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Abstract

In contrast to machine models like Turing machines or random access
machines, circuits are a static computational model. The internal information
flow of a computation is fixed in advance, independent of the actual input.
Therefore, the size and the depth are natural and simple measures for circuits
and provide a worst case measure. We consider a model where an internal
gate can be evaluated when the result is determined only by parts of its
input. So we obtain a dynamic definition of delay. In [JRS94] we have
defined an average case measure for the time complexity of circuits. Using
this notion tight upper and lower bounds could be obtained for the average
case complexity of several basic Boolean functions.

Here, we will examine the asymptotic average case complexity of the set
of all n-ary Boolean functions. In contrast to worst case analyses a simple
counting argument does not work. We prove that almost all Boolean function
require at least » — logn — loglogn expected time even for the uniform
probability distribution. On the other hand, there are significant subsets of
functions that can be computed with a constant average delay.

Finally, we compare worst case and average case complexity of Boolean
functions. We show that for each function that is not computable by circuits
of depth less than d, the expected time complexity will be at least d —
logn — log d with respect to an explicitely defined probability distribution.
In addition, a nontrivial upper bound on the complexity of such a distribution
will be obtained.

Key words: average complexity, circuit complexity, asymptotic complexity of
Boolean functions, malign distributions, lower bounds.

1 Introduction

Complexity theory is traditionally based on worst case measures. Up until recently,
the average amount of resources necessary to solve a computational problem has



been analyzed only in a few cases, which have mostly considered the expectation
with respect to a uniform distribution over the input space as the average case
measure. Levin recognized that this simple analysis has serious drawbacks from
a complexity theoretic point of view, and has made a proposal as to how one can
overcome these difficulties [Lev86]. One suggestion is to deal with broader classes
of distributions, and it turned out that for this purpose a complexity measure for
the distributions themselves was needed.

Levin’s ideas have been further developed in [Gur91, BCGL92, RS96, Sch96] to de-
fine various average case complexity classes based on the time complexity of Turing
machine computations. This is motivated by the question whether computational
hard problems — problems difficult in the worst case — might efficiently be solvable
at least on the average (see also the discussion in [WB92]). However, it has been
shown that certain A“P-complete problems are likely to remain infeasible on the
average. As in the worst case analysis this can be done with the help of a reducibil-
ity notion between distributional problems and the existence of complete problems
in this sense. If the Tiling Problem, for example, could be solved in average poly-
nomial time with respect to the uniform distribution then every AP-complete
problem has polynomial average case complexity with respect to any distribution
that can be computed in polynomial time [Lev86].

For machine models, even when fixing the problem size, the length of a computation
in general depends on the specific input data, whereas the information flow in
Boolean circuits is fixed. Thus, the depth of a circuit has typically been used as
a worst case measure for the parallel time complexity. It is not obvious how to
obtain a meaningful notion of time complexity for circuits that can be used for an
average case analysis. Such a measure should allow a decrease of the computational
resource, at least in certain cases. In particular, due to the trivial logarithmic lower
bound on circuit depth that holds for almost all n-argument Boolean functions,
is there any way to speedup the computation time below the logarithm? Indeed,
in certain favourable cases the result of an output gate may be available much
earlier. For example, for an OR-gate this happens as soon as one of its predecessors
delivers the value 1. If this predecessor does not lie on a critical path (a path
of maximal length between input and output gates) the computational delay is
actually smaller than the circuit depth. For a comparison of circuit depth and
maximal critical length see [Kra78].

In [JRS94] we have shown how this timing information can be used to define the
notion of delay for circuit gates which in general is different for each input vector.
This way, one obtains a meaningful average case measure of time for the circuit
model. The timing information can also be made explicit and then be used in
actual circuit designs. Hardware designers have exploited a similar technique when
dealing with so called self-timed circuits [DGY89, LBS93]. Thus, good average case
upper bounds for the circuit model have important practical implications.

For a number of basic Boolean functions an exponential speedup can be obtained
if we compare average delay with circuit depth, most significantly for the addition
of two binary numbers [JRS94]. On the other hand the parity function requires
logarithmic delay even on the average. It is well known that the addition is basically
equivalent to compute all prefixes of a linear formula over a specific semigroup. In
[JRSW94] and more general in [Jak98] the average complexity of the parallel prefix
problem for arbitrary semigroups has been investigated. By proving matching



upper and lower bound it has been shown that the complexity depends only on
algebraic properties of the semigroup and that only three different situations are
possible. The average delay is either constant, as for the OR-function, or of order
loglogn, as for the addition, or of order logn as for the parity function.

For the Turing machine as well as for the circuit model the average complexity of
computational problems to some extent depends on the set of distributions that
may occur. Restricting an average case analysis only to the uniform distribution
is of limited interest. But one has observed that allowing arbitrary distributions
the average case complexity equals the worst case complexity for uniform com-
putational models. Li and Vitanyi have shown that one particular distribution,
called universal or Solomonoff-Levin distribution, has the property that the aver-
age complexity of any machine is at most a constant factor smaller than its worst
case complexity, where the constant depends on the particular machine [LV92], see
also [Kob93]. This distribution is closely related to the Kolmogorov complexity of
strings [LV93], and thus not recursive.

