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Abstract

We investigate the problem of predicting a sequence when the information
about the previous elements (feedback) is only partial and possibly dependent on
the predicted values. This setting can be seen as a generalization of the classical
multi-armed bandit problem and accommodates as a special case a natural band-
width allocation problem. According to the approach adopted by many authors, we
give up any statistical assumption on the sequence to be predicted. We evaluate the
performance against the best constant predictor (regret), as it is common in iterated
game analysis.

We show that for any discrete loss function and feedback function only one of
two situations can occur: either there is a prediction strategy that achieves in �
rounds a regret of at most ���������� ����� or there is a sequence which cannot
be predicted by any algorithm without incurring a regret of ��� �.

We prove both sides constructively, that is when the loss and feedback functions
satisfy a certain condition, we present an algorithm that generates predictions with
the claimed performance; otherwise we show a sequence that no algorithm can
predict without incurring a linear regret with probability at least ���.

1 Introduction

Our research was initially prompted by the following bandwidth allocation problem.

On the link between two servers, a varying bandwidth is available. As it is common

in an internetworking setting, little or no information is available about load patterns

for the link and no cooperative behavior can be guaranteed. The goal is to send data
�International Computer Science Institute, Berkeley. Email: piccolbo@icsi.berkeley.edu.
�Institut für Theoretische Informatik, Med. Universität zu Lübeck. Email: schindel@tcs.mu-luebeck.de.
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as quickly as possible without exceeding the bandwidth available, assuming that some

price is paid in case of congestion. Due to the limitations of typical protocols, the only

feedback servers receive is whether congestion occurred or not (in the form, e.g., of a

dropped packet). An algorithm choosing the bandwidth is fronting a trade off similar

to the one that is the most distinctive trait of the multi-armed bandit problem: on one

hand, trying to match the maximum bandwidth at any time step; on the other, choosing

the bandwidth in order to collect more information about the load.

Another, even simpler, instance of this general setting arises from a simple quality

control problem. In a manufacturing operation, the items produced can be either work-

ing or defective. Unfortunately, to asses the quality of an item it is necessary to destroy

it. Both delivering a defective item and destroying a working one are undesirable events.

Suppose that customer feedback is unavailable, late or unreliable. The only information

available about the sequence of items produced so far is the one the destructive testing

procedure provides, but we want to apply it as little as possible. When the plant is work-

ing properly, defective items are extremely rare so that little testing seems optimal, but

a failure would be detected with a worrisome delay.

The goal we set for ourselves was to make these two examples, together with the

multi-armed bandit problem and others, fit a general framework that encompasses dif-

ferent sequence prediction games where the prediction is based only on some “clues”

about the past rounds of the game and good predictions are rewarded according to some

weighting scheme. We model the available feedback on the sequence as a function of

two arguments. One is the current sequence value itself, as it is common in system

theory, and the other is the prediction itself. In system theory the classic problem is

that of observability: is the feedback sufficient to find out the initial state of the system,

whose transition function is assumed to be known? More closely related to our problem

is that of learning from noisy observations, where the sequence is obfuscated by some

noise process, as opposed to a deterministic transformation. The presence of the second

argument, the prediction, makes our approach consistent with a large body of work in

the sequence prediction literature, where the feedback is the reward. Decoupling the

feedback and reward functions is the most notable feature of our approach.

Following a relatively recent trend in sequence prediction research (e.g. see [LW94,

HKW95, Vov98, Sch99, CBFH�93, CBFHW93, HKW98, CBL99, FS97, ACBFS95,

Vov99]) we make no assumptions whatsoever concerning the sequence to be predicted,

meaning that we do not require, for instance, a statistical model of the sequence. For
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lack of a model, we need to assume that the sequence is arbitrary and therefore gen-

erated by an all-powerful device or adversary, which, among other things, is aware of

the strategy a prediction algorithm is using. It might seem that competing with such

a powerful opponent is hopeless. This is why, instead of the absolute performance of

a prediction algorithm, it is customary to consider the regret w.r.t. the best predictor

in some class. In this paper we make the choice of comparing our algorithm against

the best constant predictor. Even if it seems a very restrictive setting, let us remind the

reader that the best constant prediction is picked after the whole sequence is known, that

is with a much better knowledge than any prediction algorithm has available and even

more so in the incomplete feedback setting. Moreover, constant predictors are the focus

of an important line of research on iterated games [Han57, FS97, ACBFS95]. Finally,

the result can be readily extended to a finite class of arbitrary predictors along the same

lines of [ACBFS95]. The details of this extension will be included in future versions of

this paper.

