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Abstract. The computational delay of a circuit can be described by
the natural concept of time [Jakoby et al. STOC94]. We show that for a
given input z and circuit C' the computation of timec(z) is P-complete.
Moreover, we show that it is NP-complete to decide whether there exists
an input z such that timec(z) < t for a given time bound ¢.

We introduce the notion of worst time of a circuit and show that to
decide whether a given time bound is the worst time of a circuit is BH-
complete. We also prove that the computation of an arbitrary worst
case input is fP;At/P-hard, whereas the search of the lexicographically
minimal worst case input is ZPVP-complete and of the lex. middle worst
case input is FP# -complete.

Computation of the expected time E, , (timec) of a circuit C' with re-
spect to a distribution pup generated by circuit D is #P-complete un-
der metric reducibility. Nevertheless we show that a polynomial time
bounded probabilistic Turing machine approximates E, , (timec) up to
an arbitrary additive constant with high probability.

Key words: theory of parallel and distributed computation, computational
complexity, average case analysis, expected time, worst case, timed circuits.

1 Introduction

Most research in circuit theory concentrates on the complexity measures size and
depth. In [JRS93] a natural concept for a measure time is presented. Contrary to
depth the time measure takes into account that gates may be evaluated before
all inputs are known.

Two models for timing in a circuit are investigated in [JRS93]: The ezplicit
time model works with a 3-valued logic where in addition to Boolean values
0 and 1 the sign ? indicates an undefined value. This model is related to the
notion of self-timed circuits [DGY89]. In the beginning all gates are initialized
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with 7 and all inputs with Boolean values. E.g. in an OR the question mark will
be replaced (which means computation continues) when an input has value 1 or
at the latest when both inputs are given.

In this paper the implicit definition of time will be used. It is proved in
[JRS93] that both definitions are equivalent. Furthermore, it is shown that up
to a constant factor, the time is independent of the choice of a complete base.

In Computer systems Boolean circuits are used as elementary computation
units. For a combination of circuits in synchronous computer models it is essen-
tial to know the maximum time the circuits need for computation. We call this
time the worst time. Of course the depth of a circuit gives an upper bound for the
worst time. But Krapchenko has shown the existence of a function whose circuits
with minimal size are deeper than the worst time (see [Krap78]). In [LBS93] an
approach for computing the delay is presented for several delay models. The au-
thors examine the worst time and offer an algorithmic solution. In section 2 we
will present upper and lower bounds for these and related problems. In particular,
we show that for a given circuit C' and a bound ¢ the question 3z timec(z) <t
is N"P-complete. This also holds for logarithmic depth bounded circuits.

The time of a circuit depends on the input. This way it is possible to inves-
tigate the average behavior of circuits. In [Reif93] a circuit for addition of n-bit
numbers (ADD,,) is presented which is expected loglogn time bounded with re-
spect to the uniform distribution.

Broader classes of distributions are investigated in [JRS93]. Here special
depth-bounded distribution-generating circuits with coin-tossed inputs are used
to define a complexity class of distributions. Basic functions like OR, PARITY, ADD,
THRESHOLD and others are asymptotically exactly classified. For many functions
a tremendous speedup is possible, even with respect to classes of distributions
generated by DG-circuits. In this model for a given distribution the circuit can
be chosen appropriately.

On the other hand for functions like OR (see [BHPS94]), ADD and some other
parallel prefix problems (see [JRSW93]) there exist robust circuits which have
asymptotically optimal expected time behavior with respect to broad sets of
probability distributions. In section 4 we will examine the complexity of com-
puting the expected time of a given circuit.

For a complexity class a probability distribution is called malign [Milt93,
LiVi92], if each of its problems cannot provide a substantial speedup in the
expected time measure with respect to this distribution. In [JRS95] it is shown
that circuit complexity classes do not have malign probability distributions, as
long as they contain a small set of basic functions. On the other hand it is proved
that for every Boolean function exist malign distributions.

For a circuit the worst distribution only weights worst case inputs. Here we
show, that its computation is as hard as to compute a worst case input for C,
which we will classify as FPAP-hard.



2 Time in a Circuit

Depth and size are the most often investigated complexity measures of Boolean
circuits. Here depth is usually taken as a measure for the computational delay.
Depth as well as the parallel time considered so far are worst case measures.

Definition 1. Let B,, denote the set of Boolean functions f : {0,1}" — {0,1}.
Circuits will be defined over the standard basis of AND, OR and NOT gates. Let
Cir(f) denote the set of all circuits that compute f.

