The Average Case Complexity
of the Parallel Prefix Problem

Andreas Jakoby* Riidiger Reischuk
Christian Schindelhauer Stephan Weis™

Technische Hochschule Darmstadt™*

Abstract. We analyse the average case complexity of evaluating all prefixes
of an input vector over a given semigroup. As computational model circuits
over the semigroup are used and a complexity measure for the average delay
of such circuits, called tsme, is introduced. Based on this notion, we then
define the average case complexity of a computational problem for arbitrary
input distributions.

For highly nonuniform distributions the average case complexity turns out
to be as large as the worst case complexity. Thus, in order to make the
average case analysis meaningful we also develop a complexity measure for
distributions.

Using this framework we show that two n-bit numbers can be added with
an average delay of order loglog n for a large class of distributions. We then
give a complete characterization of the average case complexity of the parallel
prefix problem with respect to the underlying semigroup. By considering a re-
lated reachability problem for finite automata it is shown that the complexity
only depends on a property of the semigroup we will call a confluence.

Our analysis yields that only two different cases can arise for the reachabil-
ity question. We show that the parallel prefix problem either can be solved
with an average delay of order loglogn, that means with an exponential
speedup compared to the worst case, or in case of nonconfluent semigroups
that no speedup is possible. Circuit designs are presented that for confluent
semigroups achieve the optimal double logarithmic delay while keeping the
circuit size linear.

The analysis and results are illustrated at some concrete functions. For the
n-ary Boolean OR, THRESHOLD and PARITY, for example, the average case cir-
cuit delay is determined exactly up to small constant factors for arbitrary
distributions.

Finally, we determine the complexity of the reachability problem itself and
show that it is at most quadratic in the size of the semigroup.

1 Introduction

The parallel prefix problem is a fundamental task with a lot of applications such as
addition of binary numbers or solving linear recurrences. To each such problem one

* supported by DFG Research Grant Re 672-2
** supported by GIF Research Grant
*** Institut fiir Theoretische Informatik, Alexanderstrafie 10, 64283 Darmstadt, Germany
email: jakoby / reischuk / schindel / weis @ iti.informatik.th-darmstadt.de

associates a specific semigroup that describes the algebraic structure of the problem.
The complexity of the parallel prefix problem has extensively been investigated in
the circuit model. Every prefix can obviously be computed in logarithmic depth.
Ladner/Fischer have shown how this can be done in parallel using only linear circuit
size [LF80]. Snir has obtained exact bounds for the tradeoff between the depth and
the size of prefix circuits [S86].

Bilardi/Preparata have studied time-size tradeoffs for this problem. They have
given a complete characterization of the semigroups with respect to this question
[BP89] by providing tight lower and upper bounds. The complexity depends on
algebraic properties of the semigroup. It is shown that only two cases are possible:
within a wide range either the product of time and size grows only linearly or as
nlogn. In [BP90] the same authors study constant depth unbounded-fanin circuits
and classify semigroups according to the property of having linear size prefix circuits
in this model.

All these investigations consider the worst case complexity of the parallel prefix
problem. In [JRS93] we have defined an average measure for the delay of Boolean
circuits called #ime. The idea is to take advantage of favourable cases in which the
value of a prefix can be computed faster than within the trivial lower bound of
logarithmic delay.

We have shown that for several semigroups like the Boolean semigroup with the
OR or the AND-operator or for the semigroup corresponding to the addition of binary
numbers one can compute all prefixes with an average delay loglogn. Futhermore,
the circuit size can be kept linear. That means there is an exponential speedup from
the worst case to the average case. On the other hand, for functions like PARITY
or MAJORITY no speedup is possible. Expected case upper bounds of order O(llogn)
for the addition and other prefix problems have also been obtained by Reif for a
different model [Rei93]. He observed that circuit depth O(llogn) ist sufficient if one
allows a small portion of input vectors for which a wrong result will be obtained.

The aim of this paper is to study the relation between the average case complexity
of the parallel prefix problem and the underlying semigroup in detail. Again, using
the notion of confluent semigroups a complete characterization will be given
saying that only two substantially different cases are possible. Either the average
delay 1s of order loglogn, or it is of logarithmic order, that means equal to the worst
case. To obtain these results we translate the problem into a reachability problem
for finite automata. It will be shown that the reachable sets depend on algebraic
properties of the semigroup.