Our research is closely related to the the one presented in [FS97], where the subject

is, indeed, the problem of learning a repeated game from the point of view of one of

the players —which can be thought of, indeed, as a predictor, once we accept that

prediction can be rewarded in general ways and not according to a metric. In that

work the authors designed the Multiplicative Weighting algorithm and proved that it

has regret��
�
� � when compared against the optimal constant strategy. This algorithm

is used as a subroutine of ours. In their setting the predictor receives as input not the

sequence at past rounds but the rewards every alternate prediction (not only the one

made) would have received. Since this is all that matters to their algorithm, this setting

is called full information game in [ACBFS95], even if, according to our definitions, the

sequence and not the reward is the primary information. In the latter paper, a partial

information game corresponds to the multi-armed bandit problem, in which only the

reward relative to the prediction made is known to the predictor. What would have

happened picking any of the other choices remains totally unknown. The best bound on

the regret for this problem has been recently improved to ��
�
� � [Aue00].

In the present work we extend this result to our more general setting, provided that

the feedback and loss functions jointly satisfy a simple but non-trivial condition. This

case includes relevant special cases, such as the bandwidth allocation and quality con-

trol problems mentioned at the beginning of the present section, as well the classic

multi-armed bandit problem and others. In this case it is possible to prove a bound of
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��� ���� on the regret. The aforementioned condition is not specific to our algorithm:

indeed we proved that, when it is not satisfied, any algorithm would incur a regret��� �,

just as a prediction with no feedback at all.

Also closely related is the work presented in [WM00], where the same worst case

approach to sequence prediction is assumed, but the sequence is available to a predic-

tion algorithm only through noisy observations. Albeit very general, their results make

some assumptions on the noise process, such as statistical independence between the

noise components affecting observations at different time steps. Our feedback model

encompasses also the situation of noisy observations, but gives up any statistical as-

sumptions on the noise process too, in analogy with the notion of “malicious errors” in

the context of PAC learning ([KL93]). That is we claim our work can be seen also as a

worst case approach to the prediction of a noisy sequences.

The report is structured as follows. In Section 2 we formally describe the problem.

In Section 3 we describe the basic algorithm and prove bounds on its performance.

In Section 4 we review some examples and highlight some shortcomings of the basic

algorithm and show how to overcome them. In Section 5 we present a general algorithm

and prove that the algorithm is essentially the most general. In Section 6 we discuss our

results.

2 The Model

We describe the problem as a game between a player choosing an action � � and an

adversary choosing the action �� at time �. There are � possible actions available to

the player, w.l.o.g., from the set ��� � ��� � � � ���, and � actions in the set ��� from

which the adversary can pick from. At every time step the player suffers a loss equal to

	���� ��� � ��� ��.

The game is played in a sequence of trials � � �� �� � � � � � . The adversary has full

information about the history of the game, whereas the player only gets a feedback

according to the function 
��� ��. Hence the � � �-matrices � and � , with � �� �

	�
� �� and ��� � 
�
� �� completely describe an instance of the problem. At each

round � the following events take place.

1. The adversary selects an integer �� � ���.
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2. Without knowledge of the adversary’s choice, the player chooses an action by

picking �� � ��� and suffers a loss ��� ��� � 	���� ���.

3. The player observes 
� � 
���� ���.

Note that due to the introduction of the feedback function this is a generalization of

the partial information game of [ACBFS95].

Let � �� � 	�
��

��� ��� ��� �
��

��� 	���� ��� be the total loss of player � choosing

��� � � � � �� . We measure the performance of the player by the expected regret ��,

which is the difference between the total loss of � and the total loss of the best constant

choice ��, that is
��

��� ������.

�� 	� 
��
���			���

E

�
��
���

	���� ����

�
�

��
���

	���� ��

�

where each �� is a function of ��� � � � � ����. In some works the corresponding min-

max problem is investigated, transforming the loss into a reward. The two settings are

equivalent, as it is easy to check.

3 The Basic Algorithm

For the full information case the following Multiplicative Weighting Algorithm (see

Fig. 1) has been used in different settings and has been recently analyzed in [ACBFS95].

Fig. 2 shows the Hedge Algorithm which is their setting. The following Lemma shows

the equivalence of both algorithms.

Lemma 1 Hedge and MW are equivalent algorithms.

Proof: By induction, we prove that in each round the probability � ���� computed by

MW is identical to the probability ������ of the Hedge algorithm.

