
On Approximating Real-World Halting Problems

Sven K̈ohler2, Christian Schindelhauer1, and Martin Ziegler3

1 Heinz Nixdorf Institute, University of Paderborn,schindel@uni-paderborn.de
2 University of Paderborn,skoehler@uni-paderborn.de

3 University of Southern Denmark,ziegler@imada.sdu.dk

Abstract. No algorithm can of course solve the Halting Problem, that is, decide
within finite time always correctly whether a given program halts on a certain
given input. It might however be able to give correct answers for ‘most’ instances
and thus solve it at least approximately. Whether and how well such approxima-
tions are feasible highly depends on the underlying encodings and in particular
the G̈odelizating (programming system) which in practice usually arises from
some programming language.
We consider BF, a simple yet Turing-complete real-world programming language
over an eight letter alphabet, and prove that the natural enumeration of its syntac-
tically correct sources codes induces a both efficient and dense Gödelization in
the sense of [Jakoby&Schindelhauer’99]. It follows that any algorithmM approx-
imating the Halting Problem for BF errs on at least a constant fractionεM > 0 of
all instances of sizen for infinitely manyn.
Next we improve this result by showing that, in every dense Gödelization, this
constant lower boundε to be independent ofM; while, the other hand, the Halting
Problem does admit approximation up to arbitrary fractionδ > 0 by an appropri-
ate algorithmMδ handling instances of sizen for infinitely manyn. The last two
results complement work by [Lynch’74].

1 Introduction

In 1931, the logician KURT GÖDEL constructed a mathematical predicate which could
neither be proven nor falsified. In 1936, ALAN TURING introduced and showed the
Halting ProblemH to be undecidable by a Turing machine. This was considered a
strengthening of G̈odel’s result regarding that, at this time and preceding AIKEN ’s
Mark I and ZUSE’s Z3, the Turing machine was meant as an idealization of an aver-
age mathematician.

Nowadays the Halting Problem is usually seen from a quite different perspective.
Indeed with the advent of and increasing reliance on high speed digital computers and
huge pieces of software running on them, source code verification or at least the detec-
tion of stalling behaviour becomes ever more important. In fact, by RICE’s Theorem,
this is equivalent to many other real-world problems arising from goals like automatized
software engineering, optimizing compilers, formal proof systems and so on. Thus, the
Halting problem is a very practical one which has to be dealt with some way or another.

One direction of research considered and investigated the capabilities of extended
Turing machines equipped with some kind of external device solving the Halting prob-
lem. While the physical realizability of such or other kinds of super-Turing computers

2 S. Köhler, C. Schindelhauer, M. Ziegler

is questionable and in fact denied by the Church-Turing Hypothesis, the current field
of Hypercomputation puts in turn this hypothesis into question. On the theoretical side,
these considerations led to the notion of relativized computability and the Arithmetical
Hierarchy which have become standard topics in Recursion Theory [Soar87].

1.1 Approximate Problem Solving

Another approach weakens of the usual notion of algorithmic solution from strict to
approximate or from worst-case to average case. The first arises from the fact that many
optimization problems areN P -complete only when requiring the solution to exactly
attain the, say, minimum whereas they become computationally much easier when ask-
ing for a solution only within a certain factor of the optimum.

Regarding decision problems, a notion of approximate solution has been established
in Property Testing [Gold97]. Here for inputx∈ Σn, the answer “x∈ L” is considered
acceptable even forx 6∈ L provided thaty∈ L holds for somey∈ Σn with (edit or Ham-
ming) distanced(x,y)≤ εn. Observe that this notion of approximation strictly speaking
refers to the argumentsx to the problem rather than the problemL itself. Also, any
program sourcex is within constant distance from the terminating oney obtained by
changing the first command(s) inx by ahalt instruction.

Average case analysis is an approach based on the observation that the hard in-
stances which make a certain problem difficult might occur only rarely in practice
whereas most ‘typical’ instances might turn out as easy. So, although for exampleN P -
complete, an algorithm would be able to correctly and efficiently solve this problem in,
say, 99.9% of all cases while possibly failing on some few and unimportant others. In
this example,ε = 1/1000 is called the error rate of the problem under consideration
with respect to a certain probability distribution or encoding of its instances.

Such weakenings have previously been mainly applied in order to deal with impor-
tant problems where the practitioner cannot be silenced by simply remarking that they
areN P -complete, that is, within complexity theory. However the same makes sense,
too, for important undecidable problems such as Halting: even when possibly erring
on, say, every 10th instance, detecting the other 90% of stalling programs would have
prevented many buggy versions of a certain operation system from being released pre-
maturely.