The paper is organized as follows. The next section provides a formal setting to
discuss the parallel prefix problem. Section 3 briefly repeats the formal model for an
average case analysis of circuit complexity presented in [JRS93]. For a motivation
and more details we refer the reader to that paper.

Using the ADDITION as an example we then show that circuits with a good av-
erage case delay are structurally quite different from the well known design for the
worst case. Section 5 introduces the automata model and defines the reachability
problem and the notion of a confluence. We then relate the average case complexity
of the parallel prefix problem to the confluence properties of the underlying semi-
group. A logarithmic lower delay bound for nonconfluent semigroups is obtained in
section 6. The following section shows the upper bound of order loglogn for con-

fluent semigroups. Finally, we consider the complexity of the reachability problem
itself.

2 The Parallel Prefix Problem

Definition 1 Let G with binary operator @ be a finite semigroup, that is @ : G X
G — G is associative. Applying ® to a pair of arguments will be written as (g1, 92)
or simply as g1 @ g2. Let X be a subset of G, which does not necessarily have to be a
subsemigroup. The parallel prefiz function PPy , : X7 — G™ maps an input vector
X =x1,...,Ty € X7 to the vector y = y1,...,Yyn Where y; =21 QT2 Q... Q ;.

The reason for generalizing the parallel prefix problem by introducing the subset X
is due to the average case analysis. In some applications; one is interested in the
average case complexity where the input distribution is restricted to a subset of G.

Depending on the operator ® sometimes it may not be necessary to know both
arguments to determine the value of ®(g1, g2).

Definition 2 The set of left and right arguments that uniquely determine @ is given
by Lg = {a€ G| @ (a,G)= const} resp. Rg = {a€ G| @ (G,a)= const} .

We say that G has a speedup from the left iff Lg, # 0, resp. from the right
iff Re # 0.

Obviously, the Boolean semigroup with OR-operator allows a speedup from the
left and from the right, while with PARITY-operator it does not have any speedup.

It is not obvious whether the average case complexity of evaluating the whole
input vector, that means computing y, = #1 ® ... ® x,, 1s smaller compared to
the worst case for arbitrary input distributions. We will consider this task and also
the simultaneous evaluation of all prefixes y;. It will be shown that the average case
complexity can be dramatically smaller and that this also holds for the parallel prefix
version. Furthermore, the asymptotically optimal delay can be achieved by circuits
of linear size.

3 An Average Case Measure for Circuit Delay

Definition 3 A circuit over a semigroup G is a directed acyclic graph C with fanin
and fanout bounded by 2. An internal gate of fanin 2 represents the ®-operator. It
computes an element of G from the values of its two direct predecessors. In order
to get more than 2 copies of the value obtained at a gate simple duplication gates of
fanin 1 and fanout 2 may also be used in C'. Input gates are initialized with elements
from X, and certain gates are marked as output gates.

It should be obvious how such a circuit C' computes a function f : X? — G™.
Using a suitable binary encoding of GG any circuit over G can be replaced by an
equivalent Boolean circuit substituting an ®-gate by a fixed Boolean subcircuit of
constant size. In the following we will only consider circuits over G.

A speedup of the semigroup can be exploited by a circuit as follows.

Definition 4 Let x be an input vector for a circuit C' over G, and let v be an
internal gate of C' with predecessors vy, va. Let resy(x) denote the value computed by
v on x. Then the evaluation time of v for x is given by

max; timey, (z) if resy, () € Lg A resy, () € Ry,

. o timey, (x) if resy, () € Ly A resy,(x) & Ry,
timey(w) = 14 timey,(x) if resy, (z) € Lg A resy, () € Rg,
min; timey, (¢) if resy, (x) € Ly A resy,(2) € Rg.

For input gates v we set timey(x) := 0. The delay of C for input x, timec(x), is
defined as the mazimum of time,(x) over all output gates v of C.

Observe that although circuits are a rigid computational model the complexity mea-
sure tzme 1s data dependent. Imagine the gates of a circuit working in synchronous
phases, where in each phase a gate takes the values of its direct predecessors of
the previous phase to compute its new value. If the input values are fed into the
input gates at time 0 then independent of the values the internal gates start with by
time,(x), a gate v has converged to its final value res,(#). Thus at phase timec(x)
one can read off the result of the computation of circuit C' on input & from the out-
put gates. Therefore, timec() can be taken as the actual delay that occurs when
C performs the computation for .