An important parameter of a circuit is the amount of time needed for evaluation.
Information can be propagated faster in a circuit if, for example, one of the
inputs of an OR-gate is already available and has the value 1. Then its output is
determined as 1 independent of the value of the other input. More formally, we
define a function time : {0,1}" — IN for each gate v of a circuit C. It specifies
for each input x the step when v can compute its result res, () using the values
of its predecessors. The result of the circuit’s output is called resc ().
This leads to the definition of implicit time measure of a circuit [JRS93].

Definition 2. Let C' be a circuit and v be a gate of C'. For input gates and
constant gates v set time,(z) := 0. For an internal nonconstant gate v with k
direct predecessors vy, ..., v; define

time,(x) := 1 + min{¢ | the values res,, (z) with time,, (z) <t
uniquely determine res,(z)} .

For the circuit C' itself with output gates yi, ...,y we define

timec(z) := max timey, (z) .
(2

For example, the delay of an AND-gate v with predecessors vy,v2 is given by

. o max{time,, (x), time,, ()} if res,, () = res,,(z) =1,
time,(z) = 1 + {min{timevi (x) | res(v;) = 0} else.

Note that for a given circuit its depth is computable in linear time and
in space logsize(C) - logdepth(C). Furthermore, it can also be determined in
NC which means it can efficiently be parallelized. As an upper bound for the
computation of the time we can show:

Lemma3. The time of a circuit C on input x timec(x) can be computed in
linear time and space; i.e. O(size(C)).

For a lower bound we define the circuit time problem (CTP): For a given
Boolean circuit C, an input string 2 and a bound ¢ decide whether timec(z) < t.



Theorem 4. CTP is P-complete.

Proof. From lemma 3 it follows that the CTP is in P.

The P-hardness follows from a reduction of the Circuit Value Problem
(CVP) defined as: For a given Boolean circuit C' and an input string = decide
whether C on input z outputs 1, i.e. compute resc(x). It is well known that the
CVP problem is P-complete (see [GHRI1]).

Define the circuit CHAIN;(b) as a circuit with depth and size [ that consists
of | successing OR-gates with input b. Let C' and = be an instance of the CVP
problem. Now define circuit C' := C OR CHAINg,e(c1y41(0). Note that

. [ 14 timec(z) if resg(z) =1
timec () = {2 + size(C) else .

Let ¢ := 1 +size(C). So to decide whether timec: (z) < ¢ is as hard as to compute
resc(z) = 1. O

In a synchronous computer any partial circuit with evaluation time greater
than the clock would cause fatal errors. But the question whether 3z timec (z) >t
or the related question 3z timec(z) < t leads to N'P-completeness.

Theorem 5. For a given circuit C' and a bound t the decision whether there
erists an input = such that timec () rel t is N'P-complete for rel € {<,=,>}.

This can be proved by straightforward reduction of the satisfiability problem
of Boolean functions (SAT). In the same way the circuits can be restricted such
that the range of timec is {t1,%2} with t2 = 2¢* which prevents polynomial time
approximation within any constant factor, unless P = A/P.

3 Worst Case in a Circuit

The depth of a circuit must not be mixed up with the worst time, since in
[Krap78] it is shown, that there exists a circuit, the depth of which is greater
than the worst time even if the circuits have minimal size. That means that
depth of a circuit and worst case time of parallel algorithms may not correlate.

Definition 6. We call t,.(C) := max, timec(z) the worst time of a circuit
C and an input = a worst case of C if timec () = ty(C).

Since it is N'P-hard to decide whether there exists an input z with timec(z) > ¢,
it is co-NP-hard to decide whether ¢ is greater than the worst time.

Theorem 7. To decide for a given circuit C and a bound t whether t is the
worst time of C' is complete for BH,.

Proof. Note that this problem is equivalent to the following predicate.
Iz : timec(z) = t and Vo @ timec(z) < t+1.

So this problem belongs to the second stage of the Boolean hierarchy.



The completeness follows by a reduction to SAT-UNSAT [PaYa82] defined as:
Given two Boolean formulas F, F'. Decide whether F' is satisfiable, whereas F"
is not.

For a given instance F,F' of the SAT-UNSAT-problem generate a circuit C

that computes F' and C’ for F'. Let C' := C AND CHAINsize(C)+size(c')(0) and

C" := C" ANDCHAIN, _ i 0 (¢4 size(cr)) (1) Futhermore let Cpingi := C ORC". Tt is
easy to see that size(C) + size(C’) + 2 is the worst time of Chipng if and only if F'

is satisfiable whereas F" is not. |

Definition 8. For a circuit C' let WC¢ be the set of all worst case inputs for C'.
Further WCx (k) denotes the lexicographically k-th worst case input.