Note that for all 
� � � ��� we have for the MW algorithm

�����

�����
�

����� ��

����� ��

�����������

����������
�

�����������

�����������
�

We have for the hedge algorithm

������

������
�

�����������

����������
�



6 ������� ����������	 
���
���� �������������

Multiplicative Weighting Algorithm (MW)
input �
constant � � ��� ��
begin

Initialize ����� 	� �

 for all 
 � ��� � � � ���.

for � from � to � do
Choose �� according to probabilities ����.
Receive the loss vector ����
�� 	�

�

���

�����
��	��
�����

for 
 from � to � do

����� �� 	�
�����

�������������

od
od

end

Figure 1: The multiplicative weighting algorithm.

Hedge Algorithm
input �
constant � � ��� ��
begin

����� 	�
�

 , for all 
 � ���.

����� 	� �, for all 
 � ���.
for � from � to � do

Choose �� according to probabilities �����.
Receive the loss vector ����
for 
 from � to � do

����� 	� ����� �� � �����
od
�� 	�

�

���

�
��	����������

for 
 from � to � do

����� �� 	�
�

�������������

od
od

end

Figure 2: The hedge algorithm.
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This Lemma implies
��

��� �� � ��, since MW defines ���� � �� � ��	�����������

���
��

and hedge defines ����� �� � ��	���������
��

.

The analysis of [FS97] leads to a tight result for the full knowledge model. We will

base our analysis on an adaption of their main theorem. Let us define

���� 	� �
 � �� ��

Lemma 2 For all � � ���� ��:
�


�
� ���� � ��� ���


Proof: It is straightforward.

Lemma 3 For all � � ���� ��, and for all � � ���� ��:

� � ���
�

�
�����
 � ��
 � � � ��� ������
 �

Proof: The proof uses Lemma 2 for � � ���� ��:
�


�
� �� � �� � � ��� ���
 �

Note that �� � ���� ��. Then, we have

�

�
�����
 � �

���� ��
�
��� � �� �� � �

�
�
�
 � ��
 � �� ��

and

��
 � �� �� � ��� ���
�
 � ���� ���
��� � �� �� � ������
 �

The following theorem establishes a bound on the performance of MW that holds

for any loss function 	.

Theorem 1 For� � ��� ��, for any loss matrix � with � rows and � columns with en-

tries in the range ��� �� and for any sequence ��� � � � � �� the sequence of ����� � � � � ��� �

produced by algorithm MW satisfies

��
���


�
���

	���� 
������ � 

�
�

��
���

	���� �� �
�����

�

��
���


�
���

�����	���� 
�

 �

���

�
�
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Proof: We will prove that, for any choice of ����� � � � � ��� � where ���� represents a

probability distribution over ��� and � ���� is the probability of action 
 in step � and for

any vector � representing a probability distribution over ���, we have:

��
���

��� � ���� �
��
���

��� � ��
�����

�

��
���


�
���

�������
�
� � ���


 �
���

�

Choosing �� and � to be unit vectors leads to the claim.

We use the Kullback-Leibler divergence, also called relative entropy, which is de-

fined for probability distributions over ��� � � � ��� by

RE�� �� �� 	�


�
���

�� ��

�
��
��

�
�

Lemma 4 For any iteration � where MW is used with parameter � � � and for any

probability vector �

RE�� �� ���� ���� RE�� �� ����� � � �� ������ � �� ��������

������


�
���

�����
�
��������

�


Proof:

RE�� �� ������ RE�� �� �����

�


�
���

�� ��
��

����� ��
�


�
���

�� ��
��

�����

�


�
���

�� ��
�����

����� ��

�


�
���

�� ���� ����� ���������

� �

	

�
���

�� ����
����



� ����

� � �������� ��

	

�
���

�����

�����������




� � �������� ��

	

�
���

�����
�
�� ������ � ����������



�
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� � �������� ��

	
��


�
���

����������� �

�
���

���������������






� � �������� ����������� �


�
���

������ ����
�
��������

�


The last lines use the fact that ���� � �� � � for any � � �� and Lemma 3.

We sum over �:

�
��
���

����������� �
��
���

�������� �����
��
���


�
���

�����
�
��������

�

� RE�� �� ������ RE�� �� ��� � ���

Noting that � � �, RE�� �� ���� �� � �, and � � RE�� �� ����� � ��� for all � gives

the claim.

Our algorithm relies on the existence of a � �� matrix � satisfying the following

equation:

� � � � �

For instance, if � is non singular, this property can be fulfilled by choosing � �

����. If such a � does not exist the basic algorithm fails, i.e. it cannot compute a

strategy at all.