So far, the timing information time, () is given only implicitly. In [JRS93] it is
shown how this can be made explicit without increasing the delay (the size doubles
at most). Therefore, without loss of generality an average case complexity analysis
can be based on the implicitly timed circuit model, which is technically simpler.

Definition 5 Let Dy, 5 denote the set of all probability distributions p, 5 that are
strictly positive on X and 0 elsewhere. The uniform distribution on X" that gives
equal probability to each of the |X|™ possible input vectors is denoted by uni, 5. Let
Cirs(f) denote the set of all circuils over G that compute f resiricted to inpuls
from X,

For a function f: X" — G™ and a set D of probability distributions we define
the average case complexity of f with respect to D as

t1 D) = 1 t1 .
etime(f, D) Lneal))(Cegg‘I:(f) xZ imec(z) p(x)

In [JRS93] we have defined a second average case measure which is technically
more involved than the expectation, but has certain advantages when performing a
complexity analysis. In many applications, in particular in the analysis below, both
measures do not differ by much. Therefore, to keep the presentation simpler and
shorter, we will consider only the expectation here.

We are able to perform an average case analysis not only for the uniform dis-
tribution, but for a rather large class of distributions. On the other hand, we will
see that for certain distributions the average case complexity is almost as large as
the worst case complexity. Thus, in order to specify restrictions we will also define
a complexity measure for distributions. The complexity will be measured by the
circuit model itself, that is by the complexity of a circuit that starting with elements
choosen uniformly at random generates the specific distribution.

Definition 6 A distribution generating circuit (DG-circuit) over X' is a dag
C of fanin and fanout at most 2 where an internal node v may represent an arbitrary
function p, : X x X — Y. IfC has r input gates and n output gates it performs a
transformation of a random variable Z uniformly distributed over X7 into a random
variable X over X" as follows. The input vector for C s chosen according to Z.
Then X equals the distribution of the values obtained at the output gates. Such a C
1s said to generate the distribution of X.

In the following we will identify a distribution g with a random variable X having
that distribution. Let X = X1,..., X,,. Using the notion of DG-circuits distributions
that are strictly positive on L™ can be classified as follows:

Definition 7

DDepth,, s(d) := {p € Dy » | 3 an r-input and n-output DG-circuit C' of depth
d that transforms a uniformly distributed random variable Z over
X" into a random variable X with distribution p } .

The restriction to distributions that generate all vectors in X" with positive
probability simplifies the analysis. If, for example, one input is fixed to a certain
value the dimension of the problem decreases. But it may then be necessary to
handle individual prefixes slightly differently.

Distributions that can be generated in small depth share the properties stated
in the lemma below. These will turn out to be sufficient to achieve a substantial
speedup in the average case for the parallel prefix problem whenever a speedup is
possible at all.

Lemma 1 Let X € DDepth,, 5(d). Then fori# je€[l...n] and allo € ¥ and all
we X1 holds |Z72" < Pr[X;=0] < 1|52 and
1172 < PrXi=o | Xy Xici Xigr - Xp =w] < 1— |22

4 Addition, an Example of a Semigroup with an Average
Case Speedup

Before studying the average case complexity of the parallel prefix problem in full
generality we will discuss a specific and important example of a Boolean function
that can be computed with much smaller delay on the average, the addition. This
problem has already been analysed in [JRS93], where matching upper and lower
bounds for the average delay have been proved. For the upper bound we will use
a different circuit design here. Instead of computing each prefix separately, which
results in superlinear circuit size, all prefixes will be computed simultaneously. This
way the size will grow only linearly.

The problem of adding two binary numbers basically reduces to an efficient com-
putation of the carries. Carry propagation is the parallel prefix problem for the
semigroup Gearmry = ({del, gen, pro}, @carry). The elements (delete, generate,
propagate) combine as 4 Qcarry v = u, if v = pro and v elsewhere.

In [LF80] Ladner/Fischer describe a design for parallel prefix circuits that achieve
logarithmic depth and linear size simultaneously. It has the property that any output

gate y; has at least distance log: from any input gate. This immediately implies that
for any input « the delay time(z) is of logarithmic order. We will show below that
by another design the average delay can be reduced to llogn, where llog denotes
the twice iterated logarithm function. Contrary to the worst case, circuits for a good
average delay are not nicely balanced, but extremly unbalanced.

