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Abstract. No algorithm can of course solve the Halting Problem, that is, decide
within finite time always correctly whether a given program halts on a certain
given input. It might however be able to give correct answers for ‘most’ instances
and thus solve it at least approximately. Whether and how well such approxima-
tions are feasible highly depends on the underlying encodings and in particular
the Gddelizating (programming system) which in practice usually arises from
some programming language.

We consider BF, a simple yet Turing-complete real-world programming language
over an eight letter alphabet, and prove that the natural enumeration of its syntac-
tically correct sources codes induces a both efficient and deadeli@ation in

the sense of [Jakoby&Schindelhauer'99]. It follows that any algorithapprox-
imating the Halting Problem for BF errs on at least a constant fraegjox 0 of

all instances of siza for infinitely manyn.

Next we improve this result by showing that, in every dengel@ization, this
constant lower boungto be independent &fl; while, the other hand, the Halting
Problem does admit approximation up to arbitrary fracion 0 by an appropri-

ate algorithmMg handling instances of sizefor infinitely manyn. The last two
results complement work by [Lynch’74].

1 Introduction

In 1931, the logician KIRT GODEL constructed a mathematical predicate which could
neither be proven nor falsified. In 1936LAN TURING introduced and showed the
Halting ProblemH to be undecidable by a Turing machine. This was considered a
strengthening of Gdel’s result regarding that, at this time and precedingei’s

Mark | and 2USESs Z3, the Turing machine was meant as an idealization of an aver-
age mathematician.

Nowadays the Halting Problem is usually seen from a quite different perspective.
Indeed with the advent of and increasing reliance on high speed digital computers and
huge pieces of software running on them, source code verification or at least the detec-
tion of stalling behaviour becomes ever more important. In fact, lpeR Theorem,
this is equivalent to many other real-world problems arising from goals like automatized
software engineering, optimizing compilers, formal proof systems and so on. Thus, the
Halting problem is a very practical one which has to be dealt with some way or another.

One direction of research considered and investigated the capabilities of extended
Turing machines equipped with some kind of external device solving the Halting prob-
lem. While the physical realizability of such or other kinds of super-Turing computers
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is questionable and in fact denied by the Church-Turing Hypothesis, the current field
of Hypercomputation puts in turn this hypothesis into question. On the theoretical side,
these considerations led to the notion of relativized computability and the Arithmetical
Hierarchy which have become standard topics in Recursion Theory [Soar87].

1.1 Approximate Problem Solving

Another approach weakens of the usual notion of algorithmic solution from strict to
approximate or from worst-case to average case. The first arises from the fact that many
optimization problems ar@/P-complete only when requiring the solution to exactly
attain the, say, minimum whereas they become computationally much easier when ask-
ing for a solution only within a certain factor of the optimum.

Regarding decision problems, a notion of approximate solution has been established
in Property Testing [Gold97]. Here for inpuix € 2", the answer X € L” is considered
acceptable even for¢ L provided thaty € L holds for somey € 2" with (edit or Ham-
ming) distancel(x,y) < en. Observe that this notion of approximation strictly speaking
refers to the argumentsto the problem rather than the probldmitself. Also, any
program source is within constant distance from the terminating gnebtained by
changing the first command(s)xby ahalt instruction.

Average case analysis is an approach based on the observation that the hard in-
stances which make a certain problem difficult might occur only rarely in practice
whereas most ‘typical’ instances might turn out as easy. So, although for exafple
complete, an algorithm would be able to correctly and efficiently solve this problem in,
say, 99.9% of all cases while possibly failing on some few and unimportant others. In
this exampleg = 1/1000 is called the error rate of the problem under consideration
with respect to a certain probability distribution or encoding of its instances.

Such weakenings have previously been mainly applied in order to deal with impor-
tant problems where the practitioner cannot be silenced by simply remarking that they
are \'P-complete, that is, within complexity theory. However the same makes sense,
too, for important undecidable problems such as Halting: even when possibly erring
on, say, every 10th instance, detecting the other 90% of stalling programs would have
prevented many buggy versions of a certain operation system from being released pre-
maturely.