Fortunately, one may therefore argue that in real computations such input distri-
butions do not occur. In order to restrict the set of allowable distributions there
has been time and space limits considered for a Turing machine in order to pro-
vide information about the individual distribution. Levin [Lev86] has proposed
the notion computable. It requires that the corresponding distribution function
can be approximated in polynomial time. A weaker notion based on probabilistic
machines is called sampleable [BCGL92]. We have defined another natural notion
called rankable [RS96], and have obtained tight hierarchies for average case com-
plexity classes with respect to the time bounds of the machines as well as with
respect to the complexity of the distributions.

Milterson has extended the result of [LV92] to subclasses C of machines with a fixed
upper time bound. He calls a distribution malign for C if the average complexity of
any machinein C is at most a constant factor smaller than 1ts worst case complexity,
and has proved the existence of such a distribution. This distribution is computable
in exponential time and malign for the class P (see also Prop. 2 in [BCGL92] for
a similar result). Furthermore, no distribution computable in polynomial time has
this property if the probabilities of input strings do not decrease too fast to 0 with
respect to their length. When computing a malign distribution for machines with
a fixed polynomial time bound the exponential time bound can be improved to
a polynomial time bounded generator with a X,-oracle [Mil91], and in a slightly
different model even to a generator with an AP -oracle [RS96].

If computability is replaced by the weaker notion of sampleability it has been shown
that the class AP has malign distributions that can be generated, i.e. probabilis-
tically sampled, in polynomial time [BCGL92]. Grape [Gra90] has proved that P
and AL have malign distributions that are sampleable in logarithmic space.

In this paper we will study the question of maligness for the nonuniform circuit
model. Recursion theoretic tools like the universal distribution will not be of any
help in this case. Instead, completely different and explicit constructions are nec-
essary to obtain hardness results.

We will show that for a nonuniform model malign distributions do not exist for the
class of all Boolean functions. A Boolean function exists for any type of distribution
where the average delay is significantly smaller than its worst case delay.



Next, the asymptotic behaviour of the delay measure will be studied. In the worst
case the so-called Shannon effect holds: Almost all n-argument Boolean function
require depth n — loglogn [Weg87] and this lower bound is optimal since it can
be achieved up to a small additive constant [Gas78]. The situation for the average
delay is more complicated. For a large portion of functions we can almost obtain
this lower bound even for the uniform distribution. On the other hand, there are
significant subsets of functions that can be computed with a constant average delay.

The main technical contribution of this paper shows that for any Boolean function
f with a given worst case complexity one can explicitely construct a distribution
that is bad for all circuits realizing f. Their average case delay will be smaller by
at most an additive term of order logn compared to the worst case delay. We will
also determine the complexity of such distributions. In [RS96] the tradeoff between
average time resources and complexity of distributions has been studied for the
Turing machine model. In the circuit model, for several specific functions we have
determined this tradeoff exactly for the whole range of distributions [JRS94]. In
particular, the cutpoint where average and worst case complexity become identical
has been located precisely in these cases. The results here solve the asymptotic
question. They imply that allowing complex distributions for each function one can
find distributions that make the average case complexity almost identical to the
worst case complexity. A preliminary version of these results has been presented at
STACS’95, 12th Symposium of Theoretical Aspects of Computer Science, Munchen
1995 (Springer Lecture Notes in Computer Science 900, pp. 628-639).

2 An Average Case Measure for Circuits

For combinatorial circuits the depth is usually taken as a measure for the compu-
tational delay. A close relationship between circuit depth and the time of several
parallel machine models has been shown. Note that depth as well as the parallel
time considered so far are worst case measures.

Definition 1 Let B denote the set of Boolean functions f:{0,1}" — {0,1}™.
B, = Bl. D, denotes the set of all probability distributions u on {0,1}".
The uniform distribution on {0, 1} thatl gives equal probabilily to each of the 2"
possible input vectors s denoted by pin uni-

Circuits will be defined over the standard basis of AND, OR (fanin 2) and NOT gates.
Let Cir(f) denote the set of all circuils that compute f and CirDepth,(d) all
functions in B, that can be computed by a circuit of depth at most d.

Fact 1 [Gas78, Weg87] B, = CirDepth,(n—loglogn+O(1)) . This depth bound

is best possible (up to a small additive term) for almost all functions in B, .

In a circuit information can be propagated immediately if, for example, one of the
inputs of an OR-gate is already available and has the value 1. Then, its output is
determined as 1 independent of the value of the other input. More formally, define
a function time : {0, 1} — IN for each gate v of a circuit C'. Tt specifies for each
input @ the step when v can compute its result res,(x) using the values of its
predecessors.