For carry propagation the input alphabet X' equals the semigroup Gearry itself.
For € ™ let pro(a) denote the largest substring containing only the symbol pro.
The importance of this quantity comes from the following

Lemma 2 If C is a circuit over Gearry that computes PPy, then for all x € 17
holds: log pro(z) < timec(z) .

Proof: To prove the lower bound assume that a circuit C' finishes for an input z
before time log pro(z). Let S = z;,...,2; be a block of inputs with value pro of
length pro(z). Then the fanin bound implies that the output gate y; does not depend
on all inputs in S. It is easy to see that changing such an input in an appropriate
way C' will compute a wrong result at y; for this modified input. This input may
actually occur with non-zero probability for any distribution in D, x.

This simple lower bound for PP(Geamy,n) can be achieved by a special circuit
design within a factor of 3 and linear circuit size as illustrated in figure 1.

The circuit G for size n = 2F+? — 2 has input nodes z;, output nodes y; and
three types of internal gates. The upper part, let us denote it by Ay, consists of
nodes u! with 0 < j <k and 0 <i < 2¥=9+2 — 3. The lower part By, has nodes v,
wl with 1 <j<k+41land0<i<2b-i+2_9

Thus, G}, has less than 3 - n internal gates. These gates are defined by

0 _ ... Jj o, J-1 Jo_] j—1
u; =T vy = Up Wy = v; @ Uy
jo_ i1 j—1 J _ g+l j—1 . .1
Uy = Uy T @ U Vg1 = U @ Uyqo Y2i41 = W;

J o_ . J+1 j—1 1

Uy = Wiy © Uy, Y2 = v;

Every node uf is the root of a complete binary tree of height j with leaves
Tioiy- - T(41)2i—1- As a whole the upper part of Gy, is a forest of complete binary
trees, in which each height up to & appears exactly twice and the heights decrease
when going from left to right.

The v- and w-nodes come in pairs where the w-node is always the right son of
the matching v-node. If each pair (v}, w?!) is collapsed to a single node the resulting
topology of the lower part is a collection of complete binary trees. The output nodes
Y(i41)-2i-2 - - - Yi42).2i—3 are the leaves of the subtree with "root” (v],wl).

The connection between the upper and lower part is chosen such that for each
output y; going from right to left we choose a sequence of u-subtrees whose heights
increase slowly. The leaves of these trees cover exactly the inputs x;, ..., xz1. Their
roots are connected — and this is most important for a good average case behaviour —
in a sequential fashion starting with the smallest subtree of height 0. For an example
consider output ys in figure 1. The corresponding sequence consists of u-subtrees

with roots u2, ul, ui and u2 and leaves {xs}, {z7, vs}, {75, 24} and {3, 22, 21, 70}.

Theorem 1 The circuit Gy computes PP(Gearry, 2542 2 and for all x € POEAREEE
its delay is bounded by timeg, (x) < 3-logpro(x)+6 .

Proof: The correctness of Gy can be seen easily. To estimate the delay note that
@ ®carry b = pro holds only if @ = b = pro. Therefore no pro will appear at a u}-gate
of height j larger than logpro(z). A node uf only connects to a v- or w-node 1n the
lower part with distance at most 2(j + 1) to any output gate. Therefore, the delay
is bounded by 3 -log pro(z) + 6. |

These circuits can also be described by a recursive block structure using the
upper and lower parts Az, By as follows. In addition, a block C}% is used which
consists of 2 complete binary trees with 2*+! inputs each, and a binary tree Dy with

2F+2 outputs. The internal nodes of C} are gates of type u}, whereas the nodes of

i
Dy, are pairs (v], wf) These blocks are connected as shown in figure 2.

Using another design described in [JRS93], which is based on average case optimal
circuits for the OR-function one can achieve an upper bound 2 log pro(z) for the delay,
but this requires O(nlogn) gates. This bound we can also obtain with linear size if
the fanout may be increased to 3 successors per gate.

Theorem 1 shows that the average case analysis for the addition reduces to

computing the distribution of the values pro(z).
Lemma 3 Let X be a random variable over Geary with distribution in D Depth(d).
Then for any 1 it holds: Pr[pro(X) >2(—1] < & -exp(—/- 3_23d)’

We can also provide a lower bound for the probability of a long chain of carries.

