
Smart Robot Teams Exploring Sparse Trees!

M. Dynia1, J. Kuty!lowski2, F. Meyer auf der Heide3, and C. Schindelhauer4

1 DFG Graduate College “Automatic Configuration in Open Systems”,
Heinz Nixdorf Institute, University of Paderborn, Germany,

mdynia@uni-paderborn.de
2 International Graduate School of Dynamic Intelligent Systems,

Heinz Nixdorf Institute, University of Paderborn, Germany,
jarekk@uni-paderborn.de

3 Heinz Nixdorf Institute, University of Paderborn, Germany,
fmadh@uni-paderborn.de

4 Computer Networks and Telematics, University of Freiburg, Germany,
schindel@informatik.uni-freiburg.de

Abstract. We consider a tree which has to be completely explored by a
group of k robots, initially placed at the root. The robots are mobile and
can communicate using radio devices, but the communication range is
bounded. They decide based on local, partial knowledge, and exchange
information gathered during the exploration. There is no central author-
ity which knows the graph and could control the movements of the robots
– they have to organize themselves and jointly explore the tree.
The problem is that at every point of time the remaining unknown part
of the tree may appear to be the worst case setting for the current de-
ployment of robots. We present a deterministic distributed algorithm to
explore T and we use a parameter of a tree called density. We compare
the performance of our algorithm with the optimal algorithm having
a-priori knowledge of the same tree. We show that the above ratio is
influenced only by the density and the height of the tree. Since the com-
petitive ratio does not depend on the number of robots, our algorithm
truly emphasizes the phenomena of self-organization. The more robots
are provided, the faster the exploration of the terrain is completed.

1 Introduction

We study the problem of exploration of trees by a group of k mobile robots
equipped with radio communication devices. The robots can move and can also
communicate using radio devices, but the communication range is bounded. This
allows a robot only a local view of the situation. Hence it has to make all of its
decisions basing only on partial knowledge. One robot cannot explore the graph
fast, so the group exchanges information gathered during the exploration. There
! This research is partially supported by the DFG-Sonderforschungsbereich SPP

1183: ”Organic Computing. Smart Teams: Local, Distributed Strategies for Self-
Organizing Robotic Exploration Teams” and by the EU within the 6th Framework
Programme under contract 001907 (DELIS)

is no central authority which knows the graph and could control the robots,
so the team has to organize itself and jointly explore the tree, i.e. visit all its
nodes. The problem is that at every point of time the remaining unknown part
of the tree may appear to be the worst case setting for the current deployment
of robots.

We use competitive analysis [1] to measure the performance of the algorithm.
Let CA(T) denote the running time of the online distributed algorithm A ex-
ploring a tree T not known in advance. Only outgoing edges are visible to a
robot placed in some node, and it has to traverse an edge in order to recognize
new parts of the graph. Since at each point of time the graph is known only
partially, the adversary may construct the worst possible remaining part of the
graph in an online fashion. In this model, traversing an edge takes one time step
and costs of all other operations are neglected.

Let Copt(T) be the running time of the optimal algorithm which knows the
exact structure of T and explores it optimally. The algorithm A is σ-competitive
if for all T

CA(T) ≤ σ · Copt(T) + α (1)

for some constant α.
Since robots use wireless devices with a bounded communication radius A is

allowed to use only local communication, i.e. robot can communicate (once per
a time step) only with those robots which are at distance one or less in the tree.

We can observe that the optimal offline algorithm does not have to use com-
munication at all, since the graph is given in advance.

1.1 Related Work

The problem of exploring an unknown environment has been widely studied
(see [2] for a survey) and usually the environment is modeled as a graph. Fa-
mous Traveling Salesman Problem and Chinese Postman Problem expose main
problems of graph exploration.

The k-Traveling Salesman Problem (k-TSP) and k-Chinese Postman Problem
(k-CPP) [3] are interesting extensions of these well known NP-hard problems5.
All nodes (and edges) of a graph have to be visited (at least once) by one of
the k robots initially placed at some node of the graph, subject to minimize the
maximum length route of a robot. The contribution [5] captures the hardness of
the k-TSP and shows how to construct (in polynomial time in size of a graph but
exponential in k) optimal routes for an arbitrary k. In the location-allocation
version of this problem an initial positions of robots have to be found as well.