Definition 2 Let C be a circuit and v be a gate of C. For input gates and

constant gates v set time,(x) := 0. For an internal nonconstant gate v with k
direct predecessors vi,...,v; define
time,(x) = 1 + min{t| the values res,,(x) with time,,(x) <1

uniquely determine res,(x)} .

For the circust C' tself with output gates yy,...,ym we define the global time
function by
timec(x) := max timey,(z) .
2

For example, the delay of an OR-gate v with predecessors vy ,vs is given by

max{time,, (#), time,,(z)}  if resy, (x) = res,,(z) =0,
min{time,,(x) | res(v;) = 1} else.

timey(z) = 1 + {

Up to this point the notion of time has only been defined implicitly. In [JRS94]
we have shown how this information can also be generated explicitly within the
same delay increasing the circuit size by at most a constant factor. For a given
Boolean function the worst case time complexity and depth complexity coincide.
This follows by techniques shown in the proof of Theorem 2. But transforming
circuits optimal with respect to the critical path (worst case) into depth optimal
circuits leads to an increase of circuit size [Kra78]. On the other hand, we have
shown that the computational complexity of determining or approximating the
worst case delay of a circuit is co- NP -hard, where its depth can be computed
in NC [JS96]. Furthermore, the computation of timec is complete for P and
expected time (defined below) can be approximated in polynomial time.

Definition 3 For a function t : {0,1}" — IN and a probability distribution u :
10,1} — [0;1] let E,(t) = > t(x) p(x) be the expectation of t with respect to
w. If D is a set of probability distributions we define

t1 D) = 1 E,(ta
etime(f, D) max . omin u(timec)

as the optimal expected circuit delay of f with respect to distributions in D.

A simple example of a Boolean function that can be computed significantly faster
in the average case compared to the worst case (for which the trivial logarithmic
lower bound for the depth holds) is the n-ary OR-function. In [JRS94] we have

shown
etime(ORy,, {ftn,uni}) = 2 — 9=(n=2)

The complexity class of all functions that can be computed within expected time
at most ¢t with respect to distributions in D will be denoted by

ECirTime,(t,D) = {f € B, | etime(f, D) <t} .
3 The Complexity of Distributions

For the average case analysis of circuits we also have to define a complexity measure
for the distributions that generate the random inputs. The complexity will be



measured by the circuit model itself: by the depth of a circuit. This circuit has
an input vector of truly random bits and generates the specific distribution. This
may be considered as the circuit analog of Turing machine sampleable.

Definition 4 Let C' € Cir(B) perform a transformation of a random variable
7 defined over {0,1}" into a random wariable X over {0,1}" as follows. The
wmput vector for C' 1s chosen according to Z. Then X equals the distribution of
the values obtained at the output gates.

If Z is the uniform distribution over {0,1}" such a circuit will be called a dis-
tribution generating circuit, DG-circuit, which generates the distribution of

X.

In the following we will identify a distribution g with a random variable X dis-
tributed according to p. Let X = X3,...,X,,.

No interesting results can be obtained if we consider distributions generated by
DG-circuits with unbounded fan-out, which means that every output may depend
on a single random bit.

Consider a DG-circuit with random inputs zg, ..., 2, computing xg Az, xo Az,

.., o Axn . Now it holds Pr[X = 0"] = { + 2-(+1) and Pr[X = y] = 2=+
for y # 0™. For the OR, , for example, this distribution implies a lower bound of
%logn for the expected delay. However, we have shown that for any probability
distribution that is generated by a constant depth circuit with bounded fan-out
the expected delay for OR, is constant [JRS94]. So, by “reusing” a random bit
an unlimited number of times within one parallel step, one could generate very
asymmetric distributions quite easily. Therefore, DG-circuits are required to have
a constant fan-out, let us say fan-out 2.

With the notion of DG-circuits we classify distributions as follows

Definition 5 DDepth,(d) =
{1t € Py, | 3 DG-circuit C € Cir(B]) : depth(C) <d A Clptunir) = pt} -

Using this notion, the following classifications for the average complexity of some
basic Boolean functions can be given [JRS94].

etime(f, PDepth(d)) = ©(min(2%,logn)) f € {OR,, AND,, EQUAL,} ,
etime(f, {pnuni}) = ©O(logn) | € {PARITY,,, MAJ,} ,
etime(ADD,,, PDepth(d)) = O(min(loglogn + 2% logn)) ,
etime(THRESH?', DDepth(d)) O(min(loga + 2% logn)) .

Here AND, denotes the n-ary conjunction, EQUAL, the test for equality of 2 bi-
nary strings of length n and ADD,, the addition of 2 binary numbers of length n.

THRESH® € B* is 1 if at least m inputs are 1 and MAJ, := THRESHLn/z] .

4 Circuits Do Not Have Malign Distributions

For any probability distribution there is a non-trivial disjunction depending on only
a small subset of variables that yields 1 with high probability. Let «,« € {0, 1},
and 2% equal z if a« = 1, and —x else.