1.2 The Error Complexity

So instead of deciding some (e.g., hard or even non-recursive) prablene permits
solving some problen® which approximates. in the sense that the symmefriset
differenceA:=L A S:= (L\ S U(S\L) is ‘small. ForL C Z* (with an at least two-

letter alphabek) this is formalized, analogously to the error complexity from average
analysis, [JaSc99, EFINITION 1] as the asymptotic behavior pfx e (L A S)|xe £"}

for a fixed probability measurg: Z* — [0, 1]; if this quantity tends to 0 a8 — oo it
basically means that, fop{) average instance§ ultimately equald.. In the case of

K denoting the counting measure, this amounts [Papa95, §14.2, p.336],[RoUI63] to the
following

4 The error to the Halting problem can in fact be made one-sided, see Corollary 22 below.
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Definition 1. For AC3*, let densityA,=n) = #ANX")/#2" and
density A, <n) 1= #HANZ<")/#Z") wherez<" =] 5Z.
For ACN, let DensityAN) := #(An{0,...,N—1})/N.

The latter formalization has been considered independently in [RoUI63,Lyhéi4]
approximating decision problenhsC N. The notions are related as follows:

Lemma 2. For x € N, let x denote the x-th string i&* ordered with respect to length
(ties broken arbitrarily). For ACN, A:= {X:x€eA}, and 0<e<1 itholds:

a) densitfA,=n) <& ¥n = densitfA, <n) <& Vn.

b) DensityA,N) <& YN = densitfA, <n) <& Vn.

c) densitfA <n) <e ¥n = DensitfAN)<e YN wheree :=¢-(2—¢).
Taking complements yields similar claims for reversed inequalities™

Since O< €' < 1 whenever & € < 1in b+c), both densities are essentially equivalent up

to constants in that one tends to 0/1 iff so does the other. This allows us to deliberately
switch in the sequel betweehC >* encoded over one alphabet(say, the decimals
{0,1,...,9}) and its re-coding over some other (e.g., binary or hexadecimal) Ehite

Proof (Lemma 2)a) is obvious; for b) observe dengify <n) = Density(A, #(Z<")).
This also establishes c) in cable= #(Z<") = #Z=1 with #(An {0,...,N - 1}) <e-
#(=<"), whereas the worst-case occursifoe #(Z<") + ¢ - #2" with #(An{0,...,N—
1}) =¢-#(Z<")+¢-#2". Then and thus,

#Zn+171 #z B 1

Density AN) < ——21 = a-<1+ 1-¢ ) <e (1+(1-¢
HAN) #1 L g gt5n (1-¢) H#Z — g0 (+@a-2)
O

# -1
For a good approximatioBof L, one wants the density &=L A Sto eventually drop
below some prescribed that is satisfy, e.g.3no Vn > ng : densitfA,n) < €.

Definition 3 ([Lync74,JaSc99] An inequality “f(n) <g(n)” depending on ne N
holdsalmost everywhere, denoted by “{n) <, g(ny’, iff Ingvn>ng: f(n) <
g(n). It holdsinfinitely often (“f (n) <, g(n}) iff Vnpan>ng: f(n) < g(n).

Soif “densityA,n) <, €” fails, one may try for the weaker “densité,n) <;, €”.

1.3 The Halting Problem

The halting problem is defined with respect to an (often implicitly chosen) program-
ming system. Here we follow the notation of [Roge67,Soar87,Smit94].
Definition 4. A Gadelization ¢ is a sequence of all partial recursive functions s.t.

— there exists a partial universal program u with,({i,x)) = ¢;i(x) (UTM)

— and a total program s withdg i ) (Y) = ®i({X,y)) (SMN)

— for a bijective computable functiofy, ) : Z* x &* — Z* or (-,-) . NxN—N.
calledpairing function. TheHalting problemfor ¢ is Hy = {(i,x) : xe dom(¢;)}.

