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Abstract.

In the beginning the information is available only at some sources of a given network.
The aim is to inform all nodes of the given network. Therefore, every node can inform
its neighborhood sequentially and newly informed nodes can proceed in parallel within
their neighborhoods. The process of informing one node needs one time unit. The
broadcasting problem is to compute the minimum length of such a broadcasting
schedule.

The computational complexity of broadcasting is investigated and for the first time

a constant lower inapproximability bound is stated, i.e. it is N"P-hard to distinguish
between graphs with broadcasting time smaller than b and larger than (% —€)b
for any € > 0. This improves on the lower bounds known for multiple and single
source broadcasting, which could only state that it is NP-hard to distinguish between
graphs with broadcasting time b and b+ 1, for any b > 3. This statement is proven by
reduction from E3-SAT, the analysis of which needs a carefully designed book-keeping
and counting argument.
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1 Introduction

Broadcasting reflects the sequential and parallel aspects of disseminating information in a
network. In the beginning the information is available only at some sources. The aim is to
inform all nodes of the given network. Therefore, every node can inform its neighborhood
sequentially and newly informed nodes can proceed in parallel within their neighborhoods.
The process of informing one node needs one time unit. Thus, the game is played in rounds
(For a formal definition see next section).

The multiple source broadcasting problem (MB) is the following: Given a graph with
multiple sources, compute its minimum broadcasting time. It is known to be NP-hard
[GaJoT9] and this is even the case for constant broadcasting time, like 3 [JRS96] or 2
[Midd93]. Yet it is not justified to claim that this entails a lower bound for approximating
broadcasting within a factor of %, since no family of graphs is known whose broadcasting
time is 2b and which cannot be approximated within 36 for any 6 > 1. For many other
approximation problems it is an easy task to define a padding argument that transfers
inapproximability bounds to larger instances with larger values. E.g. the approximation
problem of satisfiability [Hast97] is satisfy as many clauses as possible. Consider a family of
Boolean formulas for which it is A"P-hard to distinguish between formulas with s satisfiable
clauses and as satisfiable clauses. Then, it is an easy task to create a formula of with
2s satisfiable clauses with this property. Another example for a paddable approximation
problem is tree-width. Here, a padding technique replaces every node with a clique and
transfers small differences of tree-width of graphs to higher values preserving the lower
bound property [BGH91]. Therefore, the lower bound factor of % for broadcasting time can
be stated, if such a padding technique could be discovered for MB.

In the literature the broadcasting problem has often been considered only for one in-
formed source at the beginning, here called single source broadcasting problem (SB). Note
that the broadcasting time b(G) is at least log, |V| for a graph G' = (V, E), since during
each round the number of informed vertices can at most double. The minimal graph provid-
ing this lower bound is a binomial tree F,, [HHL88]: Fy consists of a single node and Fj, 44
consists of disjunct subtrees Fy, ..., F,, whose roots rg,...,r, are connected to the new root
Tnt1- Also the hyper-cube C,, = {{0,1}"}, {{w0v,wlv} | w,v € {0,1}*} has this minimum
broadcasting time since binomial trees can be embedded.

The upper bound on b(G) is |V| — 1, which is needed for the chain graph representing
maximum sequential delay (fig. 1) and the star graph (fig. 2) producing maximum parallel
delay. Hence, the topology of the processor network highly influences the broadcasting time.
For the broadcasting behavior of these and other graphs, see [LP88,BHLP92]. An overview
over broadcasting is given in [HHL88].

The computational complexity of single source broadcasting has been studied for a
long time and its decision problem (SBD) (decide whether the broadcasting time is less or
equal to a given deadline Ty) is N'P-complete [GaJo79,SCHS81]. Slater et al. also show, for
the special case of trees, that a divide-and-conquer strategy leads to a linear algorithm.
In [JRS96] this result is generalized for graphs with a small tree-width according to a tree
decomposition of the edges. On the other hand, SBD is A"P-complete even for the restricted
case of ternary planar graphs or ternary graphs with logarithmic depth [JRS96].