Lemma 1 Let X = a1,... 2, be a random vartable on {0,1}" with an arbitrary
distribution and let {i1,is,...,4} C [l..n]. Then there exists Boolean constants
a1, ...,0q such that PrlOR(z(*,...2f)=1] > 1-27".

Proof: by induction over the length of the input vector:

Let aq =1 if Pryfe = 1] > %, and o = 0 else. It is clear that for all aq,...,ap

there exists a constant apy1 € {0,1} such that Pr“[x:i? =1, . a0k =
0] > 1/2 or Prylzf*Vv...vVa*]= 1.
Let Pr,[z{*V...Vag*] > 1—27F then
Pryfef* V... vegl ] = (L=Pryfef V.. .Vae*])/2 + Pryfef' V... V]
> 1-—927F1,
|

Using this property we can prove

Theorem 1 For every probabilily distribution p over {0,1}" there exists an n-
ary Boolean function f with

depth(f) > n—logn —loglogn and etime(f,pu) < 4.

Proof:  For given p, the function f is defined as follows. Let [ :=logn. With

respect to u choose ay,...,a; according to the lemma above. Choose g € By _10gn
with g & CirDepth(n — logn — loglogn — 1). Due to the Shannon bound such a ¢
exists (Fact 1). Let f(xy,...,2,) = OR(x(", ... 2], g(®141,...,2p) ) .

To prove the lower bound assume depth(C') < n — logn — loglogn and C €
Cir(f). Replace input vector (z1,...,2;) by the constant inputs (—a, ..., 7ag),
obtaining circuit C’. Obviously, depth(C’) = depth(C') and C’ € Cir(g) holds —

contradicting the Shannon bound.

For the upper bound the OR-subfunction is realized by the average case optimal
design presented in [JRS94] with average delay less than 2, i.e. Coppn(21,...,25,) :=
OR(n, Corn—1(1,...,2n—1)). For g we use a depth optimal circuit of depth at
most n—logn —loglogn+ O(1). Then the overall average delay can be estimated
as

E,(timec) < 1 + Pr,[OR(«(", ..., z")
+  PryOR(x{", ... 2"
< 1424+n/n = 4.

1]
0]

-2
- (depth(g) + logn)
|

Hence, the class B, of all n-argument Boolean functions does not have malign
distributions.

In the last proof only bits ay,..., aogn depend on the given probability distri-
bution p. Therefore, even a small set of n functions suffices such that for any
distribution there is a member in this set with a huge difference between average
and worst case complexity, i.e. from constant to linear.



5 Asymptotic Bounds with respect to the Uni-
form Distribution

For a circuit C' and a natural number ¢ define the #-bad input set of C' by
I[C,t] = {xe{0,1}"|timec(x) >t} .

It is easy to see that [I[C,#]| < t2+_"1 By wni(timec)
Theorem 2 Almost all functions f € B, have average complexity larger than

n —logn —loglogn — 3 w.r.t. the uniform distribution.

Proof: Let d:= |n —logyn —log,log, n —1]. Assume f € B,, can be computed
by an expected d-time bounded circuit €' with respect to the uniform distribution.
In order to restrict internal gates to AND and OR we allow that input gates of C'
may also be given by the negated variables T;. Furthermore, without increasing
the depth C' can be expanded to a circuit C” with fanout 1.

We extend the Boolean domain by a new symbol “?”. The OR and AND function
are now defined by table 1.

OR |7 0 1 AND |7 0 1
T o7 1 707 007
017 0 1 0 [0 0 O
11 1 1 1|7 0 1

Table 1: Extended versions of the Boolean functions OR, AND.

Let us cut off all gates with distance larger than d from the output gate and replace
non-input gates at distance d by “?”. This way, we get a binary tree C"' of depth at
most d where internal gates are labeled with AND or OR and input gates with z;, z;
or “?”. By adding redundant gates we may assume that C” is a complete binary
tree. There are less than exp(2¢(1+log(2n+1))) different such C”| thus each such
circuit can be encoded by a binary string of length at most 2¢(1 + log(2n + 1)).

For all # ¢ I[C,d] it holds resc(z) = resc/(x). For z € I[C,d], however, C"
yields the result “?”. Thus, the set I[C,d] is uniquely determined by C”.

Now, the function f can be described by C” and a list of values f(z) for = €
I[C,d]. The length of this description is bounded by

d
I + |I[C,d]] < 2%(1+log(2n+1)) + Q”m
2n 1
< 1 2" 11— ——
- 2nlogn(3+ ogn) + ( d—i—l)
< 2"(1 = + ! + !
- n+logn + loglogn = 2n  2nlogn
<

7 (1- 9<1>) |



Since there are 22" Boolean n-ary functions the Kolmogorov complexity of almost
all n-ary Boolean functions has to be at least 2". |

Because of the upper depth bound n—loglogn this lower bound is best possible up
to an additive logarithmic term. On the other hand, it is not difficult to construct a
set of 22"7°¢" n-ary Boolean functions with average delay at most 4 with respect
to the uniform distribution. The portion of such in the average efficiently com-
putable functions grows if we increase the delay bound. Compare this result to the

gn—logn

worst case where any set of 2 n-ary Boolean functions contains functions

that require depth n — 2logn.