5 We are considerably indepted to an anonymous referee for pointing out the work siigHL
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The Halting problem is sometimes alternatively defined as the E@sbf deciding
whether a given programterminates on the empty input, that is, whether dom(¢; );
or the question whethérc dom(¢;). Based on RCE’'s Theorem, all three versions can
be reduced to one another and are thus equivalent from the point of view of strict com-
putability but in generallyot concerning approximations; see Example 24.

Similarly, strict undecidability o, holds independently of the underlying pro-
gramming system whereas a changeimay sensitively affect its error complexity.
In fact one can atrtificially ‘blow up and pad’ anyd@elization to obtain one which
where already a constant answer yields exponentially small error to the Halting prob-
lem [Lync74, RRoP0S1]. While thePadding Lemma of Recursion Theory requires any
programming system to repeat each computable function an infinite number of times,
these repetitions should occur in a ‘balanced’ way for tihe@ization to be reasonable.

Definition 5. Godelizationp is dense iff Vi3c>0: density({j:¢i=¢;},n) > C.

Another influence to the complexity of the Halting problem arises from the pairing
function under consideration. Again, in order to avoid trivial approximations, we restrict
to pairing functions which arpair-fair in the sense of [JaSc99#PINITION 5] and
recall that for instance the standard pairimgy) = x+ wfyﬂ) satisfies this condi-
tion. It has been proven that, under these natural restrictions, every heuristic claiming

to solve the Halting problem makes at least a constant fraction of errors:

Theorem 6 (JaSc99, HEOREM4]). LetR EC denote the class of recursive languages
and¢ a dense @delization. ThenVSe REC Je>0: densityHy A Sn) >4 €.

1.4 Own and Related Contributions

Observe that the lower approximation boumnid Theorem 6 may in general depend on
S it seems thus still conceivable thdg admits an approximatioschemen the sense
that better and better algorithms achieve smaller and smaller error densities. In fact the
guestion whether or not there existargversalconstant lower bound was open for half
a decade [JaSc99, bottom of p.402].
The present paper gives both a positive and a negative answer to this question:

Theorem 7. For any dense Gdelizationd it holds
a) Je>0 VSe REC: densityHy A Sn) >, €.
b) Ve>0 3Se REC: densitfHy A Sn) < €.

This complements [Lync74,HDPOSITIONG]® whereae- rather thario-approximation

is considered. In addition, our work differs from [Lync74] in treating the Halting prob-
lemHy withinputs as opposed t€b¢; see the discussion following Definition 4. Thirdly,
we considedenseprogramming systems whereas [Lync®4,4 7] requires them to be
optimalin the sense of [Schn75] — a strictlgtronger condition:

Lemma 8. Any optimal ®delization¢ is denseaccording to Definition 5.

Proof. Start with some densed@elizationd’. In ¢, fix an arbitrary index € N. Thus
¢i = ¢;, for somei’ € N. ¢’ being dense, the sét:= {j': ¢;, = q>'j,} has Densityd’,N)
>.e cfor somec > 0. By definition of optimality there exists € N and to eacli’ some
j <C-j'suchthath; = ¢’j/. Hence, Densitf{ j : i = ¢;},N) >4 c/C. O
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The above differencesif, rather than:|¢, dense rather than optimab@el numberings)

to [Lync74] are due to our interest in the Halting problem as arigirngactice that is,

for real programming languages; see Sections 1.5 and 2. We focus on mere computabil-
ity of according approximations; in particular our work is not related toréstricted
Halting problem —Given(i,t), does Turing machin#i terminate after<t steps?—
considered in [Mach78,E:TION 6.1] for complexity purposes.

1.5 Omega Numbers

Approximations to the Halting problem have been treated by encddliimjo a single
realr € R and then considering computational approximations tarthAdfirst encoding
goes back to [Spec49] in terms of the numkjgt] = 5 <y 2" whose binary digits are
obviously not decidable but semi-decidable, i.e., any 1 can be verified within finite time.

