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Abstract. A new definition is given for the average growth of a function
f X" — IN with respect to a probability measure p on X*. This allows us to
define meaningful average case distributional complexity classes for arbitrary
time bounds (previously, one could only distinguish between polynomial and
superpolynomial growth). It is shown that basically only the ranking of the
inputs by decreasing probabilities are of importance.

To compare the average and worst case complexity of problems we study
average case complexity classes defined by a time bound and a bound on the
complexity of possible distributions. Here, the complexity is measured by
the time to compute the rank functions of the distributions. We obtain tight
and optimal separation results between these average case classes. Also the
worst case classes can be embedded into this hierarchy. They are shown to be
identical to average case classes with respect to distributions of exponential
complexity.

These ideas are finally applied to study the average case complexity of prob-
lems in N'P. A reduction between distributional problems is defined for this
new approach. We study the average case complexity class AvP consisting
of those problems that can be solved by DTMs on the average in polynomial
time for all distributions with efficiently computable rank function. Fast algo-
rithms are known for some N P—complete problems under very simple distrib-
utions. For langugages in AP we consider the maximal allowable complexity
of distributions such that the problem can still be solved efficiently by a
DTM, at least on the average. As an example we can show that either the
satisfiability problem remains hard, even for simple distributions, or NP is
contained in AvP, that means every problem in AP can be solved efficiently
on the average for arbitrary not too complex distributions.

1 Introduction and Overview

Levin observed that a sound definition of average case complexity and complexity
classes is not at all obvious ([Levi86]). The classical notion of average-case time
complexity of a machine M with respect to given probability distributions u,, on
inputs z of length n takes the expectation

Timeh,(n) = Z pn () - timeps ()
lz|=n
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where timeys (z) denotes the running time of M on z and p := pui,us,.... The
machine M is py—average T—time bounded (in the expected sense) for a resource
bound T : IN — IN, if Time’; < T, that means for all n

timep(x)
S pnle) - )y
~ 7]
The problem with this definition is that polynomial time simulations of polynomial
average time machines can result in superpolynomial average time complexity. It
was resolved by Levin by applying the inverse of T' to the fraction, thus requiring

T~ (timeps (z
Z fin () - T~ (timen (2)) < 1.
oon |z
This definition does not take into account that the weights of different input length
may be very unequal. Thus one considers only distributions p defined over the whole
set of inputs and requires

IN

T~ (timep (x
Z w(z) - % 1.
T
M is then called (Levin)-p—average T—time bounded. For a discussion of this
approach see the detailed exposition in [Gure91].

Still there remains an unpleasant property, the influence of the functional growth
of pu(z) on the time bound T. If, for example, one takes the “standard” uniform
probability distribution, which assigns probability pypiform () := 6/72 - |z| =2 - 272l
to a string x € {0,1}" a machine using n” steps on every input of length n would
already be average O(n!*€)-time bounded for arbitrary € > 0. This problem can be
resolved to a certain extent (see [Gure91]), but not completely.

Our first contribution to the average case analysis will be a new definition of average
T—time bounded, which gets rid of this problem. It will allow us to differenciate
between bounds T and T for any T < o(T5). The idea is to bound the complexity of
a machine not only with respect to the probability distribution u, but with respect to
all monotone transformations of p. At first glance, it seems that this complicates the
analysis even more. But we will show that this larger set of conditions is equivalent
to a very simple property of the distribution p, which does not involve probabilities
explicitly anymore. The only thing that matters is the ranking of the inputs by pu,
that is the sequence of inputs ordered by decreasing probabilities.

In practice, one often does not know the values of the distribution exactly, but for
each pair of inputs at least one can decide which input is more likely. This way,
the whole analysis is greatly simplified. Each ranking of the input space describes
a whole equivalence class of distributions, and we get rid of the influence of the
asymptotic growth of the probability measure.

A distributional problem is a pair (L, i1), consisting of a language L C {0,1}" and
a probability distribution p on {0,1}*. We define distributional complezity classes



DistDTime(T) containing all pairs (L, ), for which there exists a DTM accepting
L that is p—average T-time bounded in this generalized sense.