6 Efficient Selection

Efficient DG-circuits are necessary in order to construct bad distributions of low
complexity. Because of the fan-out restriction this problem is not that easy. In the
following, we will develop general techniques for this task.

Let us denote the i-th bit of a binary string @ by a[i]. The function bin(i,n) for
integer 7 < 2" — 1 denotes the binary representation of i of length n, and bin~!(a)
its reverse.

For the following constructions the multiplexer function plays an important role.

Definition 6 For given input vectors xq,...,om_1 each of length n and control
vector y € {0,1}1°6™ ¢ (m,n)-multiplexer (MX) outputs Tpin-1(y), 1-¢. the
y-th input, where y ts interpreted as a binary number.

With unbounded fanout the depth of a (m,n)-MX-circuit can be bounded by
logm + log(logm + 1) + 1, since for the output vector z holds

m—1 logm o )
z[k] = \/ z;[k] A /\ y})m(l’bg m)bl , for all £ <n.
=0 ji=1

Every control bit y; is used m - n times.

To obtain a circuit with constant fan-out we can duplicate these bits using trees.
This increases the depth by logm + logn.

Fact 2 A (m,n)-multiplezer can be computed in depth 2logm + log(logm + 1) +
logn+ 1 by a circuit with fanout 2.

We can construct more efficient multiplexers by using unary coding for the control
input.

Definition 7 For given inpul vectors xi,...,x,m € {0,1}" and control inputs
Y1...Ym € {0,1} a Unary Controlled (m,n)-Multiplexers UCMX,, ,, outputs
the first input vector x; for which y; = 1, otherwise the last vector x,, .

Lemma 2 A unary controlled (m,n)-multiplezer can be computed by a circuit of

depth logm + {\/SIOgm] + logn+1.



Proof:  The UCMX,,, circuit to be constructed consists of n parallel UCMX,, ;
circuits. For the initial distribution of the control bits g, ..., ¥mn_1 we use fanout
trees of depth logn. What remains to be described is the construction of such a
UCHX,y, 1 .

! —
m—1 "

Zm—1. So an unused data bit is set to 0. Note that UCMX,, 1 (£, ¥) = UCMmel(l?/, ).

First, in one parallel step we compute z} := z; Ay; forall i <m—1 and x

The simple construction of a UCMX-circuit Sy, yields the result r = UCMmel(l?/, ¥)
as follows (see figure 1):

Vj<m 55 = x}/\—'\/yi,
i<j
roi= \/sj.
Jj<m

Since the control inputs y; are needed up to m times each, we have to use fanout
trees of depth logm. So the whole depth of the construction is 3logm + 2.

]

8

8
O~ )~ ~

8

Figure 1: The UCMX, 1 -circuit Sy.

Note that the inputs x’ are used in depth 2logm + 1 for the first time. Further,
unary controlled multiplexer can be combined such that the address is divided into
parts and fed into the different subcircuits.

For the following description we emphasize the tree-like construction by using bi-
nary strings as indices. Inputs and outputs of the subcircuits will be called . But
the closer they are to the input ¥ the longer their indices are. Let rpin(i 105 m) = z
and Ypin(ilog m) := ¥ for all © < m. The overall result is called r,.

The following definition gives a brief and complete description of the whole con-
struction (see fig. 2), which is somehow a pipelined version of a lot of Ss-circuits.

10



Yo Y2v—1 Ym—1

log m

Figure 2: A circuit for the unary controlled multiplexer.

For 6 <logk define

Vp € {0,1}Slem=1 ¢ = \/ Ypg
y€{0,1}1e5 m=1v|

Ve € [0; [logm/&] —1] VYpe {0,1}*° vge{0,1}°:

Spg = Tpg N T \/ Epu
u€{0,1}% and u<yq

Ve>0 Vpe {01} r =\ s

11



Correctness: Fix £ and p € {0,1}°*. We will prove that
p = UCMKy 1(7p0s, -+, Tp16s €pog s+ Eps) -

The term \/ue{oyl}g and u<g €pu indicates whether at least one bit y,,, = 1, where
w < ¢g. If the term is 1, this means that r,, is not the first input with control
bit ypw = 1, then s,y is 0 and r,, does not have any influence in the following
computation. Otherwise sp, equals r,,.

Hence, there is at most one variable s, for all ¢ € {0, 1}? having value 1 and this
special case only occurs if r,; = e,y = 1 and e, is the first control input with
value 1.

By induction, the value of r, equals the leftmost input z,, with control bit y,y
and Ty lwl if there is no control input.