CHAITIN's Omega-Number [Chai87,LiVi97] gives another way of encoding the en-
tire Halting problem into a single real Qy = Ziedom(u)TW whereU denotes
a universal Turing machine which is required to be self-delimiting. This implies by
KRAFT's inequality thatQy < 1 can be interpreted as the probability fdrto termi-
nate upon input of a random progray is considered ‘denser’ and more difficult to
approximate tham[H] because its binary digits are not even semi-decidable; see, e.g.,
[LiVi97,CHKWOL1]. At first, it has therefore received noticable attention when [CDSO01]
did succeed in determining the first 64 bits(af .

However this approximation had been significantly simplified by the observation
that, for the specifi¢tJ considered in [CDSO01], an overwhelming fraction of all in-
stances do not containha1t instruction at all and thus stall trivially. In other words,
those program sources arising in practice form only a very sparse subset within the
programming system treated there. In order to avoid such trivialities and instead ob-
tain meaningful results about the possibility or impossibility of approximations to the
Halting problem, we now present:

2 A patrticularly compact, practical dense programming system

Concerning the applicability of Theorem 6, its prerequisite is satisfied by every Turing-
complete programming language over alphabefith some kind ofend-of-string(eof)
indicator. More generally it holds:

Example 9.Let¢ = (¢x),.,. denote a @delization which iself-delimitingin the sense
that, wheneverpy does not identically diverge, it holds;= ¢xy for ally.  Then,
is dense.  This includes, for arbitarys@elizationy = (), the ‘tally’® re-coding

$ang := Yn, $anox:= Yy, for x e {0,1}%, dox:= L forxe {1}* .

While a special symboleof) may always be added B, we consider this cheating.
Also from the practical side, compilers for programming languages nowadays rely on
the end-of-file being indicated by the operating system (e.gf,ada) as opposed to the
out-dated detection of characters lika, "D, or “z. In the present section we analyze
and establish a practicalpn-self delimiting programming language to be dense.

6 see [Book74]. Also, this densei@elization is obviously nomptimalin the sense of [Schn75].
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2.1 TheBF programming language

BF (‘BrainF*ck’) was designed in 1993 by RBAN MULLER and has since then spread

the Internet for its shrewd simplicity [Wiki05]. It is a Turing-complete programming
language over the eight letter alphaBgt= {[<|,[>],[+],[-].[. |.[. |.[ [],[1]}- The

first six characters represent commands, the remaining two brackets are used to con-
struct simple loops.

A BF-program stores data on a tape similar to that of a Turing-Machine. Each cell
of the tape may contain an integer between 0 and 255, that is, one byte. The current
cell may be incremented usi@ and decremented witE]; (incrementing 255 will
result in 0, decrementing 0 will result in 255). Other cells can be accessed by shifting
the tape either to the Ie or to the right. Initially, all cells are setto 0. The two
commands, | and|[ . | are for input and output;, | will fetch a byte from the input
stream and store it into the current c appends the byte in the current cell to the
output stream.

Loops are formed by putting commands inbetween the two bracket sy@ls
and[]]. Each time the loop is about to be executed, the current cell is checked whether
it contains a value other than 0. If so, the loop is executed again. The commands in
the loop are skipped, if the current cell was 0. Note, that after each round of the loop,
another cell could have been made current by the commands within the loop.

Definition 10. Let B, C 2} denote the set of strings of length n representing a
syntactically correcBF source code an@F = |, BTn.

Observe that the syntax of this programming language is quite simple, the only require-
ment being that opening and closing brackets are nested correctly.

Remark 11.BF is sometimes refered to with a fixed tape of 30.000 cells size. How-
ever the level of standardization is not very advanced yet. In order to obtain a Turing-
complete system, we shall assume an unbounded tape.

