship between
BPP and an error complexity class called HeurTime,)(7'(n)), where for each
input length the number of unrecoverable errors of a T-time bounded algorithm
is bounded by €. Their main motivation for this definition is the better under-
standing of the relationship of BPP, P\poly and &.

Erroneous Computation has a practical impact in designing more efficient
algorithms, see for example [Fagi 92,GeHo 94,Reif 83]. In these papers parallel
algorithms, resp. circuits, for adding two large binary numbers are presented
which are efficient on the average. The basic part of these strategies is a fast but
erroneous algorithm with a polynomial share of inputs causing wrong outputs.
This results in a double logarithmic time bound. An additional error-detection-
strategy restores correctness.

Based on this work done so far, it 1s reasonable to extend these definitions
to arbitrary classes C and to consider the general properties of error complexity
classes.

Definition 1 For a class C and a bound F : IN — [0,1] define the distribu-
tional complexity classes of F-error bounded C and infinitely often F-error
bounded C as sets of pairs of languages L C X and probability distributions
o X —10,1] as follows:
F-ErxC:={(L,u)| IS €CVn : Probyjze (L AS)|zeX”] < F(n)},
F-Err;oC .= {(L,p)| 3S€C Fjon : Probufe e (L A S) |z e L] < F(n)}
where A A B := (A\ B)U(B\ A) as the symmetric difference of sets A and B.

Figure 1 illustrates the error behavior of languages Sy, S2, S5 € C with respect
to a given language L. S7 provides smaller error probability than F for all inputs.
Hence, S; proves that L € F-ErrC. The error probability of Ss will infinitely
often fall below the error bound F'. If no language in C with the behavior of

S1 and Ss exists; L cannot be approximated by any language in C. It follows
that L ¢ F-Errio C. Figure 2 illustrates the error probability of S w.r.t. L:
L e F-Err {S} and L € Fs-Errio {S}, but L € Fy-Err {S} and L & F3-Erri, {S}.

- error probability w.r.t. L

Fy \F1
F'3

input length n

input length n

Fig. 2. F; gives a lower bound of the error
probability of a language S with respect to
the io-measure. The error bound Fi gives
an upper bound for both classes.

Fig. 1. The error probability of lan-
guages S1, S2, and S3 with respect to
L for increasing input length n.

Using definition 1 we can generalize the classes Nearly-BPP (introduced by
Yamakami [Yam1 96, Yam2 96]) and Nearly-P by Nearly-C := n~*()-ErrC
for an arbitrary class C. Nearly- C represent complexity classes with a very low
error probability.

Computational classes do not only describe the feasibility of problems, some-
times they are used to ensure intractability. An important application is cryp-
tography, where one wants to prove the security of encryption algorithms, inter-
active protocols, digital signature schemes, etc. The security is often based on
wntractability assumptions for certain problems, e.g. factoring of large numbers
or the computation of quadratic residuosity. Problems are called intractable if
every polynomial time bounded algorithm outputs errors for a sufficient high
number of instances.

An adequate measure of lower bounds turns out to be F-Erri, C, which gen-
eralizes existing models of cryptographic intractability, e.g.

Definition 2 [GMR 88] A function f is GMR-intractable for a probabilily
distribution p if for all probabilistic polynomial time bounded algorithms A

holds Ve > 0 Vaek : Prob,[A(x) = f(x) |z € D¥] < L.

Let FBPP be the functional extension of BPP, or more precisely: f € FBPP
iff there exists a polynomial time bounded probabilistic Turing machine M such

that Prob[M(z) # f(x)] < . Note that the error of % can be decreased to
any polynomial, without loosing the polynomial time behavior of M. To classify
GMR-intractable functions by error complexity classes we take an appropriate
generalization of F-Erri, C for functional classes FC, i.e. (f,) € F-Erri, FC iff

dg € FC Fion : Prob,[f(x) #g(z) |z e Z"] < F(n).
Proposition 1 GMR-intractable functions are not in (1 — n_n(l)) -Err,, FBPP.

The intractability assumption of [GoMi 82] and the hard-core sets of [Imp1 95]
refer to non-uniform Boolean circuits. These classes can analogously be expressed
by using error complexity classes.

In the rest of this paper we concentrate our considerations on complexity
classes of languages and the uniform distribution p,y,; as underlying probability
distribution, where for all n € IN and #,y € X" holds pyni(2) = ptuni(y) > 0. For
the sake of readability we omit the distribution:

L € F-ExxC & (L, ptuni) € F-ErrC |
L € F-ErrioC & (L, puni) € F-Erris C .