Lemma 4 For all n larger than some constant and d > loglogsn, there exists a
random variable X € D Depth(d) such that

Pr [pro(X) > exp(% (29 - log 3 + llog n))] > % .

These bounds allow us to determine the average case delay of the addition up to
a small constant factor.

Theorem 2 For d <llogn — 2 holds

1(llogn +log3-2%) < etime(PPg DDepth(d)) < 3-(llogn+log3-234) 47 .

carry,”)

The upper bound can be achieved by circuits of linear size.

Proof: To obtain the lower bound we combine Lemma 2 and Lemma 4 to get a
distribution X € DDepth(d) such that for all circuits C

Pr[timec(X) > i(llogn +log3-29)] > & .

Therefore, Y, ¢ - Pr[timec(X) =] > i(llogn +log3-29) .
The upper bound follows from Theorem 1. By lemma 3 it holds

Prlpro(X) >2(—-1] < L - exp (—l . 323d) ,

{
Pritimec(X) >3-t+3] < % - exp (—Qt . 323d) .
Choosing t' := llogn + log 3 - 23? we can bound the expectation by

E(timec (X))
< Prftimec(X) <3t/ +6]-(3-¢ +6)+ Pr[timec(X) >3-t]-(3-logn+ 6)
<3 t'+6+3 logn-2 ~exp(—2tl323d) < 3-(llogn +log3-23%) 4+ 7. |

9t

5 The Reachability Problem for Semigroups

After we have seen for a specific example that an average case delay of order llogn
can be achieved the parallel prefix problem will now be investigated for arbitrary
semigroups. We will classify semigroups according to whether a substantial speedup
in the average case is possible or not. It will be shown that only two cases are possible,
an exponential speedup like for the ADDITION, or no speedup. The answer depends
on algebraic properties of the semigroup which can be modelled as a reachability
problem for a corresponding finite automata, whose transition graph corresponds to
the Cayley-graph of the semigroup.

Given a semigroup G and a subset X of G we define a deterministic finite au-
tomata A = Ag x = (Q, X, vy, A) with set of states @ = G U {vp}, starting state
vg € G, input alphabet X and transition function A: Q x Y — @ by

Jw, if u=wg,
A w) = {u@w,if u# v .

Figure 4 illustrates this automata for G'earry.
For wy,...,wm € X let A(u,wy ... wy) denote A(A(-- - Alu, wy) -+, Wm—1), W).
Obviously, A(vg,21...2¢) = ¥ = 10 ... Q24 .

The set of states that can be reached by A in exactly t steps, where ¢ € IN, is
given by Ra(t) := {veQ|Ixe X : A(vg,z) =v} .

It is easy to see that these reachability sets share the following property for all
t1,12 € IN: RA(tl)IRA(tz) <— VielN : RA(tl—l—i)IRA(tz—l—i) .

Since for t > 1 there are at most 2/! different possibilities for R4 (t) this property
implies that there exist numbers 7,7 in [1...2!%1] with R4(7) = Ra(r +i-7) for
all i € IN. Let us call the smallest such 7 the start of periodicity 7(A), and the
smallest such 7 the period w(A) of A.

Definition 8 Let vy, vz be states of A. A string w € X* such that A(vi,w) =
A(ve, w) is called a confluence of these states. A has a t-confluence if there exists
a w € X* such that for all states v in R4(t) the state A(v,w) is the same. A 7(A)-
confluence is called a canonical confluence of A.

For an illustration of these concepts see figure 3. If G contains a subgroup then
obviously a confluence is impossible. Observe that in the special case X' = G the
existence of a confluence w = w1 ...w; implies that X also contains a confluence of
length 1 since w can be replaced by w1 & ... ® wyy. In general, this property does
not hold, but we can show:

Lemma 5 If A has a canonical confluence then there also exists a confluence of
length at most |G|.

The example of the threshold semigroup defined below shows that this bound is
best possible in general.

6 The Lower Bound for Nonconfluent Semigroups

The last lemma implies that either

e there exists a pair of states vy, vs in R4(7(A)) without a confluence, that means
there are strings u, v of length 7(A4) such that Vw € &* A(vg, uw) # A(vg, vw) ,
e or all states in R4(7(A)) have a common confluence of length o < |G|.
In the first case, in order to compute y; = 1 @ ... ® x4 for t > 7(A) one has to
distinguish whether the prefix with length 7 = 7(A) of equals u or v.