1.2 The Error Complexity

So instead of deciding some (e.g., hard or even non-recursive) problemL, one permits
solving some problemS which approximatesL in the sense that the symmetric4 set
differenceA := L 4 S:= (L \S)∪ (S\L) is ‘small’. For L ⊆ Σ∗ (with an at least two-
letter alphabetΣ) this is formalized, analogously to the error complexity from average
analysis, [JaSc99, DEFINITION 1] as the asymptotic behavior ofµ{x̄∈ (L 4 S)|x̄∈ Σn}
for a fixed probability measureµ : Σ∗ → [0,1]; if this quantity tends to 0 asn→ ∞ it
basically means that, for (µ-) average instances,S ultimately equalsL. In the case of
µ denoting the counting measure, this amounts [Papa95, §14.2, p.336],[RoUl63] to the
following

4 The error to the Halting problem can in fact be made one-sided, see Corollary 22 below.

On Approximating Real-World Halting Problems 3

Definition 1. For A⊆ Σ∗, let density(A,=n) := #(A∩Σn)/#Σn and
density(A,<n) := #(A∩Σ<n)/#(Σ<n) whereΣ<n =

Sn−1
j=0 Σ j .

For A⊆ N, let Density(A,N) := #(A∩{0, . . . ,N−1})/N.

The latter formalization has been considered independently in [RoUl63,Lync74]5 for
approximating decision problemsL ⊆ N. The notions are related as follows:

Lemma 2. For x∈ N, let x̄ denote the x-th string inΣ∗ ordered with respect to length
(ties broken arbitrarily). For A⊆ N, Ã := {x̄ : x∈ A}, and 0≤ ε ≤ 1 it holds:
a) density(Ã,=n)≤ ε ∀n ⇒ density(Ã,<n)≤ ε ∀n.
b) Density(A,N)≤ ε ∀N ⇒ density(Ã,<n)≤ ε ∀n.
c) density(Ã,<n)≤ ε ∀n ⇒ Density(A,N)≤ ε′ ∀N where ε′ := ε · (2− ε).

Taking complements yields similar claims for reversed inequalities “≥ ε”.

Since 0< ε′ < 1 whenever 0< ε < 1 in b+c), both densities are essentially equivalent up
to constants in that one tends to 0/1 iff so does the other. This allows us to deliberately
switch in the sequel betweenA⊆ Σ∗ encoded over one alphabetΣ (say, the decimals
{0,1, . . . ,9}) and its re-coding over some other (e.g., binary or hexadecimal) finiteΣ′.

Proof (Lemma 2).a) is obvious; for b) observe density(Ã,<n) = Density
(
A,#(Σ<n)

)
.

This also establishes c) in caseN = #(Σ<n) = #Σn−1
#Σ−1 with #(A∩{0, . . . ,N−1}) ≤ ε ·

#(Σ<n), whereas the worst-case occurs forN = #(Σ<n)+ε ·#Σn with #(A∩{0, . . . ,N−
1}) = ε ·#(Σ<n)+ ε ·#Σn. Then and thus,

Density(A,N) ≤
ε · #Σn+1−1

#Σ−1
#Σn−1
#Σ−1 + ε ·#Σn

= ε ·
(

1+(1− ε) · #Σ−1

#Σ− 1
#Σn

)
≤ ε ·

(
1+(1− ε)

)
ut

For a good approximationSof L, one wants the density ofA= L4 Sto eventually drop
below some prescribedε; that is satisfy, e.g.,∃n0 ∀n≥ n0 : density(A,n)≤ ε.

Definition 3 ([Lync74,JaSc99]). An inequality “ f(n) ≤ g(n)” depending on n∈ N
holdsalmost everywhere, denoted by “f(n) ≤ae g(n)”, iff ∃n0∀n≥ n0 : f (n) ≤
g(n). It holdsinfinitely often (“f (n)≤io g(n)”) iff ∀n0∃n≥ n0 : f (n)≤ g(n).

So if “density(A,n)≤ae ε” fails, one may try for the weaker “density(A,n)≤io ε”.

1.3 The Halting Problem

The halting problem is defined with respect to an (often implicitly chosen) program-
ming system. Here we follow the notation of [Roge67,Soar87,Smit94].

Definition 4. A Gödelization ϕ is a sequence of all partial recursive functions s.t.

– there exists a partial universal program u withϕu(〈i,x〉) = ϕi(x) (UTM)
– and a total program s withϕs(〈i,x〉)(y) = ϕi(〈x,y〉) (SMN)
– for a bijective computable function〈·, ·〉 : Σ∗×Σ∗ → Σ∗ or 〈·, ·〉 : N×N→ N.

calledpairing function. TheHalting problem for ϕ is Hϕ = {〈i,x〉 : x∈dom(ϕi)}.
5 We are considerably indepted to an anonymous referee for pointing out the work of N. LYNCH

4 S. Köhler, C. Schindelhauer, M. Ziegler

The Halting problem is sometimes alternatively defined as the taskH̃ϕ of deciding
whether a given programi terminates on the empty input, that is, whetherλ ∈ dom(ϕi);
or the question whetheri ∈ dom(ϕi). Based on RICE’s Theorem, all three versions can
be reduced to one another and are thus equivalent from the point of view of strict com-
putability but in generallynot concerning approximations; see Example 24.