In this paper we show a first classification of suitable error bounds and extend
these lower bound results to time hierarchies. In section 4 we discuss in detail
the error complexity of the halting problem and the Kolmogorov complexity
problem. Non-recursiveness does not imply high error bounds in general. For
the halting problem the Godel-enumeration of programs has to be examined
under new aspects. For some enumerations there are algorithms computing the
halting problem within small error probability. We show in the following that
even a standard enumeration yields a high lower error bound. In the case of
Kolmogorov-complexity the lower bound is even higher and worst possible: We
give a constant bound independent from the encoding.

2 Notations

For a predicate P(n) let Vgqen : P(n) be equivalent to InegVn > ng : P(n)
and Jjon : P(n) to Vnedn > ng @ P(n). Further, define f(n)<geg(n) as
Vaen © f(n) < g(n) and f(n)<;og(n) as Jjon: f(n) < g(n).

We consider strings over an at least binary alphabet X, where A denotes
the empty word. Define X" .= Uicn X%, Further, we use the lexicographical
order function ord : ¥* +— IN as straightforward isomorphism and its reverse
function str : IN — 2*. RE and REC define the sets of all partial recursive, resp.
recursive predicates. For a partial function f the domain is called dom(f).
We use f(z) = L to denote x ¢ dom(f). Furthermore, let Lo, Ly, La,... be
an enumeration of the languages in RE over a given alphabet X. For easier
notation we present a language L; resp. L;[a,b] by its characteristic string
Li[a,b] := Li(a)--- Li(b), where L;(ord(w)) =1 if w € L; and 0 otherwise.

For a partial recursive function ¢ and for all z,y € X* define the relative
Kolmogorov complexity as C,(x|y) := min{|p| : ¢(p,y) = 2} . A program-
ming system ¢ is called universal if for all partial recursive functions f holds
Ve,y € 2% 0 Cy(ely) < Cyp(zly) + O(1). Fixing such a universal program-
ming system ¢ we define C,(x) := Cy(z|A) as the (absolute) Kolmogorov
complexity of z.

3 The Bounds of Error Complexity Classes

When the error probability tends to 1, the error complexity becomes meaningless.
But for the io-error classes the corresponding probability is %

Proposition 2 Let C,C' be complexity classes, where C is closed under finite
variation and C' contains at least two complementary languages. Then for all

Junctions z(n) =q¢ 0 and z'(n) =;, 0 @t holds that

25" — (1 — Z(n)) -ErrC and 2¥" = (% — Zlgnn)) -Errio C' .

This only holds for decision problems—the situation for functional classes is
very different. Further note that this proposition holds for all classes C covering
the set of regular languages. Consequently, all languages (even the non-recursive
languages) can be computed by a finite automaton within these error probabil-
ities. The first upper error bound of this proposition is sharp: Using a delayed
diagonalization technique we can construct a language L that cannot be com-
puted with an arbitrary Turing machine within an error probability 1 — %HT,% if
e(n) > 1.

Theorem 1 There exists a language, such that for all funct. e(n) >;, 1 @t holds
L ¢ (1 - liﬂﬁll) Err RE

To prove that the upper bound of the io-error complexity measure is tight in
the limit we will use the following technical lemma dealing with the Hamming
distance |¢ — y| of two binary strings z,y € {0, 1}".

Lemma 1 Let m(k,n) = Zf:o (%) then it holds

1. Let zy,...2; € {0,1}" and d € IN with k - m(d,¢) < 2° There exists
y € {0, 1} such that min;eqr,. x|z —yl) > d.
2. Fora < 1 and o -n € IN it holds that m(a -n,n) < () =%,

3. For f € w(y/n) there exists g €w(l) : g(n) -m(n/2— f(n),n) <q. 2".

One may wonder whether high error complexity implies high Kolmogorov
complexity. At least the contrary is true.

Lemma 2

LefFlEnREC = FeWn : C(LNI") <logm(f(n),|5"])+c

Le g, REC = 3eFn : C(LNIZ") <logm(f(n),| "))+

In [GGH 93] a similar result is presented. They relate average time complex-
ity and time-bounded Kolmogorov complexity.