Given a language L € DTime(T) and a DTM M for L, it is easy to see that by
cycling through all inputs of length n one can find an z, on which M spends the
maximal time for inputs of length n. If a probability measure u gives all its weight
for inputs of length n to this  then the average time of M (in the expected sense)
with respect to this u equals the worst case complexity. u(z) can be computed in
time O(21*! - T(|z|)). Using this idea, Miltersen has shown that allowing exponential
time overhead a measure p can be constructed that is malign for all expected T—
time bounded machines ([Milt91]). That means their expected time complexity with
respect to this p is no more than a constant factor smaller than their worst case
complexity.

On the other hand, restricting an average case analysis to some simple distributions
may yield results with little practical value. The satisfiability problem, for example,
has been shown quickly solvable for certain symmetric distributions, but the input
space generated this way seems to be of not interest for applications in Al (see
for example the discussion in [MiSeLe92]). These observation motivate to consider
average case complexity classes Av DTime(T, C) consisting of all languages L that
can be recognized in p—average time 7" for distributions p of complexity at most
C, for certain bounds C. That way, average case complexity classes are directly
comparable to the standard worst case classes, because both contain only languages.

In this paper a notation different from the one in previous research on average case
complexity will be used, because we feel that this new one is more appropriate and
natural. There should be a clear distinction between distributional classes, where
distributions appear explicitly, and average case classes the elements of which are
languages in the usual sense. From a complexity theoretic point of view one is more
interested in the second kind of classes.

The complexity of a distribution is taken w.r.t. its rankability, that is the effort to
compute the rank of an input x. Previous approaches have bounded the complexity
of distributions using the notion of computable and sampleable. A distribution
is POL-computable if the sum of all weights of inputs lexicographically lower than x
can be computed in polynomial time w.r.t. the length of z and the binary expansion
([Levi86],[Gure9dl]). A distribution p is POL-samplable, if there exists a random-
ized algorithm that outputs the string x with probability u(z) in polynomial time
w.r.t. |z| ([BCGL92]). These concepts are not directly comparable to rankability, a
discussion of their relation will be given in the full version of this paper.

As an analog to the worst case class P the average case complexity class

AvP = AvDTime(POL,POL-rankable)
seems to be the most natural candidate. Problems in this class are efficiently solv-
able in practice, because for all not too complex distributions their average time
complexity is bounded by a polynomial. Our second main contribution is a tight
separation and inclusion results for average case complexity classes within AvP.

Finally, we consider reductions between distributional problems and relations be-
tween nondeterministic and average case complexity classes. Of particular interest



are distributional problems (L,p) such that L € AP and the complexity of yu is
polynomially bounded (again, we consider here the rankability). In Levin’s model
this class has been called distributional AP or randomized NP, but both notions
are somehow misleading (distributional NP should better be used for the class
DistNTime(POL)).

For a meaningful reduction between distributional problems one needs an additional
property called domination (see [Levi86] or [Gure91]). In our model this becomes
a simple condition on the transformation of the ranks between two probability dis-
tributions. Similar to the previous models one can show that the bounded halting
problem for NTM together with a natural ranking is complete for distributional
problems taken from NP.

Finally, we discuss the relation between A"P and AvP. To analyse the average case
behaviour of problems in A'P we propose to classify them w.r.t. the largest amount
of rankability one can allow such that the average time complexity stays polynomial.
We call this the nose of a problem.

Some NP—complete problems are known that can be solved very fast on the aver-
age for simple distributions. Examples are 3-colourability of graphs or Hamiltonian
circuits (for a discussion and references see [John84] and [Gure91]). If a problem is
complete in the sense above simple distributions, which might yield a polynomial
time complexity on the average, probably do not exist. Otherwise, by a result of Ben-
David and Luby (see [Gure91]) deterministic and nondeterministic exponential time
would be identical. Our last result shows that satisfiability has no nose, that means
it will require superpolynomial time for almost all distributions, unless NP C AvP.