Circuit Worst Case Problem (CWC):

The relation CWC is defined as CWC := {(C, z) | timec(x) = tz(C)}. An algo-
rithm solves the CWC-problem if for every given circuit C' it computes a binary
string z with (C,x) € CWC.

For k € IN: Lex. k-th Circuit Worst Case Problem (lex-kth-CWC):
For a given circuit C' compute the lexicographically k-th worst case input, or if
it does not exist, the largest one, i.e. compute WCe(min(|WC¢|, k)).

Lex. Middle Circuit Worst Case Problem (lex-middle-CWC):

For a given circuit C' compute the lexicographically middle worst case input, i.e.
compute WCa([IWCc¢|/2]).

Lex. Indexed Circuit Worst Case Problem (lex-index-CWC):

For a given circuit C' and a natural number m compute the lexicographically
mth worst case input, or if it does not exist, the largest one, i.e. compute
WCe (min(|WCc|,m)).

The construction of a worst case input seems to require linear many questions
to an N'P-oracle.

Lemma9. lex-1st-CWC € FPNP.

Proof. Note that the worst time ¢ of an arbitrary circuit C' can be determined
in polynomial time using an AP-oracle via binary search.

Let O be a polynomial time bounded nondeterministic Turing machine that
verifies for a given circuit C' and a number ¢ whether there exists an input x
of C such that timec(z) = t. Using O as an oracle, a TM M can compute a
worst case input of length n for C' by fixing the input variables of C' in the oracle
questions sequentially. Clearly, M is in FPVNP, O

Theorem 10. lex-1st-CWC is FPNP-complete.

Proof. From lemma 9 it follows that the problem to generate the lexicographi-
cally maximum worst case input is in FPNP.

The FPNP-hardness follows from a reduction of the MAXSAT problem (i. e.
to find the lex. maximum satisfying assignment), which is known to be FPNP-
complete (see [Kren86]). For a Boolean function F' generate a circuit C' using
the strategy of theorem 5. Note that the lex. maximum worst case input of C’
gives also the lex. maximum satisfying assignment of F'. O



The more general problem to find the lex. indexed worst case of circuit seems
to be more difficult.

Theorem 11. lex-index-CWC and lex-middle-CWC are FP# —complete under
<IP reducibility.

This follows by a <7 P-reduction to lex k-th SAT (see [Toda90]).

Theorem 12. It is }'P{\{P —hard to compute a worst case input of a given circuit.

Proof. In the following we will consider nondeterministic Turing machines with
canonical computation trees. Therefore we order the nondeterministic choices at
each state of these machines. Furthermore we restrict these machines to binary
choices. So we get a left (resp. 0) and a right (resp. 1) choice for every state.

Let f € .7:73@{7) and D be a polynomial time bounded Turing machine that
computes f(y) on input y using polynomial many queries to an N'P-oracle O
where all must be asked before any of them is answered. Let ¢(y) denote the
number of oracle queries of D.

Note that we can construct a NTM N that works in three phases: In the
first phase N chooses nondeterministically the answer string woracie € {0, l}q(y)
of O. In the second phase it verifies the positive answers (Worac1e[i] = 1) and
simulates D where the oracle answers are given by the corresponding binary
digits of weracie- For w € {0, l}q(y) let value(w) be the result of D with answer
string w. Finally IV chooses a binary string of length d where d denotes the length
of the phases 1 and 2. For a computation p of N let weomp(p) € {0,1}2? describe
the nondeterministic choises of N on p. Let p be an accepting computation of
N iff the substring Woracie(P) = Weomp(P)[0]. . Weomp (P)[q(y) — 1] describes the
answer string of @ where all positive answers are chosen correctly and it holds
Weomp(P)[d]- - Weomp (P) [2d — 1] = value(Worac1e (p)) if leading zeros are ignored.

For a path p let 7 (p) be the set of positive oracle answers of woracie(p)-
Since each query to the oracle must be asked before any of them is answered
there are accepting computations p of N such that for each accepting compu-
tation p’ it holds 7 (p') C T(p). Note that for such a computation p it holds
value(Woracie (p)) = DO (y).