The Kolmogorov complexity of enumerable sets is low, since for all enumer-
able sets L it holds Vn : C(LNXZ"™) < n+O(1). For an excellent survey over this
field see [LiVi 97]. We show an explicit construction of a diagonal language with
low Kolmogorov complexity (comparable to an enumerable set), giving a strict
lower bound for the io-error complexity. This language L will be constructed by
using the Hamming distance between k sublanguages Lo[i, i + €], ..., Lg[i, i + €]
of length ¢ for increasing k and £. We will show that L cannot be approximated
by any Turing-machine within an io-error of ¢ for any constant ¢ < 1/2.

Theorem 2 For any ¢ € w(l) there exists L ¢ (%
thatVn : C(LNX") < n+e(n).

— W) -Errio RE such

Proof: For a function f € w(y/m), let a(m) := %— fﬂT , g(m) == %,
and y(z) :=min{ L€ IN | g(|Z[*) > = }.

We construct alanguage L which cannot be approximated by partial recursive
languages Ly, L1, ... within an io-error probability of a(|Z|") as follows: Define
bi := | <%, k; := |X%] and choose a sublanguage S ; lexicographically minimal
such that for all j < £ holds |L; [b;, b;41 — 1] — S¢i| > (k) - k;. From Lemma 1
we can conclude that for all £ € IN and ¢ > 1 such a language Sy 5(¢)4. always
exists. Finally, we define the language L as the concatenation of the sublanguages
Sp, i fori=10,1,2,...and ¢ := [g(|Z|")]|. From the definition of S, ; it follows,
that for each language L;, there exists an index j, such that for all n > j the
Hamming distance of L; N 2™ and LN X" is at least a(|2]") - | 2", That means,
L; cannot predict the language L restricted to words of length n within an error
probability smaller than «(|X]") = 1 — W

On the other hand the sequence Lo [bn, buy1 — 1]... Lyn) [bn, buy1 — 1] can
be reconstructed if g(n), n, and the number of elements of the correspond-
ing sublanguages are known. Thus, it has a Kolmogorov complexity of at most
O(logg(n)) + log(g(n) - | Z™|) + ¢1 for constant ¢;. Using this sequence we can
easily construct LNX". Hence, the Kolmogorov complexity of LNX"™ is bounded
by n + ¢(n) for an arbitrarily small € € w(1) if f is chosen appropriately. |

If we restrict ourselves to computational complexity classes we can apply the
results shown so far also to classes specified by time bounded Turing machines.
Let DTime(T') resp. DTimeg(T') be the class of all languages which can be
accepted by a T-time bounded deterministic (k-tape) Turing machine. We call a
function f T-time k-tape computable, if f € FDTime;(7T) and it is called
time constructible, if 7' € FDTimey(T). In [CaSe 99,ReSc 96] tight average
time hierarchies are presented for very carefully defined average time classes. We
state corresponding hierarchies for both error-classes following from Theorem 1
and 2.

Corollary 1 Let T1,Ts be two time-constructible functions with Ty € w(T) and
I >0 1, [€ o(N) Ti-time computable functions. Then for k > 2 there exists
a function § € w(l) with § - Ty € o(T1) such that it holds

DTimex(Ti) ¢ (1-£5)-Err DTimey(T) |

DTimey(T1) ¢ (% - W) “Errio DTimey(T3) .

Hence, there are languages computable in time 7" which cannot be accepted
by a Turing machine with asymptotically slower running time within an error
significantly smaller than % Of course, these results can also be transfered to
other computational resources like space or reversals. To transfer these results to
DTime(T), an additional factor of logT for the tape reduction has to be taken
into account.

4 Partial Recursive Functions with High Error Bounds

In the last section we showed that there are languages which cannot be approx-
imated by any partial recursive language within an io-error bound significantly
smaller than 1/2. To identify some well known languages which cannot be ap-
proximated by a partial recursive language within a (nearly) constant io-error
fraction we consider the Halting Problem and the Kolmogorov complexity. Note
that their complements are not partial recursive.

We will show that both problems cannot be solved by a recursive function
within an io-error smaller than a constant, with the constant depending on the
chosen programming system. That means that any algorithm, like a universal
program checker, claiming to solve one of these problems within a neglectable
small error, fails.

4.1 Lower Bounds for the Halting Problem

The halting problem occurs for various models of computation. Obviously, the
error complexity depends on the chosen programming system. To get a general
approach, we follow the notation of [Smit 94]:

Definition 3 A programming system is a sequence g, 1,2, ... of all
partial recursive functions such that there exists a universal program u € IN
with o, ({1, 2)) = @i(x) for a bijective function {-,+) :+ T* X ¥* — ¥* called
pairing function. The halting problem H, for a programming system ¢ is
defined as: Given a pair (i, z), decide whether x € dom(p;(2)).