Efficiency: The computation of e, for all p can be done by an OR-tree. So value
e, 1s available in depth logm — |p].

The whole construction consists of levels of thickness at most 6 + 1. The level
nearest to the inputs g ...#,_1 has thickness v := (logm—1) mod é+1. Here
ep for p € {0,1}7 and rpin(ilog k) for @ <k are computed in parallel.

For given inputs r,, with p, ¢ € {0, 1}? a subcircuit that computes rp and epy is
embedded into 3 levels and has depth 36 4+ 1: In the first level every input ey,
is broadcasted at most 2° times to all subcircuits computing s, with |¢'| = |q].
Therefore, the result of s,, is available in the second level within depth 26 +2 and
the result of r, in the third within depth 36 + 2.

Note that inputs r,, and outputs r, differ by only one level. This also holds for
the inputs e,, and outputs e,,. Therefore, the subcircuit computing r, can be
placed one level below those of r,,.

In the lowest level the output rj is computed by a subcircuit using e, for u €
{0,1}%. So it is not necessary to compute any e, with p < 6.

To summarise: there are [logm/§] + 2 levels. All levels except the first have
thickness 6 + 1. The thickness of the uppermost level is bounded by +. Therefore,
the total depth of the UCMX,, ; -circuit is given by

(6+1) dloiml +1) +y< (641 Fogémw +2641 .

If we choose 6 := [/logm/2] the depth of the UCMX,, ,-circuit is bounded by
logm + [\/8logm] +logn + 1. |

The next fundamental problem is how to construct a random variable uniformly
distributed over a given set A by a DG-circuit.

Definition 8 Let m be a power of 2. For given input vectors xp, ..., &pm_1 €
{0, 1} and uniformly distribuled random input bils ¢ random (m,n)-selector

(RSm,n ) outputs a with probability |{j | z; = a}|/m.

Lemma 3 A random (m,n)-selector can be implemented by a logm+log(log m+
1)+ logn + 3 depth bounded DG-circuit.

12



Proof: Define a RSy, circuit C; using the multiplexer circuit described in Fact 2.
The control input is given by random bits r1,...,rog;. Because of the fanout

restriction this input is delivered in depth log!+logn to the subcircuits S;; com-

puting /\;O:gll r;?in(i’bgl) for all 7. Finally, we compute the disjunction of all [ partial
results S; ; A z;[k]. The total depth of the random selector C is 2log!+loglog!+

logn + 2.

Taking a closer look one notices that the inputs z; are used for the first time in
depth log +loglogl +logn + 1. Since the depth of Cy for I < /I is larger than
this number, we can combine [ circuits Cp with a circuit C7. This construction
generates a distribution equivalent to that of a RS;.;/ ,, circuit using the same depth
as a () circuit. Of course, the same works for all Cy -circuits.

slele gy

.| O,

16

Figure 3: Combining random selector circuits of type Cs, Ci, Cig yields a
RS3.4.16 n-circuit with the same depth as Cis.

Recursively, we define the final circuit by joining circuits Cor, Chz, Cha, ... Coer
to a RS, circuit E (see figure 3), and add circuits of this type to a RSg ,-circuit
Cps, for p :=loglog(2m)—2, a :=exp(1+24+4+...4+2F) and 3 := [222;,%1 . By
construction all elements of A can be selected, since «- 3 > m. The depth of E is
2.2 +p+2+logn. Within this depth all random bits of C3 can be distributed,
since 22" > \/B. After selecting the inputs by some FE-circuits additional depth
log2m — 2P*1 + 1 is needed by circuit Cg. Therefore, the total depth is given by
logm + log(logm + 1) + logn + 3. |

7 Constructing Hard Distributions

Although we have proven that most functions have large average case complexity
even with respect to the uniform distribution we do not have any specific example.
Simply from the property that a function has large worst case delay, let’s say larger
than 2logn, we cannot obtain much knowledge concerning its expected behaviour
for the uniform distribution.

But it will be shown in the following that for every such function f there exist
distributions y; that make the average case complexity of f almost as large as
its worst case complexity. This means, even in this nonuniform model there is no
way to exploit information about the likelihood of different input patterns. This
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contrast to the result of section 4 where for each distribution a Boolean function
has been constructed that has only constant average delay with respect to this
distribution. This function depends greatly on the probabilities of individual input
vectors.

We will show that there are circuits that can generate such hard distributions.
Since there is little known about distribution generating circuits, we introduce
a special family of distributions. Each one gives weight to a particular set of the
input domain and zero weight to the complement. A collection of such distributions,
which can be approximated by different circuit types, will form the final distribution
7. Note that contrary to the linear depth bound for Boolean functions there is no
a priori bound known for the depth of circuits that generate arbitrary distributions.