There are several approximation algorithms of minmax k-TSP on a tree pre-
sented in [6, 4, 3, 7, 8, 5], but we should mention here that finding k-approximation
is easy, and yields by taking a trivial optimal solution of 1-TSP (DFS traversal of
a tree). Frederickson, Hecht and Kim [3] gave first worst-case analysis of k-TSP
and developed 2 − 1/k approximation algorithm.

5 also often called p-TSP and p-CPP, e.g. in [4]

2

In this work we consider an online version of k-TSP where a labeled graph is
not known in advance, and the goal is to minimize overall time of an exploration.
Authors of [9] and [10] study even harder problem and assume an unlabeled
graph. If this setting one robot cannot explore the graph alone. Hence, in [10]
the robot puts pebbles on the nodes of the graph in order to recognize visited
ones, and in [9] it cooperates with other robot by exploration.

There are many publication considering an online exploration by a single
robot (e.g. [11–14]), but the problem which exposes a real flavor is considering
an exploring group of k robots [15, 16, 5].

Profits from a collective online exploration of trees are investigated in [15].
The authors prove competitive ratio of O(k/ log k) for the time of exploration
compared to the time of an optimal algorithm which knows the tree. They also
prove a lower bound of 2− 1/k for this ratio. Moreover they study the influence
of communication on the complexity of collective exploration. They prove that
when no communication allowed, the competitive ratio is at least Ω(k). This
shows that there is no cooperation at all, if no communication granted – the
team explores in the same time that one robot would need to do it trivially.

Authors of [5] develop from their 2-approximation algorithm (similar to this
in [3]) an online algorithm, subject to minimize energy used by a robot, rather
than time of an exploration. They prove it uses at most 8 times the energy per
a robot the optimal strategy for k robots does. They prove a lower bound of
1.5 for this energy model, which differs from the time model investigated in our
work and in [15].

1.2 Our Results

We investigate a model with the cost to be an overall time of the collective tree
exploration. Our results are two distributed, local algorithms, which explore an
arbitrary tree using a group of k robots, and both exhibit a competitive ratio
independent of k. It will solely depend on the tree, especially on its height and
so called density.

Let us first define the density p(T) ∈ IN for some tree T . It is the minimal
natural number with the following property

∀T ′=(V ′,E′)⊂T |V ′| ≤ 4 · [h(T ′)]p(T) (2)

where h(T) is the height of T . For many classes of trees an upper bound for p(T)
is known. For example trees embedded into a planar grid, fulfill p(T) ≤ 2, and
for binary trees p(T) ≤ h(T)/ log h(T). The density influences the running time
of our algorithm. For simplicity of notation we will use D to denote the height
h(T) and p to denote p(T).

The first distributed algorithm is presented in Sect. 2.2. It consists of two
sub-algorithms, described and analyzed in the same section. It assumes only
local communication and is fully online, i.e. no previous knowledge of the tree is
required. It achieves a competitive ratio of

O
(
D1−1/p · min

{
p, log p · D1/2p

})

3

where p is the density of the tree and D is its height.
The second algorithm described in Sect. 2.3 is also distributed and local. It

has an improved competitive ratio of

O
(
D1−1/p

)
,

but unfortunately it requires knowledge of the density value (or at least its
constant approximation) before the exploration. It may be considered to be a
drawback, but in fact, the value of density is known for many classes of trees.

For an arbitrary tree T we have p(T) ≤ log n and thus our first algorithm
is O (D log log n)-competitive and the second algorithm is O (D)-competitive.
When we consider a class of trees which can be embedded in the s-dimensional
grid it is easy to observe an upper bound p(T) ≤ 2s. However, according to the
definition (2) we have p(T) ≤ 2 for a 2-dimensional grid and thus our algorithm
is

√
D competitive for this class of trees.

Unlike in [15], we present an algorithm with a competitive ratio which does
not grow for large number of robots. It results in improved overall time of explo-
ration for a team with increased number of robots. The coordination problem
does not appear and thus our algorithm truly emphasizes the phenomena of
robots cooperation. Additionally, our algorithms have an advantage over the
one in [15], namely they are fully distributed and use only local communication.
We prove that the exploration can also be efficient even under very bounded
communication scheme.

2 The Online Algorithm

Only edges outgoing from the root are visible to a robot initially placed in the
root of T , and it has to traverse an edge in order to recognize new parts of the
graph. In our model, traversing an edge takes one time step and we neglect costs
of all other operations. Robots communicate only if they meet in the same node
– in this case in the root.