Most of the proofs have to be omitted in this short report. For a complete version
see [ReSc92], some of the results can already be bound in [Schi9l].

2 Notations

Let N denote the identity function on the natural numbers IN. A complexity bound
is a function 7" : IN — IN. All complexity bounds in this paper are assumed to
be monotone increasing and time-constructible. The following sets of complexity
bounds will be of special interest: POL := [J,cpn O(N*), EXL := exp O(N) and
EEXL := expexp ©(N). For a complexity bound T', which does not necessarily have
to be injective, we define the inverse T—! by

T '(m) := min{n|T(n) >m}.

Let M, Ms,... be an enumeration of all deterministic Turing machines (in some
cases we also consider nondeterministic machines). We may assume that all machines
have only 2 work tapes, implying that one can use a universal machine with only a
constant factor slowdown.

When talking about an ordering of binary strings, < y we refer to the lexicograph-
ical ordering. We consider probability measures (density functions) p : X* — [0, 1]
over the input space. p has to satisfy Y. u(z) < 1. bin : IN — {0,1}" denotes the
standard correspondence between binary strings and natural numbers.



3 Refinement of Levin’s Average Case Measure

In the introduction we have already discussed the problem to measure precisely the
average complexity of a time bound 7" with respect to a probability distribution pu.
Levin’s solution essentially can only distinguish between polynomial and superpoly-
nomial growth.

Definition 1 The pair (f,u) consisting of a function f : ¥* — IN and a distribu-
tion u belongs to the class LAv(POL) with respect to a distribution p iff for some

number k "
zw: w(x) f(3|2| <00 .

The problem with the standard uniform distribution mentioned above can somehow
be diminished, by giving {0,1}" a total weight proportional to n=" -log™?n or even
less, instead of n 2. Still, it can never be resolved completely. Below, we will present a
precise average case measure. The idea is to consider simultaneously all distributions
i1 that yield the same ordering of inputs by decreasing probabilities as p, that means
if ©(10001) < p(11) then 2(10001) < ji(11). Thus, only the ranking of the inputs by
decreasing weights matters.

Definition 2 rank,(z) = [{z € X*|u(z) > px)} .

p—average bounded by T will then defined to be i—average bounded by 7" in the sense
above for all such fi. The set of such fi can be generated by monotone transformations
of u.

Definition 3 A real-valued monotone function m : [0,1] — [0, 1] is called ¢ mono-
tone transformation of the distribution p if Y-, m(pu(z)) < 1.

The set Av(T) contains all pairs (f,u) consisting of a function f: X* — IN and a
distribution p such that for all monotone transformations m of u

S mu(e) =L <1

: ]

Because of the universal quantifier over all monotone transformations the above
definition for Av(T") is even more complicated than the one given by Levin. But there
exists an equivalent, very simple characterization of Av(T'). Consider the special case
of threshold functions thr; : [0,1] — [0,1] as monotone transformations, where for
I = rank,(z) we define thr;(z) := 1/l if z > p(x) and 0 else.

Lemma 1

T~ (f(x))

]

(f,p) € AuT) <= VI Y thr(u(z))



As an immediate consequence of this lemma we obtain the following fundamental
result, which shows that an average bound can be computed without considering all
possible transformations.

Proposition 1

Gweam) = w Y U@

rank,, (z)<I |.’17|

In the following we will only use this characterization to verify membership in Av(T').
This generalization keeps polynomial bounds, which are increased by a polynomial,
in that class. Each rank function represents a whole set of distributions, namely
those which are equivalent with respect to the definition of the sets Av(T).

We are now ready to define the following distributional complexity classes.

Definition 4

DistDTime(T) := {(L,u)| I DTM M with L(M) = L, (timey,p) € Av(T)} ,

DistP:= | DistDTime(T) .
TePOL

Note that in this setting already for simple distributions like the uniform one there
can only be an exponential difference between the distributional and the worst
case complexity of a problem. That means, if (L,uniform) € DistP then L €
DTime(EXL). For Levin’s model separation results between polynomial distribu-
tional complexity classes are given in [WaBe92], but the separating languages are in
classes higher than exponential time. The technical trick to achieve this is to let the
uniform probabilities for inputs of length n converge very fast to 0 with n. Such a
separation result does not seem to yield much insight into average case complexity.