The algorithm can be described as follows. First, it estimates the loss vector using

the matrix G and the feedback. This estimate is fed into the MW algorithm which

returns a probability distribution on the player’s actions. MW tends to choose an action

with very low probability if the associated loss over the past history of the game is

high. This is not acceptable in the partial information case, because actions are useful

also from the point of view of the feedback. Therefore, and again in analogy with

[FS97], the algorithm adjusts the distribution ����, output by the MW algorithm, to a

new distribution ����� such that ������ � �

 for each 
. We will give an appropriate

choice of � and other parameters affecting the algorithm later on. What is new to this

algorithm and what makes it much more general, is the way the quantities � ���� are

estimated. More in detail, given � and � and assuming there is a � such that �� � �,

our basic algorithm works as shown in Fig. 3.

The following lemma shows that ����� is an unbiased estimator of the loss vector

����.
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FeedExp3
input � , �
begin

Compute � such that � � � �.
Choose �� � � ��� �� according to �.
Initialize ���� with ����� 	�

�

 for all 
 � ��� � � � ���.

for � from � to � do
Select action �� to be � with probability

������ 	� ��� ������� �
�

 .

Receive as feedback the number 
�.
for 
 from � to � do

������ 	�

� �����

�������
od
�� 	�

�

��� ����� ������������

for 
 from � to � do

����� �� 	� �����
������������

��
od

od
end

Figure 3: The feedback exponential exploration and exploitation algorithm.
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Lemma 5 For all 
� � we have

E����������� � � � � ����� � ����� and E�������� � E������� �

Proof: Note that

E����������� � � � � ����� �

�
���

������
�����
������

���� �

�
���

��������� � ����� � ����� �

This implies

E�������� � E�E����������� � � � � ������ � E������� �

Let ������� 	� ��������, for all �� 
� � � ��� � � � ���, �� 	� 
����������������,
�� 	� 

���������������, � 	� 
�� ����� and � 	� �� � ��.

Lemma 6 For any sequence ��� � � � � �� the sequence ������ � � � � ���� � produced by Feed-

Exp3 satisfies for all �:

��
���


�
���

������������ �
��
���

������ �
��������

��
�

�� ���

��
�

�

�

��
���


�
���

������ �

Proof: Consider a game where ���� denotes the probability distribution and the es-

timated loss ����� is the real loss. Then, the FeedExp3-algorithm above reduces to a

MW-algorithm, where ���� is replaced by �����. Note that the range of the estima-

tion vector now is ���� ����� ��. So, we normalize the loss by defining �� ����� 	�
�

� ������� �� � to ��� ��. Theorem 1 now implies

��
���


�
���

�������
�
���� �

��
���

������� �
�����

�

��
���


�
���

�������
�
����


 �
���

�

�
��
���

������� �
������

�
�
���

�

Rescaling leads to this inequality:

��
���


�
���

����������� �
��
���

������ �
��������

��
�

�� ���

��
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In algorithm FeedExp3 we have defined �� ���� 	� �� � ������� �
�

 . Hence, we can

apply

��
���


�
���

������������ � ��� ��

	
��
���


�
���

�����������



�

�

�

��
���


�
���

������ �

So, a choice � � � implies the claim.

Lemma 7 Let ! � � and Æ � �. Then with probability at least �� Æ, for every action


, we have

��
���

������ �
�
�� ��!�

!

� ��
���

������ �� ���� Æ�

�!
� ��!����

�!�
(1)

��
���

������ �
�
� �

��!�

!

� ��
���

����� �
�� ���� Æ�

�!
�

��!����

�!�
� (2)

Proof: We use a martingale argument in close analogy to the proof of Lemma 5.1 in

[ACBFS95].

(1): Let us define the random variable

�� � ���

	
!

��
����

������
��� ������

���� ��!�

��
����

�����
��




where ������ 	�
�

������� �� � and ������ 	�

�

� ������� �� � are normalized

replacements of ����� and ������. The main claim of the proof is that E��� � � �.

Given this claim, we have by Markov’s inequality that

� ��� � � Æ� � Æ �

which, by some algebra, is equivalent to (1). We prove that E�� �� � � for � �

�� � � � � � by induction on � using a method given by Neveu ([Nev75], Lemma

VII-2-9). For � � �, �� � �. To prove the inductive step for � � �, we have that

E��� � ��� � � � � ����� � ���� ��� ����!��������
E�����!�������� ��������� � ��� � � � � ����� �

Due to normalization we have ������ � ��� �� and ������� � ��� ��. Therefore �������
������� � � and it follows by Lemma 3

E�����!�������� ��������� � ��� � � � � �����
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� E�� � !�������� �������� � ��!��������� ��������

� ��� � � � � �����

� � � ��!�������

� ������!�������� �

The second inequality follows from Lemma 5 and the following chain of inequal-

ities:

E��������� ��������

 � ��� � � � � ����� � E��������


 � ��� � � � � ������ ������



� E��������

 � ��� � � � � �����

� E�������� � ��� � � � � �����
� ������ �

(2): We define the random variable

�� � ���

	
!