2.2 Naive encoding oBF
This straight-forward idea take&s= source codes as@@el indices:

Definition 12. For p € X}, let Y5 denote the function obtained by interpretipgas
source code for som@F program; P = L in casep lacks syntactical correctness.

However, closer analysis reveals that this programming systeot dense:
Theorem 13. LetBF,, := |B,| denote the number of correBE-sources of length n.
a) BFhi1 = 6-BFn + 33 BF-BFn_1_i.

b) BFy = $85Ck- (5)-6"%, where G = 21 - (%) denotesCATALAN s number,
c) (n+3)-BFn+1 = (12n+18)-BF, —32n-BF,_1.

d) BFn.1 < 8-BF,.

e) BF, < 0(8"/y/n).

Thus among all 8stringsp € 2§, the fraction of syntactically correct sources tends to
zero, permitting foHy, a trivial O(%)-approximation.
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Proof. a) A syntactically correcBF program of lengtm+ 1 either consists of one
(out of 6 possible) non-loop character followed by an, again syntactically correct,
program of lengthn; or, in case it begins with the loop charac, it consists of
a loop (whose body is a syntactically correct program of lemdtn somei < n)
followed by some other syntactically correct source of lengthl —i.

b) Consider the collectiorB7n C B%n of BF programsp € X of lengthn with
0<k<n/2occurrences or, equivalently, o . ThenCy equals the number
of correct ways of nestingkbrackets [Bail96]. Anyp € B7n can be obtained in
a unique way by choosingdut of n positions inp for placing these brackets and
by filling each of the remaining — 2k positions independently with one out of the
6 non-bracket characters .

c) follows from a) and b) by induction.

d) Claim c) immediately yields B 1 < ¢g- BF, by induction, wherecy := 12. Re-
peated application of c) establishes a sequence of improved bounds BFx -
BFn Vnwith (ck) decreasing downto 8. h9

+ i+3

n =
Combining c+d), obtain BFy.q < 8- —24 . BF, < 8". [—24,
e) Combining c+d), obtain BR,;1 < 8 n+3 n<=38 il:l|+3

noiy2  ne3 i N i 4.2 n . no.
N5 = 72 (027 < (1 %50) - (1 21) = 701
=2 j =1 =1 0

2.3 Compact encoding oBF

Regarding Theorem 13, a dense programming system based better avoids enu-
merating syntactically incorrect sources. This leads to the following

Definition 14. Define¢y to denote the function computed by the N-th syntactically
correct BF program py. More formally, letBF be ordered primarily with respect to
length n and secondarily according to the enumeration given by recursive application
of Theorem 13a), that is, by first listing téeBF, programs starting with no loop and
then listing, recursively and for eack=0...n— 1, the loop bodies and loop tails &
sources of length i and-A 1 —i, respectively.

Although this programming systemmet self-delimiting, it holds:
Theorem 15. The Gdelizationd from Definition 14 is dense.
We emphasize that this is by no means a consequence of syntactical correctness alone!

Proof. Fix a partial recursive function computed by soRfesourcep € BF , of length
m= |p|. Forn > m+ 2, we construct Bfm_2 equivalent programg’ € BF,. To this
end preceg with a loop, i.e., letp” .= oQo o p for an arbitrary syntactically
correct source of lengthn — m— 2. Since, upon start of execution, the current cell is
initialized to 0, this loop gets skipped anyway apidhus behaves likg, indeed. The
thus obtained source® constitute, in relation to BFand by Theorem 13d), a fraction

BFn—m—Z > BFn—m—Z

—8Mm2_.¢c>0
BF, = 8™Z2.BF, ., >

among all programs of length> ng := m+ 2. Now proceed as in Lemma 2c). O
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Conversion betweeBF sources and &del indices is a central part of efficient (rather
than merely computabl&MN- andUTM-properties according to Definition 4. A naive
approach enumeratedl stringsp € 5. and counts the syntactically correct ones in
order to obtairpy. This, however, gives rise to exponential time ingrhe following
result improves to running time polynomial in the input size, thadsor logN:

Theorem 16. Given a programp = pn € BF, of length n, one can calculate its index
N € N according to Definition 14 within time&(n®-logn-loglogn). Conversely, from
N, the accordingdy is computable using@(n®-logn-loglogn) steps where &= logN.
Both algorithms use memory of si@én?). See alsohttp://www.upb.de/cs/bf

To conclude, the @delization introduced in this section is practical, efficient, and
dense. It even seems plausible to satisfy the stronger conditiopthality, recall
Lemma 8. To this end we want to establish a spangs-property forBF as required in

Lemma17. Let¢ = (¢55),.;. denote a Gdelization andSMN-function s: =* x =* —
>* according to Definition 4 satisfyings(p,x)| < c(p) + [X] for all p,x € Z* with
arbitrary c: Z* — N.  Then,¢ is optimalin the sense ofSchn75]

Proof. Fix some other @delizationd. Consider it&JTM-function®y and letu’ denote
the index ofy in ¢; i.e., VxeZ*: ®z(X) = Py((P,x)) = ¢y ((P,X)) = ¢p(X)
wherep := s(U, P) has by prerequisite lengtp] < c(U') + |P| = co+ |P). O

3 The Error Complexity of Dense Programming Systems

In the last section we showed that a natural encodirgraf dense. From Theorem 6
it follows that every algorithnA trying to solve the Halting problem of such a dense
programming system errs on at least a constant fragfian 0. This constant fraction
€a > 0 may depend on the algorithAand can be arbitrarily small. In this section we
will show that there is a universal constagt> 0 lower bounds the error made by any
heuristic trying to approximate the Halting problem for a dengddlization.

3.1 Halting Ratio

A straight-forward implication of Theorem 6 is that neither nearly all programs halt nor
do nearly all of them stall. This is formalized as follows:

Definition 18. Call hy : N — Density({(i,x) : x€ dom(¢;)},N) the halting ratio.
Like Qu (see Section 1.5)hy describes a probability for a random instance to halt.

Corollary 19. For every dense Gdelizationp, 3¢ >0: ¢ <5 hy <oe 1—cC.

Proof. Consider two indices, j with dom(¢;) = >* and doni¢;) = 0. Because of the
dense programming system and the pair-fair pairing, these indices alone induce a con-
stant fraction of halting and non-halting indices. ad

It seems desirable, again similarly to Section 1.5, to investigate the real nugnber
limn_. hy (n). However in many casey, fails to converge:
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Example 20.Take any programming systein= ({;),_, and define) = (¢,), ., by
O = (W1, Wo,Wo,Wo,Wy, ...... s Wi Wi Wiy Wi Wiy e ) .

i times
Obviously¢, behaves identically for allwithin a block arising from the samjg. Since
the sizd' of such a block dominates by far those of all previous blocks together, namely
N = 1+44. (-1 < (104 (-1 .. .+ (-1t = V2 < L,
a) termination of); determines whethdw, (N;) is (arbitarily close to) 1 or 0.
In particular,hy is an oscillating function and fails to converge fér— .
b) As infinitely many instances iy are undecidable, so is almost every entire block
of Hy. In particular, Ve >0VSe R‘EC: DensityHy A SN) >, 1—¢.
c) On the other hand$S:= 0 € R EC satisfies Ve > 0: DensitfHy A SN) < €.
Indeed, each of the infinitely mamgorresponding to stalling instancesf yields
an entire block of them iy, dominating DensitgHy, N; +i') < %5 as above. O

With the last two properties, this specifi©@elization concretizes theeRIARK on top
of p.147 in [Lync74]. Compare them to-approximations of arbitrary dense program-
ming systems according to Theorem 7.