Theorem 3 If the automata A for a semigroup G and input alphabet X does not
have a canonical confluence then for all circuits C' computing PPy ,, ot holds for cvery
r € X timec(z) > log(n—r1)—logr , where T = T(A) .

Proof: We have just seen that every output gate y; with ¢ > 7 cannot finish its
computation until it has seen at least one of the inputs xq,...,x,. Thus 7 input
gates have to provide information for at least & = n — 7 output gates. Because of
the fanout restriction this implies that within a delay less than log *>* not every

output gate can be reached. |

Corollary 1 For a semigroup G and alphabet X without a canonical confluence for
the average delay of the parallel prefiz problem with respect to any distribution u that
is strictly positive on X" it holds etime(PPy ,,p) > logn — O(1).

7 Using a Confluence to Decrease the Average Delay

We will now show how a canonical confluence for the semigroup makes it possible
to design parallel prefix circuits with an average delay of order llogn. Let w be a
r-confluence of length « that forces the result of y, 44 into the state Tin R (74).
First we will show that for any distribution of bounded complexity the probability to
generate W as a substring is bounded away from 0. Exploiting Lemma 1 it is not hard
to show that VX € DDepth(d) Vi€ [o...n] Pr[Xi_o41... X =W > | D=2 e
The design of delay efficient circuits based on a confluence w can conveniently be
described by a state shift that occurs when the automata has found w as a substring
in the input sequence x. To model the state shift we duplicate the semigroup.
These considerations now lead to

Lemma 6 The parallel prefiz problem for G can be solved by a circuit C' of linear
size with delay timec(x) < 3log((p +2) -pro(z)+27) + loga + 6.

Theorem 4 If the automata for a semigroup G with alphabet ¥ has a T-confluence
of length v and p > « 1s a multiple of its period then the parallel prefix problem for
G, X can be solved by a circuit of linear size with an average delay of order llogn.
More precisely,

etime(PPy n, D Depth,, 5(d)) < 3-(llogn+23¢alog |X| + logp+logr) + T+loga.

These results provide a complete characterization for the average case complexity
of the parallel prefix problem. The confluence property is a necessary and sufficient
condition for a semigroup to allow an exponential speedup compared to the worst
case. Let us illustrate these results at the semigroups for PARITY, THRESHOLD®, OR,
AND and ADDITION, where for a number a between 0 and » THRESHOLD;, denotes the
n-ary Boolean function which equals 1 if at least a input bits are 1. The semigroups

for THRESHOLD® and PARITY are described in figure 5 and 6. For the THRESHOLD?-
function in general the semigroup is given by G := {0, ..., a}, the input alphabet by
¥ :={0,1} and the operator @ by r ® s := min{a, r + s}. The important properties
of these semigroups are characterized by the following table.

function| G P T T w
OR {0,1} 0,1 T 1 1
THRESHOLD®| {0,...,a} {0,1} a 1 1¢
PARITY| {0,1} {0,1} R
ADDITION|{gen,del,pro} {gen,del,pro} 1 1 gen

Corollary 2 . .
etime(PARITY,,, uni,

2) ogn — 0(1))
etime(PPy g, , D Depth,, 5(d))

) <

)

lo
3-(llogn + 2947,

3-(llogn + a-2°")+4-loga+7,
)< 3-(llogn + 2-2%)47.

>
<

etime(PPy, THRESHOLD® » P Depth, x(d
etime(ADDITION,), D Depth,, 5 (d

The upper bounds can be improved a little bit by a special analysis depending
on the specific function. This and matching lower bounds of order llogn + 2¢ for OR,
THRESHOLD and ADDITION are shown in [JRS93].

8 The Complexity of the Reachability Problem

Finally, we want to show that the confluence property can be decided efficiently,
that means polynomial in the size of the semigroup (. For this purpose we have to
analyse the structure of the reachability sets more carefully.

Lemma 7 For each state q in Ra(1) let £(q) be the length of a minimal string w
with A(q,w) = q, if such strings exist, and 1 otherwise. Then the least common
multiple of all £(q) for ¢ € Ra(7) is a multiple of n(A).

Lemma 8 7 < |G|* + |G| .