��
����

�������
��� �����

���� ��!�

��
����

�����
��



�

Again the main claim of the proof is that E��� � � � using claim, we have by

Markov’s inequality with � ��� � � Æ� � Æ �, which, by some algebra, is

equivalent to (2). The rest of this proof is analogous to the first part.

We single out a special case of Lemma 7 for further reference.

Corollary 1 For �� Æ � � and for the random variable � � � ���
���
��

��� ����� we

have with probability �� Æ:

��
���

������� �
�
� �

��!�

!

� ��
���

������ �
�� ���� Æ�

�!
�

��!����

�!�
�

Theorem 2 If there exists � such that� � � � then the expected regret E��FeedExp3�� ��

of algorithm FeedExp3 after � steps is bounded by

E��FeedExp3�� �� � ��� ������� ���
���
�

with a constant factor linear in �� �
� .
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Proof: We first rewrite the expected loss E�� �� �� of algorithm FeedExp3 in a differ-

ent way:

E�� �� �� �

��
���

E���� �

�

��
���

E�E���� ������������

�

��
���

E

�

�
���

�����������

�

� E

�
��
���


�
���

�����������

�
(3)

We then apply Lemma 7(2) and choose � � 
�����
� ����

� ���
, ! � �

� ���
and Æ � �

� �
 .

Lemma 2 states for � � ���� �� that ��

� � ���� � �� � ���
 and Lemma 3 for � �
��� �� 	 ��� ���� � � � ��. This implies for � � ��� ��:

��
���


�
���

����������� �
��

���

�

��� ������������ �

�
 �
�
�Æ�
�� � ������


���

�� ����
�

�
�
� � �

��!�

!

�
	

��
���


�
���

������������ �
�� ���� Æ�

�!
�

��!����

�!�




�
�
� �

�

� ��


� ��
���


�
���

������������ �

�
�� �

�

�
� ������ � ���
���
 � "�� ��
���
� (4)

Choose � � ����
. Then Lemma 6 implies, for all �:

��
���


�
���

������������ �
��
���

������ �
��������

��
�

�� ���

��
�

�

�

��
���


�
���

������

�
��
���

������ �
��� ������


���� ���

�

�

�

��
���


�
���

������ � (5)
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Note that from Lemma 7(1) it follows for the rightmost additional term with proba-

bility �� Æ 	� �� �
� �
 .

�

�

��
���


�
���

������ � �

�

�
� �

��!�

!

� ��
���


�
���

����� �
�� ���� Æ�

!
�

��!����

!�

� ��� ������ � ���
���
� ������ �
� ��

��
���� ��� � (6)

At last we will use Corollary 1. Then we have with probability �� Æ.

��
���

������� �
�
� �

��!�

!

� ��
���

����� � �
�� ���� Æ��

�!
�

������!�

��!

�
�
� �

�

����


� ��
���

����� �

������ ���

� �� ������ � ���
���
� (7)

For the expectation we add error term �Æ� for the combined error probabilities �Æ and

combine (3), (4), (5), (6), and (7).

E

�
��
���


�
���

�����������

�
� E

�
��
���

������

��
� �

�

� ��


�
� �Æ�

� ���� � ���

� �� ������ � ���
���
�

� E

�
��
���

������

�
� ���� � ���

� �� ������ � ���
���
�

4 Applications, Limits and Extensions

We are now equipped to show how the bandwidth allocation problem that initially

prompted this research, as well as other important examples, can be solved using this

algorithm, but we will also see that only some tweaking allows to solve even more pre-

diction problems. We will see in the next section that these “tricks” lead to a general

algorithm, that, after some preprocessing, uses the basic algorithm to achieve sub-linear

regret whenever this is feasible.

In the bandwidth allocation problem the feedback function is defined as follows

(threshold feedback):


��� �� �



� 
� � # �
� ������
�� �
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The feedback matrix � is therefore a lower triangular matrix with only 1’s on the

diagonal and below. Therefore, the condition �� � � is satisfied for � � � ���.

The multi-armed bandit problem with partial information of [ACBFS95] corresponds

to the case � � �. Under this condition, � � $ is a suitable choice. A somehow dual

situation arises when � � $ , that is when the feedback is a binary “hit or miss” infor-

mation. Then � � � is a suitable choice for �.