Since N is a polynomial time bounded NTM we can construct a circuit C' with
input gates zg,...,Z2q_1 where x; describes the i-th nondeterministic choice of
N (see [CookT71] and [Pa94]). So, w describes an accepting path iff res, (w) = 1.

Note that there exists circuit A with input gates zo,...,7,y)—1 such that
timea (2o, . .., Tqy)—1) = depth(C)+|{z; =1|i€{0,...,q(y) —1}}| . Acan
by generated in polynomial time.

Finally let C’(mo, coyT2q-1) = C(20,...,72a-1) AND A(20, . .., Ty(y)—1) -
It can be shown that times(wo,...,7T24-1) = 1+ timea(zo,...,Tq)-1) if
the result of C' on input zo,...,z2¢—1 is 1 and times(2o,...,224-1) < 1+

depth(C) otherwise. So, it holds that time (o, ..., 724—1) is the worst time of C'
ifresc(xo,...,@2q-1) =land |{z; =1|i € {0,...,q(y) — 1}}| is maximal. From
the construction of N and C follows that for maximum timeg(zo, . .., Z24—1) the
Boolean values of x4, ...,22q 1 give the result of DO (y). |



After we have discussed the complexity of worst case inputs, we start to
investigate sets of inputs or more generally probability distributions.

Definition 13. The set of all probability distributions p on {0,1}™ is denoted
by D,,. The uniform distribution on {0,1}" that gives equal probability to each
of the 2" possible input vectors is denoted by pui%. A worst case probability
distribution p of circuit C' gives positive weight only to worst case inputs of C'.

The worst probability distribution for the expected time of a circuit is without
any doubt a worst case distribution.

Now we want to characterize the complexity of worst case distributions.
Hence we have to find an encoding for probability distributions. In [JRS93]
for the average case analysis of circuits a complexity measure is defined for dis-
tributions that generate the inputs. The complexity is measured by the circuit
model itself, that is by the complexity of a circuit that starting with a vector of
truly random bits generates the specific distribution. This may be considered as
the circuit analog of Turing machine sampleable [BCGL92].

Definition 14. A circuit C with r input gates and n output gates performs
a transformation of a random variable Z defined over {0,1}" into a random
variable X over {0,1}" as follows. The input vector for C' is chosen according to
Z. Then X equals to the distribution of the values obtained at the output gates.

If Z is the uniform distribution over {0,1}" such a circuit will be called a
distribution generating circuit, DG-circuit, that generates the distribution
of X. For a DG-circuit D the distribution of the transformed random variable
is denoted by pup.-

Using this encoding we can characterize the complexity to decide whether a
given DG-circuit generates a worst case distribution.

Theorem 15. For a given circuit C and a DG-circuit D it is co-N"P-complete
to decide whether up is a worst case distribution of C.

Proof. Given a circuit C € Cir(B,,) and a DG-circuit D € Cir(B]") the decision
whether up is a worst case distribution of C' is equivalent to

Vz € {0,1}" : timec(resp(z)) = timec(resp(07))
and Vz € {0,1}" : timec(z) < timec(resp(07)) .

So we can solve this problem in co-NP.

On the other hand we can reduce the TAUTOLOGY problem to this problem
using the construction in the proof of theorem 5. So even the decision whether
p'M is a worst case distribution of C, is co-AP-complete. O

Note that a worst, case distribution for a circuit C' can constantly output one
worst case input for C. Such a distribution can be achieved by the algorithm
of lemma 9. On the other hand if we have a strategy to compute a DG-circuit
D e Cir(B?), which generates a worst case distribution for C' € Cir(B,,), we can
easily use it to determine the worst case input D(0").



Corollary 16. For a given C' the computation of a DG-circuit, which generates
a worst case distribution for C, is in FPNPand fPé\tfp—hard.

4 Expected Time of a Circuit

Definition 17. For a function ¢ : {0,1}"™ — IN and a probability distribution
o {0,1}" — [0;1] let E,(¢) := > t(z) pu(z) be the expectation of ¢ with
respect to . If S is a set of probability distributions we define

ti S) = i E,(ti
etime(f,5) = max _min B, (timec)

as the optimal expected circuit delay of f with respect to distributions in S.