First, we present in Sect. 2.2 the KarlsruheExpress-Clever algorithm (KE-
Clever) and then in Sect. 2.3 the KE-Oblivious algorithm. Both algorithms took
their name from the place where the first steps of their design were made.

All presented algorithms are based on the same idea. Robots start in the root
and explore the tree in so called chunks. They leave the root, enter the tree and
after a current chunk is explored, they return to the root in order to exchange
a valuable information and agree upon the strategy of exploration of the next
chunk. Consecutive chunk lay further from the root than its predecessor – and
in this way the progress of the exploration is realized. At some point of time the
furthest leaf is reached by a robot and thus the tree is completely explored.

The team needs the information on the density of the tree in order to ac-
curately estimate the amount of work a group can handle, i.e. the size of the
chunk. The higher the density of the graph, the more job to do for robots, and
thus the size of a chunk has to be reduced. On the other hand, small chunks

4

weaken the progress of the exploration. The only aspect which distinguishes one
algorithm from the other is the way they look for a good estimation of the des-
tiny value. A proper balance between the size of the chunk and the efficiency of
the exploration has to be found.

2.1 Definitions

The description of the algorithms as well as their performance analysis uses some
notion which we define in this section (the circumference function φ, the MyDFS
routine and finally the function rnew).

Given a rooted tree T = (V, E) we denote by h(T) the height of the tree,
i.e. the number of nodes on a longest path from the root to a leaf. The level r
of the tree is a set of nodes in distance r from the root. We describe nodes on
each level, such that vr(i) denote the i-th node on level r ∈ IN of T and φ(r) the
number of nodes on that level. Let Tv(h) be the subtree of T rooted at v and
h in height, and let it be the subtree with maximal number of edges. Then, for
some node v ∈ V we define by MyDFS(v, r, p) the sequence of nodes created by
the concatenation of the following sequences of nodes (Fig. 1) as

- the path from the root of T to the node v,
- the classical DFS algorithm for the tree Tv(r1/p), broken after 8r steps (at

node v′),
- the path from v′ to v, and
- the path from v to the root of T .

We use MyDFS(v, r, p) only when the route from the root to the node v of length
l is already known. In this case the execution takes O(r + l) time steps.

r

r + 0.5 · r1/p

r + r1/p

rnew(r, p)
φ

root

v

root

a) b)

r1/p

v′

Fig. 1. Definition of a) MyDFS routine and b) the function rnew.

5

Moreover, we use the function rnew which dictates the progress of the pre-
sented algorithm. It is defined for a tree T and any number r ≥ 1 and p ≥ 1

rnew(r, p) = argmin
{

φ(j) : j ∈
[
r +

1
2
· r1/p, r + r1/p

]}
(3)

Intuitively, the value of rnew points out the most narrow place in the tree within
some specified interval (Fig. 1).

2.2 The KE-Clever Algorithm

First we present and analyze in detail the KE-2 algorithm and then the KE-1
algorithm which is a simple modification of the former. Both algorithms are the
basic components of KE-Clever which we define and analyze at the end of this
section.

The KE-2 algorithm works in so called epochs. During one epoch all nodes
in distance between some two well defined levels (a chunk) are being explored.
A detailed description of the KE-2 provides Algorithm 1 and Figure 2.

Algorithm 1 The KE-2 algorithm
Require: k robots placed in ROOT
1: r ← 1
2: p′ ← 1
3: repeat
4: φ ← φ(r)
5: for (j ← 0 to "φ/k#) do
6: v ← vr(ID + k · j mod φ)
7: repeat
8: if (some RISE flag is set) then
9: p′ ← 2 · p′

10: end if
11: move and explore following MyDFS(v, r, p′) sequence

12: if (Tv(r1/p′
) is not completely explored) then

13: set RISE flag
14: end if
15: until (no flag RISE is set)
16: end for
17: r ← rnew(r, p′)
18: until (T is completely explored)

The algorithm maintains a variable r (the radius) whose value means that
all levels of the tree up to the level r are already explored. It grows during the
exploration, and the algorithm terminates when the tree is completely known.
We call the lines 4–17 of the code an epoch of the algorithm. Epoch Ei starts
with radius ri and during the epoch all nodes on levels between ri and ri+1 (a
chunk Ci) are being explored.