3.2 Relation between two Approximations

Consider the question of approximating the functign N — Q. This is related to the
approximation of the Halting problem in the sense of Section 1.2 as follows:

Lemma 21. Fix Godelizationd with Halting problem H=Hy, and halting ratio h= hy.
a) Given Ne N, € € Q, and be Q with |b—h(N)| < &, one can compute a list{HC
HN{0,1,...,N—1} of halting instances satisfyir@ensityH A H{,N) <e.

b) Let SC N be arbitrary. Given Ne N ande € Q such thatDensityH A SN) <k,

an S-oracle machine can compute ) with |[b—h(N)| <e.

In particular for this¢ and anye > 0, the Halting problem ki canae beg-approximated
iff the halting ratio iy canae bee&-approximated; analogously for approximatiitg

Proof. a) Recursively enumerate elemerts H N {0,1,...,N — 1} until having ob-
tained a collectiotdy; C H of cardinality #{, > (b—¢) - N.

b) By repeatedly quering the orackfor all finitely manyx € {0,1,...,N — 1}, cal-
culate the numbdr := #(SN{0,1,...,N—1})/N. O

Corollary 22. Fix computable f. N — Q and recursively enumerable € N admit-
ting @efio) an f(N)-approximation with two-sided error. Then L cae/ffo) be f(N)-
approximated with one-sided error.

Proof. W.l.o.g.L = Hy = H for some¢. Let SC N denote a recursive two-sidddN)-
approximation ofH. Upon input ofx, computee := f(N), N > |x|; then obtain an
approximatiorb € Q for h(N) by virtue of Lemma 21b), observing that oracle queries
to S can be decided by presumption. Then apply Lemma 21a) to get a bQnie
HN{0,...,N—1} with DensityH A H{,N) <&, i.e., one-sided-approximation. O
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3.3 Approximating the Halting Ratio

We now reveal that the Halting ratio of a dense programming system infinitely often
admits a well approximation and infinitely often it does not.

Lemma 23. Fix a dense programming systeém

a)
b)

For all € > 0, there exists a TM M such that [M(n) —hy (n)| < €.
There exists > 0 such that all TMs M have |[M(n) —hy(n)| >, €.

Proof. a) For fixede > 0 considerk := [1/€] and thek+ 1 constant (trivially com-

b)

putable) functionsQ%, %, %, ..., 1. For every input length, at least one of these val-
ues differs frorrhy (n) € [0, 1] by at most. A second application of pidgeon-hole’s
principle yields that some of these constant functions is closg tfor infinitely
manyn.

For a fixed rationat > 0 (whose actual value we determine later) we asspifre
for somei € N is a candidate for computirtg, (n).

Now an algorithmA computes on inpuz € 2" the following. First it computes
b = ¢n(n) as an approximation tby(n) on inputz= (i,x) € =". Let f1(z) =i
and f2(z) = x be the decoding functions af= (i,x). Let i* be an index ofA.
According to the Recursion Theoresamay know its own index and € Q. Then
the algorithm simulates all inputs tdy of lengthn in parallel step by step until
(b—¢)|Z|" stringsy € Z" have been found witlfp(y) € dom(¢+, ) and f1(y) #i*.
Let s denote this number of halting inputg x) € =" with i # i* found byA. If
s> (b—¢€)|Z|" then the algorithm halts, else the algorithm does not halt.
There is a chance that the algorithm does not halt before this last condition, which
means thah ¢ dom(¢p) or less thar(b — €)|Z|" strings of lengttn corresponding
to halting instances exist. In both caggswvas proven not to computg within the
error margire.

Recall thati* is an index for algorithmA and that the repetition rate ¢f is con-
stant. The diagonalization argument is that all ingutsc) will resultina(i*,n) :=
[{(i*,x) € Z"}| additional halting inputs of lengthcompared tqb — €)|Z|" where
dn predicted at mostb+ €)|Z|" halting instances. For large enouglthis number
a(i*,n) is lower bounded b2 (|Z|"), i.e.3c > 0:Vgen: a(i*,n) > c|Z|", because
of the pair-fair property of-,-).