Theorem 5 There exists an O(|G|?log |G|)~time bounded algorithm that given an
automata A = (Q, X, vo, A) decides whether for 7 = |G|*+|G| A has a T-confluence
and, if yes, outpuls such a confluence w of length at most |G|, and a multiple of the
period of A.

Proof: The following procedure performs the required task.

1. Construct a spanning tree T' of the transition graph of A with state vy as root.
This will be done by a breadth-first-search strategy in time O(|G/). Furthermore
we label the nodes of T with their depth.

2. For each state ¢ in T' determine £(g) as defined above. For this we select from
elements v in G, such that ¢ @ v = ¢, one with minimal depth d(v) in T If there
exists such v then £(q) := d(v). The least common multiple p of these numbers
can then be computed in time O(|G|?).

3. Compute all R4(2%) for i < 2log|G|. Since R4(0) = {vo} and Ra(i) = @(Ra(i—
1), Ra(i — 1)). Now compute Ra(|G|? +|G]) in O(|G|?log |G]) steps.

4. Compute a confluence w for R4(2-|G|). Using lemma 5 the total amount of steps
is bounded by O(|G|?). |

9 Conclusion

Our results exactly characterize the semigroups that allow a significant speedup
of the parallel prefix problem in the average case. We can further show that the
llogn 4+ expd upper bound obtained for confluent semigroups are best possible,
except for certain trivial cases like constant or right-identical semigroups. Moreover,
the circuit family achieving this bound is easy to construct and universal in the
sense that up to a constant factor it yields minimal average delay for arbitrary input
distributions (assuming strict positivity). Thus, for the parallel prefix problem a
single circuit design turns out to be distribution independent average case optimal.

We have also considered the prefix problem for the circuit model without fanout
restriction. Again we can give a complete characterization of the semigroups with
an average case speedup, which now becomes slightly more difficult.

References

[BP89] G. Bilardi, F. Preparata, Size-Time Complexity of Boolean Networks for Prefix
Computations, J. ACM 36, 1989, 362-382.

[BP90] G. Bilardi, F. Preparata, Characterization of Associative Operations with Prefix
Circuits of Constant Depth and Linear Size, SIAM J. Comput. 19, 1990, 246-
255.

[JRS93] A. Jakoby, R. Reischuk, C. Schindelhauer, Circuit Complexity: from the Worst
Case to the Average Case, Technical Report, TH Darmstadt, 1993, to be pre-
sented at STOC’94.

[LF80] R. Ladner, M. Fischer, Parallel Prefix Computation, J. ACM 27, 1980, 831-838.

[Rei93] J. Reif, Probabilistic Parallel Prefix Computation, Comp. Math. Applic. 26,
1993, 101-110.

[S86] M. Snir, Depth-Size Trade-offs for Parallel Prefix Computation, J. Alg. 7, 1986,
185-201.

Ck_1 Ak:—l

o ¥1 T2 ¥3 T4 Ts Te T7 1Tg T9 Ti10 T11 Ti12 T13

o TSI SN0

CLH] v

w3

o= v?

Bk . ™ B [w?2

e vy

o] Y
Yo Y1 Y2 Y3 Ya Ys iYe Y7 Ys Yo Yio Y11 Y12 Y13
Bk_1 ch—l

Fig.1. An average case optimal parallel prefix circuit Gy with & = 2 for input vectors of
length 14.

Apr Ce A
2k+3 _o.p—2 2k+3 _o.p—2 2k 2k+3 _o.p—2
Gy — Gri1
B By Dy,
ok+2 _ 9 ok+2 _ 9 ok+2

Fig. 2. Recursive construction of an average optimal parallel prefix circuit Gx41 with input
length 252 — 2 from Gy with input length 2%+2 — 2.

{del,pro}

Ra(0)={vo}
Ra(1)
Ra(2)
{gen,pro} {pro}
Fig. 4. Semigroup G for the addi-
Ra(r(A)) tion.
Ra(r(A)+1)
Ra(r(A)+2)
Ra(r(A)+a)
Fig. 5. Semigroup for THRESHOLD}.
Ra(r(A)+m(4) Vo
Ra(r(A)+m(A)+1)
{0} {1}
0 1
{1}
{0} {0}

Fig. 3. Sequence of reachability sets with
a confluence of length a. Fig. 6. Semigroup for PARITY,,.