Similarly, strict undecidability ofHϕ holds independently of the underlying pro-
gramming system whereas a change inϕ may sensitively affect its error complexity.
In fact one can artificially ‘blow up and pad’ any Gödelization to obtain one which
where already a constant answer yields exponentially small error to the Halting prob-
lem [Lync74, PROPOS.1]. While thePadding Lemma of Recursion Theory requires any
programming system to repeat each computable function an infinite number of times,
these repetitions should occur in a ‘balanced’ way for the Gödelization to be reasonable.

Definition 5. Gödelizationϕ isdense iff ∀i ∃c> 0 : density
(
{ j : ϕi = ϕ j},n

)
≥ae c.

Another influence to the complexity of the Halting problem arises from the pairing
function under consideration. Again, in order to avoid trivial approximations, we restrict
to pairing functions which arepair-fair in the sense of [JaSc99, DEFINITION 5] and
recall that for instance the standard pairing〈x,y〉= x+ (x+y)(x+y+1)

2 satisfies this condi-
tion. It has been proven that, under these natural restrictions, every heuristic claiming
to solve the Halting problem makes at least a constant fraction of errors:

Theorem 6 ([JaSc99, THEOREM 4]). LetR EC denote the class of recursive languages
andϕ a dense G̈odelization. Then∀S∈ R EC ∃ε > 0 : density(Hϕ 4 S,n) ≥ae ε.

1.4 Own and Related Contributions

Observe that the lower approximation boundε in Theorem 6 may in general depend on
S; it seems thus still conceivable thatHϕ admits an approximationschemein the sense
that better and better algorithms achieve smaller and smaller error densities. In fact the
question whether or not there exists auniversalconstant lower bound was open for half
a decade [JaSc99, bottom of p.402].

The present paper gives both a positive and a negative answer to this question:

Theorem 7. For any dense G̈odelizationϕ it holds
a) ∃ε > 0 ∀S∈ R EC : density(Hϕ 4 S,n) ≥io ε.
b) ∀ε > 0 ∃S∈ R EC : density(Hϕ 4 S,n) ≤io ε.

This complements [Lync74, PROPOSITION6]5 whereae- rather thanio-approximation
is considered. In addition, our work differs from [Lync74] in treating the Halting prob-
lemHϕ with inputs as opposed tõHϕ; see the discussion following Definition 4. Thirdly,
we considerdenseprogramming systems whereas [Lync74,P.147] requires them to be
optimal in the sense of [Schn75] — a strictly6 stronger condition:

Lemma 8. Any optimal G̈odelizationϕ is denseaccording to Definition 5.

Proof. Start with some dense G̈odelizationϕ′. In ϕ, fix an arbitrary indexi ∈ N. Thus
ϕi = ϕ′i′ for somei′ ∈N. ϕ′ being dense, the setJ′ := { j ′ : ϕ′i′ = ϕ′j ′} has Density(J′,N)
≥ae c for somec> 0. By definition of optimality there existsC∈N and to eachj ′ some
j ≤C · j ′ such thatϕ j = ϕ′j ′ . Hence, Density({ j : ϕi = ϕ j},N)≥ae c/C. ut

On Approximating Real-World Halting Problems 5

The above differences (Hϕ rather thanH̃ϕ, dense rather than optimal Gödel numberings)
to [Lync74] are due to our interest in the Halting problem as arisingin practice, that is,
for real programming languages; see Sections 1.5 and 2. We focus on mere computabil-
ity of according approximations; in particular our work is not related to therestricted
Halting problem —Given(i, t), does Turing machine#i terminate after≤ t steps?—
considered in [Mach78, SECTION 6.1] for complexity purposes.

1.5 Omega Numbers

Approximations to the Halting problem have been treated by encodingH into a single
realr ∈R and then considering computational approximations to thisr. A first encoding
goes back to [Spec49] in terms of the numberx[H] = ∑n∈H 2−n whose binary digits are
obviously not decidable but semi-decidable, i.e., any 1 can be verified within finite time.

CHAITIN ’s Omega-Number [Chai87,LiVi97] gives another way of encoding the en-
tire Halting problem into a single real ΩU = ∑x̄∈dom(U) 2−|x̄| whereU denotes
a universal Turing machine which is required to be self-delimiting. This implies by
KRAFT’s inequality thatΩU ≤ 1 can be interpreted as the probability forU to termi-
nate upon input of a random program.ΩU is considered ‘denser’ and more difficult to
approximate thanx[H] because its binary digits are not even semi-decidable; see, e.g.,
[LiVi97,CHKW01]. At first, it has therefore received noticable attention when [CDS01]
did succeed in determining the first 64 bits ofΩU .