Now if s> (b—¢€)|Z|" then there are at leaéh — € + ¢)|Z|" halting instances for
almost all input lengths where$n(n) is a candidate fohy(n). Note that there
are infinite many equivalent machineg ny,..., with ¢, = ¢. Fore < c/2 this
implies thatd,, errs infinitely often on these inputs of lengthwith an error margin
of at least (which can be determined independent from

Therefore for all machine®! = ¢, there are infinitely many input lengtimssuch
thatM(n) does not approximate, (n) by an additional error term af O

3.4 The Halting Problem isae-hard and io-easy

Combining Lemma 21 and Lemma 23 establishes the already announced
Theorem 7.For any dense @Gdelizationg it holds

a) Je>0 VSe REC: densitfHy A Sn) > €.

b) Ve>0 3Se REC: densitfHy A Sn) <, €.
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This solves the open problem stated in [JaSc99] for the case of dense programming
system. In particular, it shows that the dense encodirgfFdfom Section 2.3 provides
a natural hard problem which cannot be approximated better than up to a constant factor.
Furthermore, Theorem 7 nicely complements [Lync7doPoOsSITIONG]. Observe
that Claim b) there only seems to be stronger than our Theorem 7a) because of the
more restrictive presumption that thé@elizationd under consideration baptimalin
the sense of [Schn75] rather just dense.
In addition, [Lync74] refers to the Halting problem as terminatiogo6én the spe-
cial inputi (that is, in our notation, td§1¢; see Definition 4) whereas we treat the more
general and practically relevahly, i.e., termination ofp; on given inputx. Although
both problems are equivalent with respect to exact computability, their behaviour con-
cerning approximations differs significantly. This can be observed already in the proof
of Lemma 23b) which heavily relies on the described algoriftsrbehaviour to depend
on (the length of) its input. More explicitly, we have the following

Example 24.Consider the dense tallyd@elizationg in Example 9. There, anyy,
gives rise to an asymptotic 2~ 1-fraction of equivalent instanceds. Thus, storing the
solutions toHy, for the firstN inputsyy,..., Iy allows forae answering correctly a
fractioney = 3N ; n- 271 of instances tdy with ey — 1 asN — .

4 Conclusion

Since the Halting problem is of practical importance yet cannot be solved in the strict
sense, we considered the possibility of approximating it. Similarly to the average-case
theory of complexity, this depends crucially on the encoding of the problem, that is
here, the programming system under consideration.

Many practical programming languages lacking density in fact do admit such an
approximation with asymptotically vanishing relative error for the simple reason that
the fraction of syntactically incorrect instances tends to 1. This was exemplified by a
combinatorial analysis of the Turing-complete formal languBigeHere and in similar
cases, the question for approximation the Halting problem is equivalent to a mere syntax
check and thus becomes trivial and vain.

On the other hand, considering only syntactically correct sources was established to
yield an efficienanddense programming system in the casBrfFor any such system,
we proved a universal constant lower bound on relative approximations to the Halting
problem even in the weak-sense. Our third contribution establishes that, conversely,
any constant relative errar> 0 isio feasible by an appropriate machikie

Question 25.Is there some optimal (but necessarily non-dense) programming system
¢ whose Halting problentd, satisfies the following even stronger inapproximability
property similar to [Lync74, ROPOSITION2]

VSe REC Ve>O0: densitfyHy ASn) >, 1—¢ oreven >, 1—¢ ?

Observe that [Lync74,ROPOSITION6] reveals the answer to be negative concerning
the Halting problenH, withoutinput which, regarding Example 24, tends to be strictly
easier to approximate thady anyway.
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Another open problem, it remains whetls* leads in Section 2.3 to an even opti-
mal (rather than just dense)@elization; cf. Lemma 8. Furthermore it is conceivable
— although by no means obvious — that the programming systetmy C. BARKER
is dense as well; seetp://ling.ucsd.edu/ "barker/Iota/#Goedel.
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