The best known polynomial-time approximation algorithm for SB has a factor of

0 (lokg)glz%) for a graph G = (V, F), and 2B for B-bounded-degree graphs [Ravi94]. SB

is approximable within O (%) if G = (V, F) has bounded tree-width with respect to
the standard tree decomposition [MRSR95].

All proofs of the hardness of broadcasting known so far could establish only a difference
of one time unit between the broadcasting time b(G') and a polynomial time computable
upper bound, no matter whether one considers single or multiple sources. For multiple
sources a padding technique (as described above) would establish a factor of 3 at once. For
a single source even this does not help for a constant lower bound larger than 1. The best
lower bound so far is a factor of 1 + m [JRS96].

In this paper we do not use a padding technique that preserves approximation factors,
neither do we use PCP techniques. The proof consists in a sophisticated reduction from
E3-SAT to single source broadcasting, such that the inapproximability of satisfiability is
inherited by the reduction graph. Of course this lower bound also applies to MB. So, recent
developments in the area of probabilistic checkable proofs enable this breakthrough [Hast97].

The reduction-graph has a very high degree at the source (and only there). Thus, a good
broadcasting strategy has to make most of its choices there and this can be shown to be
equivalent to choosing the assignment of an E3-CNF-formula. A careful book-keeping of the
broadcasting times of certain nodes representing literals and clauses gives the lower bound
of % — €.

The paper is organized as follows. After formalizing some relevant notation, the gen-
eral lower bound is stated and proved. In the last section, conclusion, these results are
summarized and possible further developments are discussed.

2 Notation

All problem instances are undirected graphs. However, for the broadcast schedule we use
directed edges to indicate the direction of information flow. The undirected versions of these
edges form a subset of all edges of the given graph.

Definition 1 (single source broadcasting) Let G = (V, F) be an undirected graph with
a vertex vg € V, the source. The task is to compute the broadcasting time b(G, vy),
the minimum length T of a broadcast schedule 5, that is a sequence of sets of directed
edges S = (Fq, Fa, ..., Er_1, E). Their nodes are in the sets Vo = {vo}, Vo =V, where
for i > 0 we define V; == Vi1 U {v ]| (u,v) € E; and u € V;_1 }. A broadcast schedule S
fulfills the properties

1 E; C{(u,v)|u€Viiy,{u,v} € E'} and
2NueViy: |Ein({upx V)| <1.

The set of nodes V; have received the broadcast information by round ¢. For an optimal
schedule with length 7 the set Vz, is the first to include all nodes of the network. E; is the
set of edges used for sending information at round ¢. Each processor v € V;_1 can use at
most one of its outgoing edges in every round.



Definition 2 Let S be a broadcast schedule for (G, Vy) where G = (V, E). The broadcasting
time of a node v € V' is defined as bs(v) = min{i | v € V;} . A broadcast schedule S is
called busy if it holds:

L Y{v,w} € E : bs(w)>bs(v)+1 = 3Fuw' €V : (v,0) € Eywy—1
2. Vo e V\{w} : [U; B Nn(V x{u})| =1

In a busy broadcasting schedule every processor tries to inform a neighbor in every
step starting from the moment it is informed. When this fails it stops. By this time, all its
neighbors are informed. Furthermore, every node is informed only once.

Lemma 1 Fvery broadcasting schedule S can be replaced by a busy schedule S’ without
delaying any broadcasting time of a node, i.e. Yo € V. : bg/(v) < bg(v) . Moreover, given
S this schedule S’ can be computed in polynomial time.