However this approximation had been significantly simplified by the observation
that, for the specificU considered in [CDS01], an overwhelming fraction of all in-
stances do not contain ahalt instruction at all and thus stall trivially. In other words,
those program sources arising in practice form only a very sparse subset within the
programming system treated there. In order to avoid such trivialities and instead ob-
tain meaningful results about the possibility or impossibility of approximations to the
Halting problem, we now present:

2 A particularly compact, practical dense programming system

Concerning the applicability of Theorem 6, its prerequisite is satisfied by every Turing-
complete programming language over alphabetΣ with some kind ofend-of-string(eof)
indicator. More generally it holds:

Example 9.Let ϕ = (ϕx̄)x̄∈Σ∗ denote a G̈odelization which isself-delimitingin the sense
that, wheneverϕx̄ does not identically diverge, it holdsϕx̄ = ϕx̄◦ȳ for all ȳ. Then,ϕ
is dense. This includes, for arbitary Gödelizationψ = (ψn)n∈N , the ‘tally’6 re-coding

ϕ1n0 := ψn, ϕ1n0x̄ := ψn for x̄∈ {0,1}∗, ϕx̄ :≡⊥ for x̄∈ {1}∗ .

While a special symbol〈eof〉 may always be added toΣ, we consider this cheating.
Also from the practical side, compilers for programming languages nowadays rely on
the end-of-file being indicated by the operating system (e.g., viafeof) as opposed to the
out-dated detection of characters likenul, ˆD, or ˆZ. In the present section we analyze
and establish a practical,non-self delimiting programming language to be dense.

6 see [Book74]. Also, this dense Gödelization is obviously non-optimalin the sense of [Schn75].

6 S. Köhler, C. Schindelhauer, M. Ziegler

2.1 TheBF programming language

BF (‘BrainF*ck’) was designed in 1993 by URBAN M ÜLLER and has since then spread
the Internet for its shrewd simplicity [Wiki05]. It is a Turing-complete programming
language over the eight letter alphabetΣBF = { < , > , + , - , , , . , [,] }. The
first six characters represent commands, the remaining two brackets are used to con-
struct simple loops.

A BF-program stores data on a tape similar to that of a Turing-Machine. Each cell
of the tape may contain an integer between 0 and 255, that is, one byte. The current
cell may be incremented using+ and decremented with- ; (incrementing 255 will
result in 0, decrementing 0 will result in 255). Other cells can be accessed by shifting
the tape either to the left< or to the right > . Initially, all cells are set to 0. The two
commands , and . are for input and output:, will fetch a byte from the input
stream and store it into the current cell;. appends the byte in the current cell to the
output stream.

Loops are formed by putting commands inbetween the two bracket symbols[

and] . Each time the loop is about to be executed, the current cell is checked whether
it contains a value other than 0. If so, the loop is executed again. The commands in
the loop are skipped, if the current cell was 0. Note, that after each round of the loop,
another cell could have been made current by the commands within the loop.

Definition 10. Let BFn ⊆ Σn
BF denote the set of strings̄p of length n representing a

syntactically correctBF source code andBF =
S

n BFn.

Observe that the syntax of this programming language is quite simple, the only require-
ment being that opening and closing brackets are nested correctly.

Remark 11.BF is sometimes refered to with a fixed tape of 30.000 cells size. How-
ever the level of standardization is not very advanced yet. In order to obtain a Turing-
complete system, we shall assume an unbounded tape.

2.2 Naive encoding ofBF

This straight-forward idea takesBF source codes as G̈odel indices:

Definition 12. For p̄ ∈ Σ∗BF, let ψp̄ denote the function obtained by interpretinḡp as
source code for someBF program;ψp̄ :≡⊥ in casep̄ lacks syntactical correctness.

However, closer analysis reveals that this programming system isnot dense:

Theorem 13. LetBFn := |BFn| denote the number of correctBF-sources of length n.
a) BFn+1 = 6·BFn + ∑n−1

i=0 BFi ·BFn−1−i .

b) BFn = ∑n/2
k=0Ck ·

(n
2k

)
·6n−2k, where Ck = 1

k+1 ·
(2k

k

)
denotesCATALAN ’s number.

c) (n+3) ·BFn+1 = (12n+18) ·BFn −32n·BFn−1.
d) BFn+1 ≤ 8·BFn.
e) BFn ≤ O(8n/

√
n).

Thus among all 8n stringsp̄∈ Σn
BF, the fraction of syntactically correct sources tends to

zero, permitting forHψ a trivial O(1√
n)-approximation.

On Approximating Real-World Halting Problems 7

Proof. a) A syntactically correctBF program of lengthn+ 1 either consists of one
(out of 6 possible) non-loop character followed by an, again syntactically correct,
program of lengthn; or, in case it begins with the loop character[, it consists of
a loop (whose body is a syntactically correct program of lengthi for somei < n)
followed by some other syntactically correct source of lengthn−1− i.

b) Consider the collectionBFn,k ⊆ BFn of BF programs ¯p ∈ Σn
BF of length n with

0≤ k≤ n/2 occurrences of[or, equivalently, of] . Then,Ck equals the number
of correct ways of nesting 2k brackets [Bail96]. Any ¯p∈ BFn,k can be obtained in
a unique way by choosing 2k out of n positions in ¯p for placing these brackets and
by filling each of the remainingn−2k positions independently with one out of the
6 non-bracket characters inΣBF.