A more troublesome situation is the full feedback case. Even if in this case the ma-

chinery presented in this paper is not necessary, since an expected regret of��� ��
 �����

can be achieved by the MW algorithm [FS97], it is clear that a general algorithm for

this class of problems must be able to solve this special case, too. A natural choice

for � is ��� � 
, which implies 
� � ��. Unfortunately, such a matrix has rank 1 and

therefore the condition �� � � can be satisfied only when L has a very special, and

rather trivial, form. But more than the specific values of the entries of � , what defines

“full feedback” is the fact that no two entries in every column of � have the same value,

that is there is a bijection between the values in �� and the range of ��. If � satisfies this

property, it is possible to compute �� from 
� and hence we can say we are still in the

full information case. Therefore, we are interested in finding a full rank matrix within

the set of matrices just described, which all represent the full feedback case.

One possible solution is to replace every diagonal entry with a number large enough

to satisfy Hadamard’s theorem, that is:

����� �

�

����� ���

���� � �

implies that  ���� � 	� �. But this solution is specific to the full feedback case, whereas

the problem of singular or low rank � arises in many contexts.

For instance, consider the threshold feedback and modify slightly the definition to

be 
��� �� � �, if � � � and � otherwise. Then � becomes singular, but it is enough to

reverse the arbitrary roles of 0 and 1 to get an equivalent problem, where this time � is

invertible.

An acceptable transformation of � can be detailed as a set of functions for every

column of � , from the range of the elements of � into some other range. The goal

is to obtain a new matrix � �, where every column is obtained applying one of the

functions to the elements of a column of � , for which there is a � such that � �� �
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��. It is clear that � � can have more columns than � , because every column can be

transformed in different ways, but no fewer, since every action has to be represented.

This corresponds to introducing new actions that are essentially replicas, but for each

of which the feedback undergoes a different transformation. From the point of view of

the loss, these additional actions are totally equivalent and therefore we need to extend

� into a larger matrix �� by duplicating the appropriate columns. What we seek is a

general way to expand � � so as to keep the number of columns reasonably small but

making the linear span of � � all-inclusive, that is such that it cannot be enlarged by

adding more columns obtained in a feasible way. This can be accomplished as follows.

For every column �� containing %� distinct values (w.l.o.g. from the set �%��) we define

%� columns � �
����

� � � � �
�����

, where �� �
����

��� %�, as follows: � �
������

� �� � �����,

for � � � � %�, where �� � � � if � is true and 0 otherwise. As to ��, we set ��
� � ��

if and only if �� # � � �� � %�. It is straightforward to check that the matrix � �

obtained this way has the largest possible linear span among all the ones that can be

obtained from � via the transformations detailed above. Also, since � is ���, � � is

at most � ���. These are more columns than we need and would impact negatively

the bounds on the regret: therefore we will pick the smallest subset of columns � which

is still good for our purposes, that is, that satisfies the following conditions:


 all the columns of � are represented in � � or, equivalently, all the actions in the

original instance are represented, that is for every 
 � ��� there is a � � � such

that �� # � � �� � %�;


 ���� �
� 	 
 � ��� � ������� ��.

The final feedback and distance matrices can be obtained by dropping all the columns

not in � from � � and ��, and we will continue to use the same symbols for the subma-

trices defined this way. In the next section we will present a greedy algorithm which

solves this problem.

Let us see how this helps in the full feedback case. Recall that a natural choice for

� is ��� � 
. Therefore, the corresponding � � has maximum rank (some columns of

� � form an � � � identity matrix), � �� � � can be solved for � and the general

algorithm can be applied successfully.

A further complication arises from non-exploitable actions. These are actions which

for any adversarial strategy do not turn out to be optimal. The problem here is that the
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condition�� � � might be impossible to be satisfied because of some columns related

to non-exploitable actions. Consider, for instance

� �

	
� � �
� � �
� � �



� �

	
� � �
� � �
� � �



�

Here columns 1 of � is not in the linear span of � , but it is easy to see that actions 3

and 4 can be always preferred to the first. Therefore it might seem reasonable to simply

drop the first column as it is related to a non-exploitable action. It turns out, though, it

is just action 1 that provides the necessary feedback to estimate the loss. It is clear that

simply omitting non-exploitable actions is not a good strategy.

As with the feedback matrix � , the solution for these problems is to transform the

loss matrix � into a new �� in a way that does not lower the regret.

If we add the same vector � to every column of �, we are not changing the problem

instance in any substantial way, since the regret, our performance measure, is invariant

w.r.t. this transformation. Therefore we are interested in those transformations that help

fulfilling the condition �� � �. This time, it makes sense to try to obtain a matrix � �

from � of minimum rank. Rank minimization is a difficult problem in general, but this

special case turns out to be rather trivial.