Proof: The algorithm starts at the source and applies to every node v a local optimization
algorithm, called local-busy-maker.

procedure local-busy-maker(v)
{
for ¢ = 1 to degree of v do
if » informs no neighbor in time bg(v) + ¢ then
if there is a neighbor w’ left with bg(w’) > bs(v) + i then
for all v’ € V do
Remove {v/,w'} from all sets Fy, Es, ...
od
Insert {v, w'} in Ey ()4
fi
fi
od

}

This local optimization algorithm improves the schedule S without delaying or preventing
any information. It affects only nodes in the schedule that have higher broadcasting time
than ». After this procedure the node v is busy in the resulting schedule. We apply this
algorithm to each node as follows.

procedure busy-maker(G, v, 5)
{
Remove all edges that inform already informed nodes
Select among edges that inform a node at the same time
an arbitrary one and remove the others
for : =0 to bs(G) do
M :={v | bs(v) =1}
for all nodes v in M do
local-busy-maker(v)
od



od

From now on, every schedule is considered to be busy.

A chain is defined by C,, = ({v1,...,v.}, {{vi,vi41}}) (fig. 1), and a star by S5, =
H{v1, ..., o0l
Hovo} 7> 1)) (fig. 2).

Fact 1 There is only one busy broadcast strategy that informs a chain with k interior nodes.
Let its ends v, w be informed in time b, — k < b, < b,,. Then the chain is informed in time
[(by + by + k)/2] (We assume that the ends have no other obligations for informing other
nodes).

There are n! busy broadcast schedules for the star S, that describe all permutations of

{1,...,n} by (bs(v1),...,bs(vy)).

Fig. 1. The chain and its symbol.

Fig. 2. The star and a busy schedule.

3 The General Lower Bound

In this section we present a reduction from E3-SAT to SB and show how to prove the
constant inapproximability factor.

Let I be a 3-CNF with clauses ¢1,...,¢,, and variables z1,...,2,. Let a(i) denote the
number of occurrences of the positive literal z; in F. We can assume that every variable
occurs as often positive as negated in F, since in the proof of theorem 1 this property is
fulfilled. Let 6 := 20 - m, where m := Y I~ a(i) with ( being a large enough number to be
chosen later on. Note that for the number of clauses M it holds: M = 2m/3

We reduce F' to an undirected graph G'ry with maximum degree 6 which occurs at
the source vg. vg and its 6 neighbors form a star Ss whose leaves x?%k for b € {0,1},
i e {l,...,n}, 7 € {l,...,a(t)}, and k € {1,...,(} are nodes of { disjunct isomorphic
subgraphs G, ..., Gy. The leaves of the subgraph S5 are called literal nodes. A subgraph
G, contains literal nodes x?%k, representing the literal 2% (2! = 2;, 2% = 7).

Now, we give a complete description of a subgraph G’ = G}. As a basic tool for the
construction of G’ we use a chain Cy(v,w) starting at nodes v and ending at w with k
interior nodes that are not incident to any other edge of the graph. For the literal nodes
corresponding to a variable z; in G; we insert the chains 05($2j7k, 96217j,7k) foralli € {1,...,n}

and 7,7 € {1,...,a(i)}}.
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Fig. 3. The reduction graph Gp..

For every clause ¢, we introduce a clause node c,; which is connected via three

chains 05/2(cy7k,xf§jp ¢) (p € {1,2,3}) of length 6/2 to its corresponding literal nodes

b1 b2 ba . .
ik T g Tk such that every literal node is connected only to one clause node.

This completes the construction of G’.
The main idea of the construction is that the assignment of a variable z; = a roughly
shows when a node has to be informed. We call a literal z; in a subgraph G coherent, iff

it holds: Ja € {0,1} Vj € {1,....a(d)} bs(z, ;) < £ and bs(a x7) >4
Lemma 2 If F is satisfiable, then b(Gre,v0) < 6 +2m+ 5.

Proof: We describe a broadcasting schedule S for (G, {vo}), where every literal is coherent.