The programmingsystem highly influences the error complexity of the halting
problem. Consider for example a programming system for a binary alphabet
where 5 = ¢; and 1; describes the identity function for all j # 2t Of course
this anomalous programming system allows a program to compute the halting
problem within exponential small error probability. To restrict the programming
systems we define:

Definition 4 The repetition rate of domain equivalent partial functions
RD, ; is defined as RDg, ;(n) = Prob[dom(y,) = dom(y;) | ¢ € Z"]. A
programming system ¢ is dense, (ff Vi 3¢ >0 : RD,;(n) >4 c.

Note that most of real world programming systems, like PASCAL, are dense.

The second parameter directly influencing the error complexity of the halting
problem is the pairing function of the universal program. We can change the
situation considerably, if the pairing function is chosen appropriately. Then we
can achieve the highest possible error complexity using a diagonalization.

Theorem 3 There exists a pairing function such that for all programming sys-
tems ¢ and for any function f <,. 1 it holds H, ¢ f-ErrREC

This only shows that an artificial pairing function can cause high error complex-
ity. To derive more general results we define the notion of pair-fairness.

Definition 5 We call a pairing function pair-fair, if for sets X, Y C X* with
dey > 0 Vn . DT;fl | >c¢p and M, e IN:Y = {w|ord(w) = ¢ (mod £2)}
it holds Jea Vgen :© Proble e X Ay €Y | {(z,y) € Z?] > ¢a .

Proposition 3 The standard pairing {z,y) = v+ w 1s pair-far.
In the following we restrict our considerations to fair pairing functions (-,).
Before we can prove a lower bound of the error complexity of the halting problem,

we have to show the following technical lemma.

Lemma 3 For a pair-fair function (-,) and a pairing function (-,) it holds

Vi 3j Vo Vy : dom(p,) = dom(p;) = wi((z, {z,v))) # He((z,{z,) -
Choosing {x,y) = 2 -(2y+ 1) — 1, we can conclude from Lemma 3:

Theorem 4 For any dense programming system @ it holds

VM Ja > 0Veen @ Prob[M(z) # Hy(z)|zeXZ"] > .

This means that every heuristic that claims to solve the halting problem makes
at least a constant fraction of errors.

Corollary 2 For any dense progr. system ¢ and any function f € w(1), it holds
H, ¢ %—Errio REC.

The question whether or not there exists a constant lower bound for the io-error
complexity of halting is still open. Perhaps the trivial constant upper bound
can be improved by showing that for a sequence of Turing machines the error
complexity tends to zero in the limit. The last corollary implies that H, ¢
Nearly- REC. Thus, even an improved upper bound would not be helpful for
practical issues.

4.2 Lower Error Bounds for Kolmogorov Complexity

Another well known non-recursive problem i1s Kolmogorov complexity. One of
the fundamental results of Kolmogorov complexity theory is the proof of the
existence of a universal programming system. Such a programming system is not
necessarily dense; although many programmingsystems provide both properties.
A sufficient condition for both features is the capability of the universal program
to store a fixed input parameter one-to-one into the index string, that means
there exists a function s : X* — X” such that for all 2,y it holds ¢, ((z,y)) =
®s(e)(y) and |s(x)| = |#[4 O(1). This observation implies a trivial upper bound
for the Kolmogorov complexity of .

We consider the following decision problem based on the Kolmogorov complexity
for a classification of its io-error complexity.

Definition 6 For a function f:IN — IN define C<y as the set of all inpuls ©
with Kolmogorov complexity smaller than f(|z]), i.e. C<y = {rx € L™ | C(z) <
f(x}. For a constant ¢ we define the function ke : IN — [0,1] as ke(n) =
Prob[C(z) < n—c|z € X7].

In general, the functions C and . are not recursive. But at least C<y is re-
cursively enumerable. In the following we will investigate the size of C<,_. and
show a linear lower and upper bound.

Lemma 4 For any constant ¢ > 1 there exist constants kq, ko > 0 such that
kl Sae Ke Sae 1- k2~

It is well known that for small recursive functions f, g < logn with f € £2(¢) and
g € w(1) the set C<; is partially recursive. Furthermore, no infinite recursive
enumerable set A 1s completely included in C—Sf’ i.e. ANC<y # 0. The following
Lemma substantiates the size of this non-empty set A N C<; for f(n) =n —c.