A simple example of a Boolean function that can be computed significantly faster

in the average case compared to the worst case (for which the trivial logarithmic

lower bound for the depth holds) is the OR-function. In [JRS93] it is shown that
etime(OR,,, p'™) = 2 —2-(n=2)

If DG-circuits are restricted to constant fan-out 2 for the set DDepth(d) of all

probability distributions with d-depth bounded DG-circuits it holds [JRS93]:

etime(OR,, DDepth(d)) = O(min(2¢,1ogn)) ,

etime(THRESHOLD?, DDepth(d)) = @(min(loga + 2¢,logn)) ,

etime(ADD,,, DDepth(d)) = @(min(loglogn + 2%, logn)) .

DG-circuits simulate the context of the circuits. The question is whether an
average analysis of the time of circuit C' with respect to up generated by circuit
D can be reduced to the analysis of the combined circuit C' o D. This is not the
case, since timecop(z) = timec(resp(z)) + timep(z). So the time behavior of
D influences the behavior of C' o D.

Lemma18. For a given circuit D € Cir(Bl), there exists a circuit D' with
Vz respr () = resp(z) and size(D') < size(D)+depth(D)+7n and timep: () =
depth(D) + 3.

Proof. Let D' := EQUAL(D, CHAINgepih(p) (1)), where EQUAL is implemented as
EQUAL(z,y) := ((z AND z) AND (y AND y)) OR ((NOT z) AND (NOT y)) . 0

Now if we combine C' with the synchronized circuit D’ of D, we only have to
analyze E,,, (timec)+ depth(D’).

Theorem 19. For a given circuit C € Cir(B,) and a DG-Circuit D, there exists
a circuit C' with Vx rescr (x) = resc(resp(x)) and size(C') < size(C) +size(D)+
depth(D) + 7n and Euni(timecr) = E,, (timec) + depth(D) + 3.



If we encode probability distributions by DG-circuits using r random bits every
probability is a multiple of 2 ". So the number E,, , (time) can easily transformed
into a natural number by multiplication with 27.

Definition 20. Circuit Expected Time Problem (CET)
For a given circuit C' and a given DG-circuit D with r random input bits, that
defines the probability distribution up, compute E,,, (timec) - 27.

Lemma 21. CET € #P .

Proof. Consider CET restricted to uniform distributions. A nondeterministic Tur-
ing machine N chooses a bit string z € {0,1}" and computes t := timec(z).
N is constructed such that at this configuration ¢ accepting leaves are follow-
ing. Therefore the number of accepting paths is 3_, ¢ - timec(z) = 27

E,uni (timec). By the same technique we get CET € #7P . a

On the other side, CET is #P-hard under metric reducibility. To get a prob-
lem which is #P-hard even under many-one reducibility we enhance the linear
mapping.

Theorem 22. For a given circuit C € Cir(B,) and k € IN, the computation of
2" - E,uni(timec) — 2% is #P-hard.

Proof. Let M be a polynomial time bounded NTM. At first we transform this
machine into a polynomial time bounded machine M’ with the same number of
accepting states and a complete binary computation tree of depth p(n) € POL.

Now let C; be the polynomial time bounded circuit, that realizes the i-th
computation step of M’ as follows. It has i — 1 input bits ¢;,...¢; 1 which
represents the choices M’ has made in previous computations steps. We add an
input bit g; that indicates which choice M’ is doing in the i-th step. In addition
the configuration of M' at the (i — 1)-th step is given in the input. Note that
the input length is bounded by O(p(n)).

The circuit now simulates one step of M’ and outputs the succeding config-
uration of M'. This circuit has constant depth ¢ and size O(p(n)).

Now let k =1+ log(c - p(n) +4) and r = p(n). We construct the circuit
C as follows. g1,...g, are the inputs of C'. Every circuit C;11 is fed with the
configuration output of C; and the inputs ¢1, ..., gi+1. The result of C, is a bit
indicating whether M’ accepts or not.

Now CHAIN;(b) and EQUAL are defined as in theorem 4 and lemma 18. The
wanted circuit C' is defined for input gates © = zg,...,x, as

C = (Cp(Cp—1(...Co(x)...)) EQUAL CHAINy. 4(1)) AND CHAIN,:(0) .
For the time of C holds:

_ [2F+1 ,if M" accepts = with choices gy, ... s Ip(n) >

timec (g1, gr) = {2’“ , if M' rejects  with choices g1, ..., gp(n)

Therefore for the expected time of C' and for a(z) defined as the number of
accepting configurations of M (or M') on input z, it holds

E,uwi(timec,) = (a(z)+2%) - 277, a



For the exact computation of the expected time of a given circuit no efficient
deterministic algorithm is in sight. So we try to approximate this problem with
a probabilistic Turing machine.