c) follows from a) and b) by induction.
d) Claim c) immediately yields BFn+1 ≤ c0 ·BFn by induction, wherec0 := 12. Re-

peated application of c) establishes a sequence of improved bounds BFn+1 ≤ ck ·
BFn ∀n with (ck) decreasing down to 8.

e) Combining c+d), obtain BFn+1 ≤ 8 ·
n+ 9

4

n+3
· BFn ≤ 8n ·

n

∏
i=1

i + 9
4

i +3
,

n
∏

i=−2

i+ 9
4

i+3 =
n+3
∏
j=1

j−3
4

j ≤
n+3
∏
j=1

j−1
2

j ,
(n

∏
j=1

2 j−1
2 j

)2 ≤
(n

∏
j=1

2 j−1
2 j

)
·
(n

∏
j=1

2 j
2 j+1

)
= 1

2n+1

ut

2.3 Compact encoding ofBF

Regarding Theorem 13, a dense programming system based onBF better avoids enu-
merating syntactically incorrect sources. This leads to the following

Definition 14. DefineϕN to denote the function computed by the N-th syntactically
correct BF program p̄N. More formally, letBF be ordered primarily with respect to
length n and secondarily according to the enumeration given by recursive application
of Theorem 13a), that is, by first listing the6 ·BFn programs starting with no loop and
then listing, recursively and for each i= 0. . .n−1, the loop bodies and loop tails asBF
sources of length i and n−1− i, respectively.

Although this programming system isnot self-delimiting, it holds:

Theorem 15. The G̈odelizationϕ from Definition 14 is dense.

We emphasize that this is by no means a consequence of syntactical correctness alone!

Proof. Fix a partial recursive function computed by someBF source ¯p∈BF m of length
m= |p̄|. Forn≥ m+2, we construct BFn−m−2 equivalent programs ¯p′ ∈ BFn. To this
end preced ¯p with a loop, i.e., let ¯p′ := [◦ q̄ ◦] ◦ p̄ for an arbitrary syntactically
correct source ¯q of lengthn−m−2. Since, upon start of execution, the current cell is
initialized to 0, this loop gets skipped anyway and ¯p′ thus behaves like ¯p, indeed. The
thus obtained sources ¯p′ constitute, in relation to BFn and by Theorem 13d), a fraction

BFn−m−2

BFn
≥ BFn−m−2

8m+2 ·BFn−m−2
= 8−m−2 =: c > 0

among all programs of lengthn≥ n0 := m+2. Now proceed as in Lemma 2c). ut

8 S. Köhler, C. Schindelhauer, M. Ziegler

Conversion betweenBF sources and G̈odel indices is a central part of efficient (rather
than merely computable)SMN- andUTM-properties according to Definition 4. A naive
approach enumeratesall strings p̄ ∈ Σn

BF and counts the syntactically correct ones in
order to obtain ¯pN. This, however, gives rise to exponential time in logN. The following
result improves to running time polynomial in the input size, that is,|p̄| or logN:

Theorem 16. Given a programp̄ = p̄N ∈ BFn of length n, one can calculate its index
N ∈ N according to Definition 14 within timeO(n3 · logn · log logn). Conversely, from
N, the accordingp̄N is computable usingO(n3 · logn· log logn) steps where n= logN.
Both algorithms use memory of sizeO(n2). See alsohttp://www.upb.de/cs/bf

To conclude, the G̈odelization introduced in this section is practical, efficient, and
dense. It even seems plausible to satisfy the stronger condition ofoptimality; recall
Lemma 8. To this end we want to establish a sparseSMN-property forBF as required in

Lemma 17. Let ϕ = (ϕp̄)p̄∈Σ∗ denote a G̈odelization andSMN-function s: Σ∗×Σ∗ →
Σ∗ according to Definition 4 satisfying|s(p̄, x̄)| ≤ c(p̄) + |x̄| for all p̄, x̄ ∈ Σ∗ with
arbitrary c : Σ∗ → N. Then,ϕ is optimal in the sense of[Schn75].

Proof. Fix some other G̈odelizationΦ. Consider itsUTM-functionΦU and letu′ denote
the index ofΦU in ϕ; i.e., ∀x̄∈ Σ∗ : ΦP̄(x̄) = ΦU (〈P̄, x̄〉) = ϕu′(〈P̄, x̄〉) = ϕp̄(x̄)
wherep̄ := s(u′, P̄) has by prerequisite length|p̄| ≤ c(u′)+ |P̄|= c0 + |P̄|. ut

3 The Error Complexity of Dense Programming Systems

In the last section we showed that a natural encoding ofBF is dense. From Theorem 6
it follows that every algorithmA trying to solve the Halting problem of such a dense
programming system errs on at least a constant fractionεA > 0. This constant fraction
εA > 0 may depend on the algorithmA and can be arbitrarily small. In this section we
will show that there is a universal constantε0 > 0 lower bounds the error made by any
heuristic trying to approximate the Halting problem for a dense Gödelization.