Lemma 5 Let A € RE such that |[AN X"| >4 ¢1 - |27 for constant ¢; > 0.
Then it holds Yea >0 3eg >0 @ Prob[C(z) < n—ca |z € ANX"] >4 c3.

Using these lemmas the following lower bound can be shown.

Theorem 5 For any ¢ > 1 there exists a constant o < 1 such that C<p_. ¢
a-Erri, REC .

Proof: For amachine M define K, := X"NC<p_., Ay :={z € X" | M(x) = 0},
and I, :={x € 2" | M(x) # C<p—.(x)} for all n € IN.
Note that ™"\ (A, A K,) C F, and A, N K,, C F,,. From Lemma 4 we can
conclude that k1| X7 | <ge | Kn| <qe (1—k2)-| 27| and therefore either ¢1-| 7| <4
|An] or |An A K| <ge (1 —c2) |27 for some constants ky, k2, ¢1, ca > 0. Using
Lemma 5 it follows that for a constant ¢s > 0 |A, N K,| >4 ¢35 - |Z"] or
|An A Kp| <ge (1 —c2)-|Z™]|. Finally, we can conclude that for some constant
cq > 0 it holds |F| >4e 5 - |27 |
It follows that there exists a fixed constant « such that no matter which

algorithm tries to compute Cc,_. it fails for at least a fraction of a of all
inputs.

5 Discussion

One might expect that the concept of immune sets and complexity cores are
suitable for showing lower bounds. Recall that a set S is called C-immune if it
has no infinitive subset in C. S is called C-bi-immune if S and S are immune
for C. A recursive set X is called a complezity core of S if for every algorithm
M recognizing S and every polynomial p, the running time of M on z exceeds
p(Jx|) on all but finitely many » € X.

Orponen and Schoning [ScOr 84] observed that a set S ¢ P is bi-immune for
P iff 2* is a complexity core for S. But this does not imply reasonable lower
bounds for the error complexity, since a precondition for complexity cores is the
correct computation of an algorithm. Since bi-immune sets may be very sparse,
even the trivial language § gives a low error bound. Thus, the knowledge of a
bi-immune set S for C does not result in a high error complexity. It is an open
problem how density for bi-immune sets has to be defined such that reasonable
results for the error complexity can be achieved.

However, we can show that the existence of a immune set of a class C corre-
sponds to a small error bound separation:

Theorem 6 Let C be closed under finite variation and § € C. There exists an

C-tmmune set iff C # ﬁ—ErrC NRE.

Since some elementary closure properties of C guarantee the existence of
a C-immune set [BoDu 87], this restriction is not severe. On the other hand in
[Yesh 83] it is shown that the structural property of conjunctively-self-reducibility
suffices to overcome all erroneous outputs.

As shown in section 4 the Kolmogorov complexity problem, i.e. the question
to decide whether a string can be compressed more than a constant, cannot be
computed by any machine within a smaller error probability than a constant.
It is notable that this error probability is independent from the machine. Both,
the halting and the Kolmogorov problem are not in Nearly-BPP and remain
intractable with respect to the set of recursive predicates.

Because of their strong relationship to the halting problem some other prob-
lems — like program verification or virus-program detection — are not recursive
in the general case, too. So, it seems that the lower bounds proved so far influ-
ence the error bounds of these problems. The exact classification is still an open
problem.

Acknowledgment We would like to thank Karin Genther, Rudiger Reischuk, Arfst
Nickelsen, Gerhard Buntrock, Hanno Lefmann, and Stephan Weis for helpful
suggestions, critics and fruitful discussions. Furthermore, we thank several un-
known referees and the members of the program-comitee for their suggestions,
comments and pointers to the literature.

References

[BCG 92] S. Ben-David, B. Chor, O. Goldreich, M. Luby, On the Theory of Average
Case Complexity, Journal of Computer and System Sciences, Vol. 44, 1992,
193-219.

[BoDu 87] R. Book, D. Du, The FEzistence and Density of Generalized Complexity
Cores, Journal of the ACM, Vol. 34, No. 3, 1987, 718-730.

[CaSe 99] J-Y. Caiand A. Selman, Fine separation of average time complezity classes,
SIAM Journal on Computing, Vol. 28(4), 1999, 1310-1325.