6

level ri

ri
1/p′

level ri+1

vri(1) vri(3)

vri+1(1)

vri(φ)

vri+1(φ(ri+1))

Fig. 2. One epoch of the KE-2 algorithm

The following lemma demonstrates an idea of the algorithm and shows that
the exploration does progress and additionally shows that the number of epochs
is small.

Lemma 1. The KE-2 terminates after executing O(D1−1/2p) epochs, where p =
p(T) is the density of T .

Proof. We start by showing a property of some sequence ai which suitable de-
scribes the behavior of our algorithm. Then using this property we show the
upper bound on the number of epochs. We show that for a0 = 0, a1 = 1 and
ai+1 = ai + 1

2 · ai
1/2p we have

ai ≥
(

i

6

)2p/(2p−1)

(4)

Indeed, by induction we have the lower bound for ai+1 = ai + 1
2 · a1/2p

i of

(i/6)2p/(2p−1) +
1
2
· i1/(2p−1)

61/(2p−1)
≥ (i/6)2p/(2p−1) +

3 · i1/(2p−1)

62p/(2p−1)
≥ (i + 3)i1/(2p−1)

62p/(2p−1)
≥

≥ (i + 1)(i + 1)1/(2p−1)

62p/(2p−1)
≥

(
i + 1

6

)2p/(2p−1)

.

The main point of the above reasoning is that for 0 < α ≤ 1, i ≥ 0

i + 3
i + 1

≥
(

i + 1
i

)α

.

Now let us observe that ri ≥ ai. Therefore, by finding j s.t. aj ≥ D we
can argue that j epochs suffice to explore the whole tree. This is the case for
j = (D ·6)1−1/2p (we use (4) to show that) and thus at most O(D1−1/2p) epochs
are executed. '(

7

The value of the local variable p′ at the beginning of the epoch Ei is the same
for all robots and defines the value of pi. By the sequence pi our distributed
algorithm estimates the upper bound for the density of the tree it explores. The
lines 6–15 are a turn of the algorithm. Each epoch Ei consists of many turns
during which subtrees in the chunk Ci are being explored.

All lines of the code (except one: the traversing according to MyDFS) are
executed by all robots placed in the root of the tree. Then the local communica-
tion needed to compute e.g. φ and a new value of p′ is granted. This emphasizes
the locality and distributed property of our algorithm.

We now show that an execution of an epoch takes a small number of parallel
steps for the KE-2 algorithm.

Lemma 2. The epoch Ei (i ≥ 1) of KE-2 terminates after

O
(

φ(ri)
k

· ri · [1 + log(pi+1/pi)]
)

time steps, after completely exploring the chunk Ci.

Proof. The epoch starts based on level ri of the tree T , where exactly φ(ri)
subtrees T1(h), . . . , Tφ(ri)(h) are rooted, where

Tj(h) = Tvri (j)
(h) .

Within one epoch, turn by turn, these subtrees are explored by our algorithm.
During this execution the value of h changes. Initially h = r1/pi

i and it decreases
until it reaches r1/pi+1

i at the end of the epoch.
The group of k robots starts the exploration from subtrees rooted at nodes

with the smallest IDs. Since pi is doubled during the exploration, the repeat-until
loop, inside of the turn, terminates after 1 + log(pi+1/pi) passes. Indeed, since
pi+1 ≤ p the algorithm will reach some value, i.e. pi+1, which is sufficient to
explore all Tv(r1/pi+1) by MyDFS and then no RISE flag is set.
For each j and pi ≤ p′ ≤ pi+1 the MyDFS(vri(j), ri, p′) algorithm takes at most
11ri steps. This implies that one turn takes O(ri) time steps. Moreover, there
are exactly)φ(ri)/k* turns during an epoch.

This proves that during the epoch Ei the algorithm explores the chunk Ci

in time O
(

φ(ri)
k · ri · [1 + log(pi+1/pi)]

)
and eventually places all robots in the

root. '(

The following lemma describes the running time of the KE-2 algorithm.

Lemma 3. The KE-2 explores the tree T in time

O



 log p

k

∑

i≥0

φ(ri)ri



 .