3.1 Halting Ratio

A straight-forward implication of Theorem 6 is that neither nearly all programs halt nor
do nearly all of them stall. This is formalized as follows:

Definition 18. Call hϕ : N 7→Density
(
{〈i,x〉 : x∈ dom(ϕi)},N

)
thehalting ratio.

Like ΩU (see Section 1.5),hϕ describes a probability for a random instance to halt.

Corollary 19. For every dense G̈odelizationϕ, ∃c > 0 : c ≤ae hϕ ≤ae 1−c.

Proof. Consider two indicesi, j with dom(ϕi) = Σ∗ and dom(ϕ j) = /0. Because of the
dense programming system and the pair-fair pairing, these indices alone induce a con-
stant fraction of halting and non-halting indices. ut

It seems desirable, again similarly to Section 1.5, to investigate the real numberrϕ :=
limn→∞ hϕ(n). However in many caseshϕ fails to converge:

On Approximating Real-World Halting Problems 9

Example 20.Take any programming systemψ = (ψi)i∈N and defineϕ = (ϕI)I∈N by

ϕ = (ψ1, ψ2,ψ2,ψ2,ψ2, , ψi ,ψi ,ψi , . . . ,ψi ,ψi ,︸ ︷︷ ︸
i i times

.) .

ObviouslyϕI behaves identically for allI within a block arising from the sameψi . Since
the sizei i of such a block dominates by far those of all previous blocks together, namely

Ni = 1+4+ . . .+(i−1)i−1 ≤ (i−1)0+(i−1)1+ . . .+(i−1)i−1 = (i−1)i−1
i−2 ≤ 1

i−2 · i
i ,

a) termination ofψi determines whetherhϕ(Ni) is (arbitarily close to) 1 or 0.
In particular,hϕ is an oscillating function and fails to converge forN → ∞.

b) As infinitely many instances ofHψ are undecidable, so is almost every entire block
of Hϕ. In particular, ∀ε > 0∀S∈ R EC : Density(Hϕ 4 S,N) ≥io 1− ε.

c) On the other hand,S:= /0 ∈ R EC satisfies ∀ε > 0 : Density(Hϕ 4 S,N) ≤io ε.
Indeed, each of the infinitely manyi corresponding to stalling instances ofHψ yields
an entire block of them inHϕ, dominating Density(Hϕ,Ni + i i)≤ 1

i−2 as above. ut

With the last two properties, this specific Gödelization concretizes the REMARK on top
of p.147 in [Lync74]. Compare them toio-approximations of arbitrary dense program-
ming systems according to Theorem 7.

3.2 Relation between two Approximations

Consider the question of approximating the functionhϕ : N→Q. This is related to the
approximation of the Halting problem in the sense of Section 1.2 as follows:

Lemma 21. Fix Gödelizationϕ with Halting problem H= Hϕ and halting ratio h= hϕ.

a) Given N∈ N, ε ∈ Q, and b∈ Q with |b−h(N)| ≤ ε, one can compute a list H′N ⊆
H ∩{0,1, . . . ,N−1} of halting instances satisfyingDensity(H 4 H ′

N,N)≤ ε.

b) Let S⊆ N be arbitrary. Given N∈ N andε ∈Q such thatDensity(H 4 S,N)≤ ε,
an S-oracle machine can compute b∈Q with |b−h(N)| ≤ ε.

In particular for thisϕ and anyε > 0, the Halting problem Hϕ canae beε-approximated
iff the halting ratio hϕ canae beε-approximated; analogously for approximatingio.

Proof. a) Recursively enumerate elementsx∈ H ∩{0,1, . . . ,N−1} until having ob-
tained a collectionH ′

N ⊆ H of cardinality #H ′
N ≥ (b− ε) ·N.

b) By repeatedly quering the oracleS for all finitely manyx∈ {0,1, . . . ,N−1}, cal-
culate the numberb := #(S∩{0,1, . . . ,N−1})/N. ut

Corollary 22. Fix computable f: N → Q and recursively enumerable L⊆ N admit-
ting (ae/io) an f(N)-approximation with two-sided error. Then L can (ae/io) be f(N)-
approximated with one-sided error.

Proof. W.l.o.g.L = Hϕ = H for someϕ. Let S⊆N denote a recursive two-sidedf (N)-
approximation ofH. Upon input ofx, computeε := f (N), N ≥ |x|; then obtain an
approximationb∈ Q for h(N) by virtue of Lemma 21b), observing that oracle queries
to S can be decided by presumption. Then apply Lemma 21a) to get a someH ′

N ⊆
H ∩{0, . . . ,N−1} with Density(H 4 H ′

N,N)≤ ε, i.e., one-sidedε-approximation. ut

10 S. K̈ohler, C. Schindelhauer, M. Ziegler

3.3 Approximating the Halting Ratio

We now reveal that the Halting ratio of a dense programming system infinitely often
admits a well approximation and infinitely often it does not.