4 Hierarchies of Average Case Complexity Classes

Since for this new average case measure all essential information of a distribution is
the rank function we will identify both in the following. Thus (L, ) and (L,rank,,)
denote the same distributional problem. The straightforward way to restrict distri-
butions is a time limit for computing the rank.

Definition 5 Let T—rankable be the set of all distributions u for which there exists
a DTM M that on input & computes bin(rank,(z)) in time T (|x]).

In order to compare the worst case and the average case complexity of problems
we consider the distributional complexity of languages L with respect to a set C' of
distributions and define



Definition 6

AvDTime(T,C) :={L |Vu € C (L,u) € DistDTime(T)} ,
AVP := AvDTime(POL, POL-rankable) .

Let us first show that for complex distributions there is no difference between the
average and the worst case complexity. We will construct a rank function that for
any DTM M with L(M) ¢ DTime(T) gives small ranks p to inputs with long
computations, thus (L, p) does not belong to Dist DT'ime(T). For this purpose, the
following N'P—complete language is helpful.
Definition 7

Hp = {(w,1") | M; is a DTM and 3z < w with timey, (z) > T(|z])} .

Let h(T) > Q(T?) be a time bound such that Hr € DTime(h(T)).

Obviously, h(T') is of order at most 2"-T'(n) (remember that all bounds were assumed
to be monotone).
Theorem 1 For all T > N and for all § > 1 holds
AvDTime(T, h(T)-rankable) C DTime(T(6N)).
Since the rank functions of these distributions can be computed in time 7' - EXL,

compared to the worst case, no machine works significantly faster on the average
with respect to this set of distributions.

Corollary 1 For all T € POL:
AvDTime(T, (T - EXL)-rankable) = DTime(T) .

Miltersen has shown that there exists a distribution g malign for DTime(N*), which
can be computed in polynomial time with an ] —oracle ([Milt91]). The proof of this
theorem yields that for the more general situation we consider here already an N'P-
oracle suffices.

The equality above cannot be generalized to arbitrary large time bounds 7. This
has technical reasons when taking the inverse of a large bound (the price one has to
pay for the closure under polynomial growth). Indeed, we can show

Theorem 2 For T > EEXL and the set of all distributions U holds:
DTime(T) C AvDTime(T,U) .
For average case complexity classes with a fixed bound on the rankability of the

distributions we can establish a tight hierarchy, comparable to the situation in the
worst, case.



Theorem 3 For time bounds Ty, T2,V > (1 +w(1)) - N with Ty < o(T») holds:

AvDTime(Ty,V -rankable) C AvDTime(T>,V —rankable) .

Proof Sketch: First we show that even under the simplest distributions, the uniform
ones, not all problems with worst case time bound 7> can be solved in time 77 on
the average, that means

DTime(Ty) \ AvDTime(Ty, {uniform}) # 0 .

The idea is to diagonalizes slowly enough over the sequence of DTM My, Ms, ... such
that either an input can be found, on which M; differs from the diagonal language L
to be constructed, or M; spends too much time on sufficiently many inputs. These
inputs will have enough weight to contradict that L is accepted by M; in average
time T7.

Now observe that if V; < V5 then Vi—rankable C Vo—rankable. Therefore,
DTime(T) C AvDTime(T,Vi-rankable) C AvDTime(T, {uniform})

Furthermore, we can show an optimal separation of these averge case classes with
respect to the complexity of the distributions.

Theorem 4 For d > 1, N < Vs < o(V1) and V1(6N) < O(T) holds:
AvDTime(T, Vi -rankable) C AvDTime(T,V>-rankable) .