A lot of effort will be devoted in the following construction to keeping the com-
plexity of the distribution p; as small as possible. It is not surprising that the
complexity of p; will grow with the complexity of f. Let f require depth d. It is
not too hard to find a distribution gy with complexity n40(d), i.e. using random
selector circuits. We will construct a distribution with an upper bound of the form
%(n—i—d). Although the saving of a factor 2 does not seem to be much at first glance
a closer look shows that a simple diagonalization technique like enumerating all 27
different input patterns cannot be used to obtain such a bound. Instead, a much
more involved construction will be necessary.

First, we will investigate distributions that are almost uniform on subsets of {0,1}".

Definition 9 For a nonemply set A C {0,1}" define the A-uniform probability
distribution g4 by

A7t if € A,
pax) = {' |

0 else.

If |A| is not a power of 2 this distribution cannotl be generated by a DG-circuil
since all probabilities of such distributions are (negative) powers of 2. In this
case define a € IN by 2¢ < |A] < 29FL. Probability distributions p are called
nearly A-uniform iff u(z) for x € A is either 2= or 2-(a+1),

It is not obvious how nearly uniform distributions can be generated efficiently.

Lemma 4 Any nearly A-uniform distribution of a nonempty set A C {0,1}" can
be generated in depth log|A| + log(log|A|+ 1) + logn + 3.

Proof: Let A ={ay,...,ajaj—1} and m := min{2* | 2¥ > |A|}. We use a RS, »-
circuit and fix the input vectors by #; := a; mod |A| forall 0 < ¢ < m. By Lemma3
the depth of such a circuit C' can be bounded by log|A| 4 log(log [A] + 1)+ 1. 1

If A is relatively large one could approximate the A-uniform distribution also by
generating n-bit strings at random and select one of them that belongs to A. We
therefore make the following

Definition 10 The (A, k)-uniform distribution is given by

(L= (=427 A7, feea,
ple) =
(1—|A|-27")% (27 —|A])™L,  else.
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Lemma 5 For f € CirDepth(d) let A := f=Y(1). Then the (A, k)-uniform dis-
tribution p1 can be generated in depth d +logk + {\/SIOg k] +logn+1.

Proof:  We use a UCMXj ,,-circuit with n-bit random input strings zg,...,zp_1.
In parallel all strings are tested for membership in A using a circuit for f of depth
d. The test results give the control inputs y; .

The unary controlled multiplexer circuit outputs the string of the first successful
test. In case that no test succeeds it outputs the last string.

The probability that this circuit outputs a string not in A is (1 —[A[/2")F. All
strings in A occur with the same probability. The same holds for the strings in A.
Thus the construction generates a (A, k)-uniform distribution.

These almost uniform distributions share the following property.

Lemma 6 Let t € IN and pu be a nearly A-uniform distribution or a (A k)-
uniform distribution where k > In(2t + 1) 2"|A|=L. Further let h : {0,1} — IN
be a function with expectation bounded by t, that is E,(h) <t. Then for the set
Alh,t] = {x€ A|h(y) <t} holds

|A]
|A[R, ]| > m

Proof:  First consider the case of a nearly A-uniform distribution p. Let 2¢ <
|A| < 29%! and Ag = {x € A | p(x) = 27, A = {x € A | p(x) = 27D},
Then 2 - |A0| + |A1| = 2a+1 .

With respect to the bound on E,(h) the set A[h,¢] is smallest possible, if for all
z € Alh,t] h(x)=0 and for all x € A\ A[h,t] h(z)=t+1.

Since the probability of elements in A; is smaller than those in Ay in order to
make the complement of A[h,t] as large as possible such elements should first go
to Aj. In other words, Ay should include as many elements of A[h,{] as possible.

It is sufficient to consider the cases A[h,1] C Ag and Ay C A[h,t]. In the first case
it holds

(2 Aol +1Au]) = ([Ao] = AR 206+ 1) + A (E+1)

Solving for |A[h,t]| yields |A[h,?]|-2(t + 1) > 2 |Ao| + |41] > |4].

In the other case Ag C A[h,t]: either |Ag] > |A|/2(t 4+ 1) (the claim follows
immediately) or |4g] < |A|/2(t+1). Then

@A A 2 (ANARA (1) = (A= AT ]) (4 1)
— D AR 2 DAl 2 Ao+ A 2 (A=t A
> Al (-2t +2) > |Alj2.

Now consider (A, k)-uniform distributions . Since k > In(2t + 1) 2" |A|~! for
z € A holds:

k
[A]
() > 1_(1_2_") > 1—6_1n(2t+1) _ 2.1 |A|—1 —.
= 4] = 4] BRCEES) -
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Then, we can conclude

t> Y ¢+ @) > (JA—-|ARA) (t+1) v and
z€A\A[h,t]
t B t2t+ 1)\ |4
Al a1 > |A|_y~(t+1) = (1_(t—|—1)2t) T o241y |

For a comparison of average time and depth of a circuit we have to transform time
efficient circuits, which may be arbitrarily deep, into circuits with small depth, but
producing erroneous results. The notion I[C, 1], the set of {-bad inputs of a circuit
C', will help us to control the quality and quantity of errors.