Lemma 23. Fix a dense programming systemϕ.
a) For all ε > 0, there exists a TM M such that |M(n)−hϕ(n)| ≤io ε .
b) There existsε > 0 such that all TMs M have |M(n)−hϕ(n)| ≥io ε .

Proof. a) For fixedε > 0 considerk := d1/εe and thek+ 1 constant (trivially com-
putable) functions 0, 1

k , 2
k , 3

k , . . . ,1. For every input lengthn, at least one of these val-
ues differs fromhϕ(n) ∈ [0,1] by at mostε. A second application of pidgeon-hole’s
principle yields that some of these constant functions is close tohϕ for infinitely
manyn.

b) For a fixed rationalε > 0 (whose actual value we determine later) we assumeϕi(n)
for somei ∈ N is a candidate for computinghϕ(n).
Now an algorithmA computes on inputz∈ Σn the following. First it computes
b = ϕn(n) as an approximation tohϕ(n) on input z = 〈i,x〉 ∈ Σn. Let f1(z) = i
and f2(z) = x be the decoding functions ofz = 〈i,x〉. Let i∗ be an index ofA.
According to the Recursion Theorem,A may know its own index andε ∈Q. Then
the algorithm simulates all inputs toHϕ of lengthn in parallel step by step until
(b−ε)|Σ|n stringsy∈ Σn have been found withf2(y) ∈ dom(ϕ f1(y)) and f1(y) 6= i∗.
Let s denote this number of halting inputs〈i,x〉 ∈ Σn with i 6= i∗ found byA. If
s≥ (b− ε)|Σ|n then the algorithm halts, else the algorithm does not halt.
There is a chance that the algorithm does not halt before this last condition, which
means thatn 6∈ dom(ϕn) or less than(b− ε)|Σ|n strings of lengthn corresponding
to halting instances exist. In both casesϕn was proven not to computehϕ within the
error marginε.
Recall thati∗ is an index for algorithmA and that the repetition rate ofi∗ is con-
stant. The diagonalization argument is that all inputs〈i∗,x〉 will result in a(i∗,n) :=
|{〈i∗,x〉 ∈ Σn}| additional halting inputs of lengthn compared to(b− ε)|Σ|n where
ϕn predicted at most(b+ ε)|Σ|n halting instances. For large enoughn, this number
a(i∗,n) is lower bounded byΩ(|Σ|n), i.e.∃c > 0 : ∀aen : a(i∗,n) > c|Σ|n, because
of the pair-fair property of〈·, ·〉.
Now if s≥ (b− ε)|Σ|n then there are at least(b− ε + c)|Σ|n halting instances for
almost all input lengthsn whereϕn(n) is a candidate forhϕ(n). Note that there
are infinite many equivalent machinesn1,n2, . . . , with ϕni = ϕn. For ε < c/2 this
implies thatϕn errs infinitely often on these inputs of lengthni with an error margin
of at leastε (which can be determined independent fromn).
Therefore for all machinesM = ϕn there are infinitely many input lengthsn such
thatM(n) does not approximatehϕ(n) by an additional error term ofε. ut

3.4 The Halting Problem isae-hard and io -easy

Combining Lemma 21 and Lemma 23 establishes the already announced

Theorem 7.For any dense G̈odelizationϕ it holds
a) ∃ε > 0 ∀S∈ R EC : density(Hϕ 4 S,n) ≥io ε.
b) ∀ε > 0 ∃S∈ R EC : density(Hϕ 4 S,n) ≤io ε.

On Approximating Real-World Halting Problems 11

This solves the open problem stated in [JaSc99] for the case of dense programming
system. In particular, it shows that the dense encoding ofBF from Section 2.3 provides
a natural hard problem which cannot be approximated better than up to a constant factor.

Furthermore, Theorem 7 nicely complements [Lync74, PROPOSITION6]. Observe
that Claim b) there only seems to be stronger than our Theorem 7a) because of the
more restrictive presumption that the Gödelizationϕ under consideration beoptimal in
the sense of [Schn75] rather just dense.

In addition, [Lync74] refers to the Halting problem as termination ofϕi on the spe-
cial input i (that is, in our notation, tõHϕ; see Definition 4) whereas we treat the more
general and practically relevantHϕ, i.e., termination ofϕi on given inputx. Although
both problems are equivalent with respect to exact computability, their behaviour con-
cerning approximations differs significantly. This can be observed already in the proof
of Lemma 23b) which heavily relies on the described algorithmA’s behaviour to depend
on (the length of) its input. More explicitly, we have the following

Example 24.Consider the dense tally G̈odelizationϕ in Example 9. There, anyψn

gives rise to an asymptotic 2−n−1-fraction of equivalent instancesϕx̄. Thus, storing the
solutions toHψ for the firstN inputsψ1, . . . ,ψN allows for ae answering correctly a
fractionεN = ∑N

n=1n·2−n−1 of instances tõHϕ with εN → 1 asN → ∞.