The proof of this separation result with a fixed time bound is a rather complicated
diagonal construction. We construct a distribution that is V3— but not Vo—rankable
with the property that some long inputs are assigned small ranks.

The left side of fig. 1 shows a pictorial description of the hierarchies implied by
the last two theorems. Each point in the diagram represents a complexity class
AvDTime(T,V-rankable) defined by the two complexity bounds T" and V.

5 Reductions and Completeness for Average Case
Complexity Classes

A meaningful reduction between distributional problems (L1, p1) and (Ls, p2) has to
relate the distributions p;, resp. rank functions p; in order to guarantee that a good
average case behaviour of one problem is transferred to the other. For this prupose,
Levin introduced the notion of dominance. Considering the ranking, this property
can be expressed by a simple condition if the reduction is injective. This is not a real
restriction for reductions between standard NP—complete problems. For technical
reasons we assume in the following that all distributions p have the property that all
ranks are unique, that means the corresponding rank function p = rank, is injective.
By a slight perturbation of the probabilities, this can always be achieved.



Definition 8 An injective function f : X* — X* is a distributional reduction
from the distributional problem (L1, p1) to the distributional problem (Lo, p2) if the
following conditions hold:

1. f is a polynomial time reduction from Ly to Lo in the classical sense, that means
f can be computed in deterministic polynomial time and z € Ly & f(x) € Lo.

2. Domination: There exist constants co,cy > 0 such that for all z € X*
p2(f(z)) < co || pi(z) .

In order to analyse the average case complexity of problems in NP we first consider
distributional problems.

Definition 9

NP .= NP x POL-rankable = {(L,p)|L € N'P and pn € POL-rankable} .

A distributional problem (L, p) is N'P—distributional complete if (L, p) € Npdist
and if for all distributional problems in N'PUS' there exists a distributional reduction
to (L, p).

A language L is N'P—average complete if L € NP and for all L' € NP and
p' € POL-rankable there exists a distribution (ranking) p € POL-rankable such that
(L', p") has a distributional reduction to (L, p).

Lemma 2 If (L1, p1) € NPYY, (Ly, py) € DistP, and (L1, p1) has a distributional
reduction to (Ls, p2) then (L1, p1) € DistP.
If (L, p) is N'P—distributional complete then L is N'P—average complete.

Theorem 5 If an N'P-average complete language belongs to AvP then N'P C AvP.

Definition 10 The bounded halting problem NBH for NTM is the language
NBH := {(201'0%) | timeps, (z) <t} .

Let cod(n) be a self-delimiting binary encoding of the natural number n of length
O(log n) that can be computed in time O(n). Define a distribution for NBH by

bin (z cod(t) cod(i)) if w = z01t07,
00 else.

rankypg (w) = {

Observe that rankygy, resp. any distribution with this rank function, is linear rank-
able. The following reduction uses Levin’s idea in case of computable distributions
(see [Levi86] and [Gure91]).



Theorem 6 (NBH, rankypy) is N'P-distributional complete.

Proof: Let (L,p) € NPYs with rank function r and M; be a NTM that accepts
xz € L in time ¢(|z|), where ¢ is a polynomial. For inputs not in L the machine M;
does not halt on any computation. Let M; be a NTM that on input by, where b is
a single bit and y € X*, does the following:

If b = 0 then find a string z such that r(z) = bin(y), else set = := y.

Simulate M; on input z. There exists a polynomial p such that M; halts on input x
in time p(|z|) iff M; accepts. We define a reduction f by

[ 1z01P(zDo if 7(x) > bin~ (),
fla) = {Obin(r(a:))OI”('””')Oj if 7(x) < bin™"(x).

The reduction property is obvious for f. Domination is achieved because a string is
coded by its rank in case the rank is smaller than its binary length. |

Corollary 2 NBH is N'P-average complete.

Let us consider a standard (worst-case) reduction f that is injective, invertible in
polynomial time and honest, that means |f~!(y)| < R(|y|) for some polynomial R.
Then the reduction can be translated into one for the average case.