8

Proof. By Lemma 2, the epoch Ei needs at most φ(ri)/k · ri · [1 + log(pi+1/pi)]
time steps. Using pi+1

pi
≤ 2p and summing up over all epochs we have

∑

i≥0

1
k

φ(ri) · ri · [1 + log(pi+1/pi)] ≤
1
k

∑

i≥0

φ(ri) · ri · 2 log p

'(

Now we compare the time of our online algorithm to the time the optimal
offline algorithm would need for the same tree T . To show this we need to know
the running time of the optimal algorithm.
In Lemma 4 we show a lower bound for running time of all algorithms exploring
T . We describe this bound by using the sequence ri and pi, both defined by an
execution of KE-2.

Lemma 4. The optimal algorithm needs

Ω



1
k

∑

i≥0

φ(ri)ri
1/pi





time steps.

Proof. Given the sequence ri of levels of tree and the sequence pi defined by the
KE-2, define the set Ii of levels of T as follows

Ii =
[
ri +

1
2
· ri

1/pi+1 , ri + ri
1/pi+1

]

and let I =
⋃

i Ii be the sum of these sets of levels. The levels Ii do not overlap
since

ri+1 +
1
2
r1/pi+2
i+1 > ri + r1/pi+1

i

and thus the overall number of nodes at levels described by I is a lower bound
on number of nodes in the tree T .

Let us count how many nodes ni there are on levels contained in Ii. We know
that ri+1 ∈ Ii and that ∀j∈Ii(φ(ri+1) ≤ φ(j)). Then we have ni ≥ 1/2 · φ(ri+1) ·
ri

1/pi+1 and given ri ≥ ri+1/2 we get

ni = Ω
(
φ(ri+1) · ri+1

1/pi+1
)

so there are at least Ω
(∑

i φ(ri)ri
1/pi

)
nodes in the tree.

A group of k robots needs at least s/k time steps to explore a tree with s
nodes, which proves that even the optimal algorithm needs the time claimed in
the lemma. '(

We can prove now the competitive ratio of KE-2 in the following lemma.

Lemma 5. The KE-2 achieves competitive ratio of O(log p · D1/2p · D1−1/p)

9

Proof. First, we show that for any non-decreasing sequence {yi} and any se-
quence {xi} and for any 0 < α < 1 we have

∑m
i=1 xiyi∑m

j=1 xiyi
α
≤ ym

1−α . (5)

To prove that, we notice

1
y1−α

m
·

∑m
i=1 xiyi∑m

i=1 xi · yα
i

≤ 1 .

Indeed, for all 0 ≤ i ≤ m we have y1−α
i ≤ y1−α

m and we can upper-bound this
term by ∑m

i=1 xiyi∑m
i=1 xi · yα

i y1−α
m

≤
∑m

i=1 xiyi∑m
i=1 xiyα

i y1−α
i

≤ 1 .

In the remaining part of the proof we lay α = 1/2p, yi = ri and xi = φ(ri) in (5).
We notice that ri

1/pi ≤ D1/2p and combine the results of Lemma 3 and 4 to
provide the bound for competitive ratio σ.

σ ≤ O
(

log(4p) ·
∑

i φ(ri)ri∑
i φ(ri)ri

1/pi

)
≤ O

(
log p · D1−1/2p

)

'(

Now we present an algorithm which is a small modification of KE-2. Unlike
the former, it will search for the value of density more accurately (not binary)
and thus it will be a bit slower. The KE-1 algorithm arises by replacing in
Algorithm 1 the 9-th line of code p′ ← 2 · p′ by the new line p′ ← p′ + 1.

The proof of the performance of KE-1 is quite the same as the proof of KE-2
and thus we omit the detailed proof here. The KE-1 is a distributed and online
algorithm and achieves the following competitive ratio

Corollary 1. The KE-1 is O(p · D1−1/p)-competitive.

Proof. For the KE-1 the local variable p′ is increased only by one and thus epoch
Ei takes

O
(

φ(ri)
k

· ri · [1 + pi+1 − pi]
)

time steps. Summing up over all epochs we have O (p/k ·
∑

i φ(ri)ri) time steps
until tree is completely explored by KE-1. Since pi approximates the value of p(T)
more accurately, we can use the lower bound for the time of optimal algorithm
by Lemma 4, to obtain the competitive ratio of O

(
p · D1−1/p

)
. '(

We have now two algorithms KE-1 and KE-2 whose performance depends
on the ratio between p and D. The first one is better for trees with a small
density (comparing to D), and the second is better for a small – comparing to
the density – height of the tree.