4 Conclusion

Since the Halting problem is of practical importance yet cannot be solved in the strict
sense, we considered the possibility of approximating it. Similarly to the average-case
theory of complexity, this depends crucially on the encoding of the problem, that is
here, the programming system under consideration.

Many practical programming languages lacking density in fact do admit such an
approximation with asymptotically vanishing relative error for the simple reason that
the fraction of syntactically incorrect instances tends to 1. This was exemplified by a
combinatorial analysis of the Turing-complete formal languageBF. Here and in similar
cases, the question for approximation the Halting problem is equivalent to a mere syntax
check and thus becomes trivial and vain.

On the other hand, considering only syntactically correct sources was established to
yield an efficientanddense programming system in the case ofBF. For any such system,
we proved a universal constant lower bound on relative approximations to the Halting
problem even in the weakio-sense. Our third contribution establishes that, conversely,
any constant relative errorε > 0 is io feasible by an appropriate machineM.

Question 25.Is there some optimal (but necessarily non-dense) programming system
ϕ whose Halting problemHϕ satisfies the following even stronger inapproximability
property similar to [Lync74, PROPOSITION2]

∀S∈ R EC ∀ε > 0 : density(Hϕ 4 S,n) ≥io 1− ε or even ≥ae 1− ε ?

Observe that [Lync74, PROPOSITION6] reveals the answer to be negative concerning
the Halting problemH̃ϕ without input which, regarding Example 24, tends to be strictly
easier to approximate thanHϕ anyway.

12 S. K̈ohler, C. Schindelhauer, M. Ziegler

Another open problem, it remains whetherBF leads in Section 2.3 to an even opti-
mal (rather than just dense) Gödelization; cf. Lemma 8. Furthermore it is conceivable
— although by no means obvious — that the programming systemJot by C. BARKER

is dense as well; seehttp://ling.ucsd.edu/˜barker/Iota/#Goedel.

References

[Bail96] D.F. BAILEY : “Counting Arrangements of 1’s and -1’s”, pp.128–131 inMathematics
Magazinevol.69 (1996).

[Book74] R.V. BOOK: “Telly languages and complexity classes”, pp.186–193 inInformation
and Controlvol.26:2 (1974).

[CDS01] C.S. CALUDE, M.J. DINNEEN, C.-K. SHU: “Computing a Glimpse of Randomness”,
pp.361–370 inExperimental Mathematicsvol.11:3 (2001).

[CHKW01] C.S. CALUDE, P. HERTLING, B. KHOUSSAINOV, Y. WANG: “Recursively enu-
merable reals and ChaitinΩ numbers”, pp.125–149 inTheoretical Computer Science
vol.255(2001).

[Chai87] G.J. CHAITIN : Algorithmic Information Theory, Cambridge University Press (1987).
[Gold97] O. GOLDREICH: “Combinatorial property testing (a survey)”, pp.45–59 inProc. DI-

MACS Workshop in Randomized Methods in Algorithm Design(1997).
[JaSc99] A. JAKOBY , C. SCHINDELHAUER: “The Non-Recursive Power of Erroneous Compu-

tation”, pp.394–406 inFoundations of Software Technology and Theoretical Computer
Science(FSTTCS 1999), Springer LNCS vol.1738.

[Koeh04] S. KÖHLER: “Zur Approximierbarkeit des Halteproblems in einer praktischen
Gödelisierung”, Bachelor’s Thesis, University of Paderborn (2004).

[LiVi97] M. L I, P. VIT ÁNI : An Introduction to Kolmogorov Complexity and its Application,
2nd Edition, Springer (1997).

[Lync74] N. LYNCH: Approximations to the Halting Problem, pp.143–150 inJ. Computer and
System Sciencesvol.9 (1974).

[Mach78] M. MACHTEY, P. YOUNG: An Introduction to the General Theory of Algorithms, The
Computer Science Library (1978).

[Papa95] C.H. PAPADIMITRIOU : Computational Complexity, Addison-Wesley (1995).
[Roge67] H. ROGERSJR: Theory of Recursive Functions and Effective Computability, Mc-Graw

Hill (1967).
[RoUl63] G.F. ROSE, J.S. ULLIAN : “Approximation of Functions on the Integers”, pp.693–701

in Pacific Journal of Mathematicsvol.13:2 (1963).
[Schn75] C.P. SCHNORR: “Optimal Enumerations and Optimal Gödel Numberings”, pp.182–

191 inMathematical Systems Theoryvol.8:2 (1975).
[Smit94] C. SMITH : A Recursive Introduction to the Theory of Computation, Springer (1994).
[Soar87] R.I. SOARE: Recursively Enumerable Sets and Degrees, Springer (1987).
[Spec49] E. SPECKER: “Nicht konstruktiv beweisbare S̈atze der Analysis”, pp.145–158 in

J. Symbolic Logicvol.14:3 (1949).
[Wiki05] http://wikipedia.org/wiki/BrainFuck; Wikipedia, the free encyclopedia (2005)