Theorem 7 Let f be an injective, polynomial time invertible and honest reduction
from Ly to Ls. If Ly is N'P—average complete then the same holds for Ls.

Proof: To get a distributional reduction from a distributional problem (L1, p1) to
Ly define the rank function for Ly by p2(y) := p1(f~'(y)). Thus the dominance
property is trivially fulfilled and because of the invertibility and honesty of f the
complexity of ps is polynomially bounded if this holds for p;.

AvDTime(T,v-rankable)
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Fig. 1. On the left: hierarchies between average case complexity classes; on the right: dif-
ferent average case behaviour of languages L;



6 The Average Case Complexity of Problems in NP

An interesting question is whether NP problems for certain bounds V can be
solved efficiently on average, at least for V-rankable distributions. Therefore, for
L € NP we look at the set of all pairs (T,V) € (POL,POL) such that L €
AvDTime(T,V-rankable) and call this the nose of L.

An N'P-problem that has a nontrivial nose can be considered feasible on average
for most practical applications. The height of a nose is defined by the supremum V'
of all pairs (7, V) contained in the nose. If L has a nose of height h we know that
there is a polynomial average time algorithm for L unless the inputs are supplied by
an adversary that needs at least O(h(]z|)) steps (in the worst case) to compute the
rank of z.

The right side of figure 1 visualizes the possible average case behaviour of languages
in A"P. The right halfspace of a line corresponding to a language L; contains all pairs
(T, V) such that L; € AvDTime(T,V-rankable). L, is an example of a language
that cannot be solved efficiently, even on the average with respect to very simple
distributions. Lo represents a feasible problem for all distributions that can be com-
puted within the complexity bound A, but not for more complex distributions. If
NP contains such a language with h € POL then NP € AvP. On the other hand,
L3 can be solved efficiently for all polynomially rankable distributions and if such
a language were N'P-average complete then NP C AvP. If L, were N"P—complete
then NP would collapse to P since, as we have shown, for ranking bounds above
h(T) the average case complexity equals the worst case complexity.

Using the completeness of the bounded halting problem and invertible distributional
reductions, standard NP-complete problems can be shown to be A'P-average com-
plete for a linear rankable distribution. As an example, we can prove this for the
satisfiability problem SAT.

Theorem 8 There exists a ranking p of linear complexity such that the distribu-
tional problem (SAT,p) is N'P—distributional complete. Thus, SAT is N'P—average
complete.

Therefore SAT has no nontrivial nose unless NP C AvP. An explicit distribution
that turns SAT into a hard distributional problem can efficiently be computed from
the ranking p, for example as u(x) := ¢/(p(z) log® p(z)). It seems that with respect to
Levin’s notion of computability no such distribution is known that can be computed
in polynomial time.

7 Conclusions

We have shown that the average case time complexity of an algorithm can be es-
timated as precisely as in the worst case. Ranking the input space and measuring



the complexity of a distribution with respect to its rankability has been proved to
an appropriate and natural concept. Classical results like tight hierachies can be
obtained this way, both for the time complexity and the complexity of the distri-
butions. Based on these notions, starting with distributional complexity classes we
have presented meaningful definitons of average case complexity classes the elements
of which are languages in the standard sense. They are directly comparable to worst
case classes.

Definitions for reductions and completeness have been given for distributional and
average case classes. This way, one overcomes problems with flat distributions in
Levin’s approach as observed by Gurevich [Gure91]. In a natural way, standard N'P—
completeness translates into a completeness for average case analysis. In contrast
to computability, for many N P-problems a hard polynomial time bounded rank
function can be constructed, and in contrast to sampleability this function can be
used to construct computable distributions efficiently. We have shown this for the
basic complete problem SAT. The maximal complexity of distributions such that a
problem can be solved in average polynomial time — the height of the nose — has
been proposed as a measure for the average case complexity of problems above P.
It may be possible to prove the existence of problems with nontrivial noses by using
one-way-functions as reductions (compare [VeLe88] and [ImLe90]).

These ideas can also be applied to other cases like the analysis of average space
complexity.
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