10

To take advantages of these algorithms and avoid drawbacks, we define the
KE-Clever in the following way. The robot with the ID 1 (a referee) does not
move but only waits in the root and serves as a relay station for the communi-
cation. It maintains the status of an exploration. Let now the first half of the
remaining group of robots (the subgroup A) execute the KE-1 and the other
half (the subgroup B) the KE-2 algorithm.

The KE-Clever terminates, after one of the group reports a completion of
the exploration. The group A needs at most O

(
p · D1−1/p

)
· Copt time and

the group B needs O
(
log p · D1/2p · D1−1/p

)
· Copt time, which leads to the

following theorem:

Theorem 1. The KE-Clever achieves the competitive ratio of

O
(
D1−1/p · min

{
p, log p · D1/2p

})

for an arbitrary tree T , where D is the height of T and p the density.

2.3 The KE-Oblivious Algorithm

The algorithms KE-1 and KE-2 estimate the density value in a different way,
but unfortunately, in the both cases the time needed for searching the proper
value reflects unfavorably in their performance. Let us assume that the density
p(T) of the tree is known beforehand. Then, replacing in Algorithm 1 the 2-nd
line of code p′ ← 1 by the new line p′ ← p(T) we define a new algorithm called
KE-Oblivious.

Theorem 2. If the density parameter p for the tree is arbitrary but known before
the exploration, then the KE-Oblivious has competitive ratio of

O
(
D1−1/p

)

for an arbitrary tree T , D in height.

Proof. Since the density is known in advance, there is no need for approximation.
In fact, the local variable p′ never changes during the execution of the algorithm.
This results in only O

(
φ(ri)

k · ri

)
time steps needed for an epoch Ei. Following

the same approach as in Lemma 3 and 4 we obtain an improved competitive
ratio of O

(
D1−1/p

)
. '(

3 Conclusions

We have presented two distributed online algorithms which explore the un-
known tree starting from the root. Assuming global communication (or allowing
landmarks in nodes) one can combine by a simple trick the KE-Clever or KE-
Oblivious with the algorithm described in [15], obtaining the competitive ratio

11

equal to the minimum of ratios of each combined algorithm. It is enough to ex-
ecute them both in parallel – each algorithm executed by the half of the group.

In the face of the best known lower bound of 2-1/k, the problem concerning
an optimal online competitive ratio for trees is still open. And finally, does the
bounded communication have an impact on that ratio at all?

References

1. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press, New York, NY, USA (1998)

2. Rao, N., Kareti, S., Shi, W., Iyenagar, S.: Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-
12410 (1993)

3. Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing
problems. SIAM Journal on Computing 7 (1978) 178 – 193

4. Averbakh, I., Berman, O.: Minmax p-traveling salesmen location problems on a
tree. Annals of Operations Research 110 (2002) 55 – 68

5. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree ex-
ploration. In Grass, W., ed.: Proceedings of ARCS’06. LNCS 3894, Springer Verlag
(2006) 341 – 351

6. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of
graphs. Operations Research Letters 32 (2004) 309 – 315

7. Averbakh, I., Berman, O.: (p - 1)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with minmax objective. Discrete Applied Mathematics
75 (1997) 201 – 216

8. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing
of two traveling salesmen on a tree. Discrete Applied Mathematics 68 (1996) 17 –
32

9. Bender, M., Slonim, D.: The power of team exploration: two robots can learn
unlabeled directed graphs. In: Proc. FOCS 1994. (1994) 75 – 85

10. Bender, M., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble:
exploring and mapping directed graphs. In: Proc. 30th Symp. Theory of Comput-
ing, ACM (1998) 269 – 278

11. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. In: SODA ’98:
Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (1998)
316 – 322

12. Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by
a mobile robot. Information and Computation 152 (1999) 155 – 172

13. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. In: Al-
gorithms - ESA 2002: 10th Annual European Symposium. Volume 2461., Springer
(2002) 374 – 386

14. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: 13th Annual
European Symposium. Volume 3669., Springer (2005) 11 – 22

15. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration.
In: Proc. LATIN 2004. Volume 2976. (2004) 141–151

16. Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., Tixeuil, S.: Space lower bounds for graph
exploration via reduced automata. In: Structural Information and Communication
Complexity: 12 International Colloquium. Volume 3499. (2005) 140 – 154

12