Lemma 7 Let C' € Cir(f) and t € IN. Define functions ft(l) and ft(o) by
@) = f@yvie e e ), (@) = f@) Al g 10,1 . Both

functions can be computed in depth t.

Proof: From C' construct a circuit C” of depth ¢ as in the proof of Theorem 2,
but now setting non-input gates at distance ¢ to the constant 1. As before it holds
C'(z) = f(x) for = ¢ I[C,t]. Since all internal gates of C’ are monotone it is
not hard to see that for « € I[C,t] this circuit yields the value 1. This is due to
the fact that the output gate of C' depends on a path of length larger than ¢ and

in C” all such path have been set to 1. Thus C’ computes the function ft(l) .

A dual circuit for ft(o) is obtained similarly by setting gates at distance ¢ to the
constant 0. |

Let xc: be the characteristic function for the complement of I[C,¢].

Lemma 8 yc; can be computed in depth t + 3.

Proof:  For ft(o) and ft(l) defined in lemma 7 it holds yc:(z) & (ft(o)(a:) =
ft(l)(x)) So the circuit is given by

veu@) = @A) v @) A @)
Combining the results of the last two sections we get the following theorem.

Theorem 3 For any t € IN holds:
. . t+n
CirETime (t, DDepth (T +vn—t+logn+ 3))
C CirDepth(t + logn + logt + 3) .

Proof: Let 7:= 1(t+n)++/n — t+log(n+t)+3 and f € CirETime(t, DDepth(7)).
The strategy to compute f by a circuit of small depth is as follows.

1. We select p < O(n -t) circuits Cq,...,Cp in Cir(f) such that the sets

X, = I[C;,t] = {z|timeg, () <t} completely cover the input set {0,1}".
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Figure 4: Lower bounds for the average complexity of OR, PARITY and an arbitrary
function f with respect to the complexity of distributions DDepth(D). F denotes
a functions of maximal asymptotic complexity as described in Theorem 1.

2. Using Lemma 7 one can find circuits Si,...,S, of depth at most ¢ that
compute the functions fi(z) = f(x)V [z € X;]. Obviously, f(z) =
A; fi(z) . Thus f can be computed by combining the p circuits S; by a
binary tree yielding a circuit of total depth ¢ 4+ logp.

For a definition of X; let u; be the uniform distribution over the whole input space
71 :={0,1}". Since by assumption f € CirETime(t,PDepth(r)), there exists a
circuit Cy € Cir(f) such that E,, (timec,) < t. Define X5 := {z | timec, (z) < t}
and Z2 = Z1 \X1 .

To define X, consider Zp, = Zpo1 \ X1 If log|Zm] < (T4 n)/2+/n—1t
we define p, as nearly 7, -uniform distribution, otherwise as (Z,, In(2t + 1)%)—
uniform distribution. Let (), € Cir(f) have average complexity at most ¢ with
respect t0 i, . So, we obtain X, as I[C),,{].

Applying Lemma 4 and Lemma b distributions p, can be generated in depth 7.
Using Lemma 6 we get

|Zm—1| 71
Xl 2 a5y andthus Zml < el 20t + 1)
This implies | Zm]| < 27 (1 — (2t + 2)_1)m .

For m = p = (t+ 1) -n-In4 this gives |Z,] < 1. Since for all m < p by
construction {0,1}” = X3 U...UX,, UZ, thesets X1,..., X, cover all inputs

and using circuits Si,...,5, f can be computed within depth ¢ +logt+logn+3.
|

Corollary 1 For all Boolean functions f € CirDepth(d) there exists a probability
distribution p; computable in depth $(n + d) +/n—d+ O(logn) such that all
circuits for f have an expected delay of at least d —logn —logd — 3 with respect

to py.
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8 Conclusion

These results together with previous upper and lower bounds provide a detailed
understanding of average case complexity in a nonuniform setting given by the
Boolean circuit model. Our current knowledge is visualized in Fig. 4.

For simple probability distributions there are functions like OR, AND, THRESH and
ADD [JRS94] with substantially smaller average case complexity. On the other hand
for other functions like PARITY it has been shown in [JRS94, JRSW94] that average
case and worst case complexity are asymptotically identical for any distribution.

We have shown that most functions are hard in the average case even for the
uniform distributions, thus the Shannon effect also applies for the average case.
But the boundary is not as sharp as in the worst case. For every fixed distribution
the number of functions with constant expected delay is quite large (larger than
the number of functions with depth at most n — 2logn).

Finally, we have shown that there is no function for which the circuit depth is sub-
stantially worse than the average behaviour for every distribution. But what is the
threshold for the complexity of distributions to make the average case complexity
as hard as the worst case complexity? From [JRS94] and Theorem 3 it follows that
it is somewhere between loglogn and n 4+ v/2n. Narrowing this gap would yield
a better understanding of average complexity for a broader class of functions and
distributions.
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