[DaPu 60] Martin Davis, Hillary Putnam, A Computing Procedure for Quantification
Theory, Journal of the ACM, 1960, 201-215.

[Fagi 92] B. Fagin, Fast Addition for Large Integers, IEEE Tr. Comput. Vol. 41, 1992,
1069-1077.

[GeHo 94] P. Gemmel, M. Horchol Tight Bounds on Ezpected Time to Add Correctly
and Add Mostly Correctly, Inform. Proc. Letters, 1994, 77-83.

[GGH 93] M. Goldmann, P. Grape and J. Hastad. On average time hierarchies, In-
formation Processing Letters, Vol. 49(1), 1994, 15-20.

[GoMi 82] S. Goldwasser, S. Micali, Probabilistic Encryption & How to Play Mental
Poker Keeping Secret All Partial Information, Proc. 14th Annual ACM
Symposium on Theory of Computing, 1982, 365-377.

[GMR 88]

[Gure 91]
[Hoos 98]

[Tmpl 95]

[Tmp2 95]

[ImWi 98]

[Levi 86]
[LiVi 97]
[PuBr 85]
[Reif 83]

[ReSc 96]

[Schi 96]
[ScTa 97]
[ScOr 84]

[ScWa 94]

[SLM 92]

[Smit 94]

[Yam1 96]

[Yam2 96]

[Yesh 83]

S. Goldwasser, S. Micali, R. Rivest, A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks, SIAM J. Comput. Vol.17, No.
2, 1988, 281-308.

Y. Gurevich, Average Case Completeness, Journal of Computer and System
Sciences, Vol. 42, 1991, 346-398.

H. Hoos, Stochastic Local Search - Methods, Models, Applications, Disser-
tation, Technical University Darmstadt , 1998.

R. Impagliazzo, Hard-core distributions for somewhat hard problems, In
36th Annual Symposium on Foundations of Computer Science, 1995, 538-
545.

R. Impagliazzo, A personal view of average-case complexity, In Proceedings
of the Tenth Annual Structure in Complexity Theory Conference, 134-147,
1995.

R. Impagliazzo, A. Wigderson, Randomness vs. Time: De-randomization
under a uniform assumption, Proc. 39th Symposium on Foundations of
Computer Science, 1998, 734-743.

Leonid Levin, Average Case Complete Problems, SIAM Journal on Com-
puting, Vol. 15, 1986, 285-286.

M. Li, P. Vitani, An Introduction to Kolmogorov Complexity and its Ap-
plication, Springer, 1997.

P. W. Purdom, C. A. Brown, The Pure Literal Rule and Polynomial Aver-
age Twme, SIAM J. Comput., 1985, 943-953.

J. Reif, Probabilistic Parallel Prefix Computation, Comp. Math. Applic. 26,
1993, 101-110. Technical Report Havard University, 1983.

R. Reischuk, C. Schindelhauer, An Average Complexity Measure that Yields
Tight Hierarchies, Journal on Computional Complexity, Vol. 6, 1996, 133-
173.

C. Schindelhauer, Average- und Median-Komplexitdtsklassen, Dissertation,
Medizinische Universitat Libeck, 1996.

C. Schindelhauer, A. Jakoby, Computational FError Complexity Classes,
Technical Report A-97-17, Medizinische Universitat Lubeck, 1997.

U. Schoning, P. Orponen, The Structure of Polynomial Complexity Cores,
Proc. 11th Symposium MFCS, LNCS 176, 1984, 452-458.

R. Schuler, O. Watanabe, Towards Average-Case Complexity Analysis of
NP Optimization Problems, Proc. 10th Annual IEEE Conference on Struc-
ture in Complexity Theory, 1995, 148-159.

Bart Selman, Hector Levesque, David Mitchell, Hard and Fasy Distribu-
tions of SAT Problems, Proc. 10. Nat. Conf. on Artificial Intelligence, 1992,
440-446.

C. Smith, A Recursive Introduction to the Theory of Computation,
Springer, 1994.

T. Yamakami, Average Case Computational Complexity Theory, Phd. The-
sis, Technical Report 307/97, Department of Computer Science, University
of Toronto.

T. Yamakami, Polynomeal Time Samplable Distributions, Proc. Mathemat-
ical Foundations of Computer Science, 1996, 566-578.

Y. Yesha, On certain polynomial-time truth-table reducibilities of complete
sets to sparse sets, SIAM Journal on Computing, Vol. 12(3), 1983, 411-425.