Lemma 8 Given three matrices �, �� and ��� such that for every 
 ��
� � �� � �� and

���
� � �� � �, we have that, for any vector � and index �, ��� �� � ������.

Proof: Since �� � �� � �� � �� ��� � ��, the lemma follows.

Therefore choosing � equal to one of the columns of � minimizes the linear span of

��. In the following we will assume �� � ��� � � � � �� w.l.o.g.

As to non-exploitable actions, we first need to formally define them. Let us define a

partition1 of the set of mixed strategies (for the adversary) as follows. Every element of

the partition is centered around a column of � � and is defined as:

&���� � �' � 
 � �� 	 �� 	� �� � '�� � '���

where the set 
 	� �' � ��� ���� �� '� � �� denotes all possible mixed strategies of

the adversary.

That is an element of this partition is the set of mixed adversarial strategies such

that a certain prediction is preferred to any other. If &�� �� is empty, then 
 is a non-

exploitable action. The rationale behind this definition is that no sensible algorithm will
1Strictly speaking, it is not a partition, but the idea helps the intuition



�������� ��������	
 ��
�� ���� ��������� �������� �
� �	�� 19

ever try this action for exploitation purposes (that is often), since there are other actions

which bear a smaller loss. The interior of &���� is defined as follows:

����� � �' � 
 � �� 	 �� 	� �� � '�� # '���

The following lemma shows that we can replace every mixed adversarial strategy on

the surface of some element of the partition by another strategy not on the surface, with

no penalty in performance.

Lemma 9 For all mixed adversarial strategies � � 
 there exists a column �� with

����� 	� � such that � � &����.

Proof: We concentrate on elements in the set � 	�
�
�&���� � �����. Note that we

have

� �
�
���

�' � 
 � '��� � ��� � �� �

Therefore� is a subset of a union of at most � 
 subspaces of dimension �� �. Since


 is a ��� dimensional polytope, the (-ball surrounding of a point ' � &�� �� contains

elements not in � .

Such an element ' � 	� � is contained in a set ��� with ������ 	� �. Observe that

in the limit (( � �) the loss of ' ��� equals '�� for any column �. Thus, we have

'�� � '��� and ' � ��� .

Hence, we can extend the definition of non-exploitable action to columns with

����� � �, since their choice gives no improvement over actions with ��� �� 	� �.
In order to extend the applicability of the basic algorithm, we set all the entries in

the columns corresponding to non-exploitable actions equal to the size of the maximum

element in its column in �. This can only increase the regret w.r.t. the best constant

strategy, because none of the actions associated to these columns can be part of any

optimal strategy. Furthermore, it is easy to check that the columns obtained this way

are in the linear span of � � for every � .

5 The General Algorithm

In Fig. 4 we show how to implement the construction of � � and ��. Let ����� �

'�����			�� denote the vector obtained replacing, in the �th column of � , every entry
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equal to ' by � and all others by �. The algorithm constructs � � and �� by appending

columns derived from � and � to their right sides.

Augmented with this kind of preprocessing for the loss and feedback matrices,

our algorithm covers all the examples we considered. A natural question is therefore

whether the condition� �� � �� is not only necessary for our algorithm to apply, but in

general for any useful algorithm. The answer is positive, meaning that if the condition

cannot be fulfilled, then any algorithm will undergo a loss ��� �.

Theorem 3 For any prediction game ����� we have either one of the following situa-

tions:


 The General Algorithm solves it with an expected regret of

E��General� � ��� ������ � ���

��������
�� �


 There is an adversarial strategy which causes any algorithm � to produce a

regret of ��� � with probability � �.

Proof: In the previous section, we have already seen that we can map a sequence

of actions for the prediction game �� �� ��� to the instance ��� in a way that does not

essentially increase the regret. This proves the first part of the theorem. We can rephrase

the second part as follows:

Given an instance of the prediction game ����� let be � � and �� the matri-

ces obtained through the transformations detailed in the previous section.

If there is no � such that � �� � ��, then any prediction algorithm will

undergo a loss ��� �.

We associate a graph ) � �*�+� to the partition �&���
��� � � � � &���

��� by defining

* � ��� 	 ���
�
�� 	� �� and ���

�� �
�
�� � + if and only if ��

� � ��
� or the sets &���

�� and

&���
�� share a facet, i.e. a face of dimension � � �. Note that for all 
 the set &�� �

��

describes a polytope of dimension � � � or its interior ��� �
�� is empty.