We already showed a polynomial time bounded algorithm to compute the
time. Furthermore we model the probability distributions of inputs by DG-
circuits, that can be simulated in polynomial time, too. The idea is now to make
several experiments on random inputs to compute the statistical expectation.

Theorem 23. For each constant k > 0 there exists a polynomial time bounded

probabilistic TM M such that Pr[|[M(C) — E i (timec)| < k] > 2.

Proof. Let T be the random variable of times with respect to the uniform prob-
ability distribution pU%. Further let v > Var(T) be an upper bound for the
variance of T'. For example v = depth(C)? is a trivial upper bound for the vari-
ance, since 0 < timec () < depth(C). Let M be a O(size(C) - m)-time bounded

prob. TM that computes the statistical expected value of m := Bk';’ independent
random variables timec(x1), . .., timec (zy,)-
For the variance of the output it holds: Var(M(C)) = VarT(T) . Using the
inequality of Chebyshev we get
Var(T) 2
Pr[ | M(C) — E(T)] < k] > 1 — - .
(MO - B < K 21 - o] > 2

a

Corollary 24. For each constant k > 0 there exists a polynomial time bounded

probabilistic TM M such that Pr[|M(C, D) — E,,, (timec)| < k] > 2.

Proof. The claim follows similarly to the proof of theorem 23 by replacing the
uniformly chosen input in M with a pp distributed input.

Note that the time of this algorithm is O((size(D) + size(C)) - v/k?). If we
choose for v = depth(C)? we get O((size(D) + size(C)) - depth(C)?/k?). O

These algorithms approximate with high probability up to an arbitrary ad-
ditive constant in polynomial time. Such a approximation rate is extraordinary,
since normally approximation rate is measured by a factor.

5 Conclusion

Recent research in average compexity theory of circuit was directed towards the
classification of Boolean functions. First results [JRS93, Reif93] analyzed upper
and lower bounds for basic functions. Later more sophisticated analysis was done
to find more general bounds for the expected time [JRSW93, JRS95]. Even for
simple functions these analyses turned out to be quite complicated. For many
functions this approach seems hopeless.

For a fixed circuit this analysis is not trivial at all, since we have proved that
the complexity to determine the expected time of a circuit can be completely
classified by #7P.



Given Question ‘Upper Bound‘Lower Bound

C,z,t timec (z) <t ‘P-complete
c,t dz timec(z) < ¢ N'P-complete
C,t tec(C) =1t BHs-complete
C x such that timec(x) = t4.(C) FPNP FPNP-hard
C  |lex. max. z with timec(z) = t..(C) FPNP_complete
Cc,D up = worst case distr. of C' co-NP-complete
C,D E,,, (timec) #P-complete

Table 1. Upper and lower bounds for problems investigated in this pa-
per. C denotes a circuit, D a DG-circuit, z an input and ¢ a time bound.

This concerns exact computation of the expectation, which in practice is not
necessary. In this paper, an approximation algorithm is presented that solves
this problem in polynomial time. Since it is a Monte-Carlo algorithm a stan-
dard technique can decrease the error probability; e.g. using this algorithm the
expected time +1 of the circuit ADD,, presented in [JRSW93] can be computed
within O(n? - log® n) with probability 1 — L

When considering standard computer systems, the worst case also is of im-
portance. Synchronized computation in particular needs the complete evaluation
of all partial circuits within the clock. That means that the calculation of the
minimal clock needs the computation of the worst time of all partial circuits.
This problem is BHs-complete.

A trivial upper bound for the worst time is the depth, which can be deter-
mined in A'C. But depth and worst time can differ arbitrarily without loss of
hardness.

So we propagate the concept of asynchronous computation, since it is not
necessary to precompute such hard parameters like worst time. In this model for
many functions there exist special designed circuits which provide a significant
speedup in the average.

Note that the worst time of an asynchronous circuit gives a lower bound of the
clock of a synchronized version. But the worst time requires a given worst case
input. Since we have proved computing a worst case input is F P{\tfp—hard this im-
plies high computational effort. Moreover, computation of the lexicographically
maximum worst case input is even FPNP-complete. Therefore we expect that
asynchronous computer systems will compute faster than synchronous systems
in general.

Table 1 gives an overview of the upper and lower bounds concerning time,
worst time and expected time of circuits.



Open Problem Remember that CWC is defined as the search problem for the worst
case input. We showed that it is fPé\tfp—hard. An upper bound is FPVP. So the
question remains whether CWC is ZPNP-complete.
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