Let��+� be the linear span of the set of differences between vectors at the endpoints

of each edge in +. We have the following

Lemma 10 ��+� � �����
� 	 �

�
� � * �� .
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The General Algorithm
input ���-matrices � , �
begin

� 	� �
for � from � to � do

, 	� �
for all values ' in �� do

if ����� � '�����			�� 	� ��� �
�� � � � � �

�
�� then

, 	� �
� 	� � � �
� �
� 	� ����� � '�����			��

��
� 	� ��

-��� 	� �
fi

od
if , � � then

� 	� � � �
� �
� 	� ��� � � � � ��

��
� 	� ��

-��� 	� �
fi

od
b := 0
for 
 from � to � do

if . � � and ����
�� 	� � then

. 	� 

fi

od
for 
 from � to � do

��
� 	� ��

� � ��
�

od
for 
 from � to � do

if ����
�� � � then

��
� 	� �
�������

����� � � � �
�������
�����

fi
od
Perform ���������� �� ��� such that

an action �� is replaced by -����
end

Figure 4: The General Algorithm



22 ������� ����������	 
���
���� �������������

Proof: For each ��
� � * , ��

� � ��
� � ��

�� � ��
�� � ��

�� � � � � � ��
�� � ��

�, where

���
�� �

�
��
� � � � � ��

��
� ��

�� is a path connecting ��
� to ��

�, if such a path exists.

We need only to prove that ) is connected. Given the two vertices � �
� and ��

� , we

seek a path joining them. Consider the segment joining a point in the interior of &�� �
��

to one in the interior of &���
��. Since the set of mixed strategies is convex, every point

in the segment is a mixed strategy. Let us pick an arbitrary orientation for this segment

and consider the sequence of polytopes that share with the segment some interior point,

and specifically two consecutive entries in the sequence, &�� �
�� and &���

��. If the

segment goes from the first to the second through a facet, then the two corresponding

vertices in the graph are joined by an edge. If not, that means that the two polytopes

share only a face of dimension �� � or lower, e.g. a vertex or an edge. In that case we

need to pick a different point in, say, &����. This is always possible because &����

has dimension � � � whereas the set of points collinear with the designated point in

&���� and any point in any face of dimension � � � or lower has dimension at most

�� �.

Now, let us assume that there is no � such that � �� � ��. This implies that

there is ��
� such that ��

� 	� ��� ��. Let us assume ����
�� � �. By definition of ��,

��
� � /��� � � � � �� for some /. This implies, by definition of � �, ��

� � ��� ��, a con-

tradiction. Therefore ����
�� 	� � and, by lemma 10, ��+� 	� ��� ��. Hence, for

some ���
�� �

�
�� � +, we have that ��

� � ��
� 	� ��� ��. Since the range of � � is the or-

thogonal complement to the null space of � �� we have that, for some non-zero vector

0 � !���� �� �� 0���
� � ��

�� 	� �. Let � be a point in the interior of the facet shared

by &���
�� and &���

��. We have that � � /0 and � � /0 are both mixed strategies for

some /. They are indistinguishable from the point of view of any algorithm because

�� � /0�� � � �� � /0�� � � �� �, but they correspond to different optimal actions,

and the regret implied by making the wrong choice is �/0�� �
� � ��

���.

6 Conclusion and Open Problems

We solve the problem of discrete loss and feedback online prediction games in its gen-

eral setting, presenting an algorithm which, on average, has sub-linear regret against

the best constant choice, whenever this is achievable.

In the full knowledge case, it is well known that the average per step regret is

bounded by ��� ���
�. In [ACBFS95] it is shown that, if the feedback is identical to
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the loss, there is a an algorithm whose average regret is bounded by ��� ����� (omit-

ting polylogarithmic terms), recently improved to ��� ���
� [Aue00]. In the present

paper, we show that, for every “reasonable” feedback, the average per step regret is at

most ��������. Otherwise, no algorithm can do better than ��� �.

While we proved that no algorithm can attain sub-linear regret on a larger class of

problems than ours does, it is an open problem whether such general prediction games

can be solved with a bound on the regret as good as the one obtained for the multi-armed

bandit problem, in the most general setting or under some additional assumptions.

It is straightforward to transfer the upper bounds shown for the worst case regret

against constant predictors to the finite pool of general predictors (a.k.a. “expert”)

model, in analogy with the argument of [ACBFS95], Section 7. However, the lower

bound is not readily applicable to this case and therefore it is an open question whether

our general algorithm achieves sub-linear regret whenever it is possible in this context.

Another interesting question is whether a uniform algorithm exists that works for

any feedback and loss functions and achieves the best known performance for each

feedback. Note that the algorithms presented in this work, even when given in input

a feedback function corresponding to the “full knowledge” case, guarantees only an

average per step regret of ��� �����, whereas ������
� is the best bound known.
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