The busy schedule § informs all literal nodes directly by vg. Let aq, ..., a, be a satisfying
assignment of F'. The literal nodes z i of graph Gy are informed in the time period

(k—1)m+1,...,km. The literal nodes x k are informed in the time period 6 — km +
1,...,6 = (k- 1)m m is a trivial upper bound for the degree at a literal node. So, the
chalns between two literal nodes can be informed in time § + 2m + 1. A clause can be
informed in time km 4 6/2 4+ 1 by an assigned literal node of the first type, which always

exists since a1, ..., a, satisfies F. Note that all literal nodes corresponding to the second
type are informed within ¢ — (k — 1)m. So the chains between those and the clause node
are informed in time 6 + m/2 + 1. [ |

For proving a lower bound for non-satisfying formulas we need the following lemma.
Lemma 3 Let S be a busy broadcasting schedule for Gg . Then,

1. every literal node will be informed dz'rectly from the source vy, and
2. forc; = x ty xa2 v an bs(e;) > % —|— mmz{bg( )}



Proof:

1. Every path between two literal nodes that avoids vy has at least length 6 + 1. By Fact 1
even the first informed literal nodes has no way to inform any other literal node before
time point ¢, which is the last time a literal node is going to be informed by vp.

2. follows by 1.

|

If we assume that only one clause per Boolean formula is not satisfied, this lemma only

implies that if /' is not satisfiable, then b(Grs,{vo}) > &6 4 (. This already improves the

best known lower bounds for approximability. But we can do much better if we take into

account that every non-satisfied clause of an assignment causes an in-coherent literal, and

therefore the number of nodes informed too late increases proportionally to the number of
unsatisfied clauses.

F= (vhox)Amenvy A (}lvx3v}4)/\ o 0o

C, C, C3

Fig. 4. Transforming F into G,

E3-SAT denotes the satisfiability problem of Boolean CNF-formulas where in each clause
exactly three literals appear.



Theorem 1 [Hast97] For any ¢ > 0 it is N'P-hard to distinguish satisfiable E3-SAT formu-
las from F3-SAT formulas for which only a fraction 7/8 4+ € of the clauses can be satisfied,
unless P = N'P.

To transfer this result to broadcasting, we consider a busy schedule 5 for graph G,
and define a corresponding assignment for F'. Then, we categorize every literal node as high,
low or neutral, depending on whether the literal node is coherently assigned and whether
it is delayed (later informed than §/2). Furthermore we classify some clause nodes as high.
Every unsatisfied clause of the 1E3-SAT-formula F' increases the number of high literals.
Besides this, high and low literal nodes come in pairs, but possibly in different subgraphs
G; and G;. The overall number of the high nodes will be larger than those of the low nodes.
A large difference will result in a good lower bound.

Theorem 2 For every € > 0 there exist graphs with broadcasting time at most b such that
it is N'P-hard to distinguish those from graphs with broadcasting time at least (% —€)b.

Proof: Consider an unsatisfiable E3-SAT-formula F’, the above described graph G'ry and a
busy broadcasting schedule S on it. The schedule defines for each subgraph G, an assignment
T1,ky--5Tnk

€ {0,1}" as follows. We assign the variable z;; = o if the number of literal nodes with

bs(x;)) < 8/2 is larger than those with bs(27; ) < 6/2. If both numbers are equal, wlog

let x5, = 0.

1. A literal node is coherently assigned, iff bS(Czq,j,k) <é/2 & w; = a. All coherently
assigned literal nodes are neutral.

2. A literal node Ty g 1 high if it is not coherently assigned and delayed, i.e. z; ;1 = «
and bg(acij) =6/2+ ¢ for ¢ > 0.

Every high literal node can be matched to a neutral delayed literal node xgj“k,
bg(fj,7k) = 6/2+ € for e > 0. Then Fact 1 show that the chain between them can be
informed in time 6 + % at the earliest.

3. A literal node z7; is low if it is not coherently assigned and not delayed, i.e. z; ;) =@
and bg(af; ) < 6/2.

4. A clause node ¢ is high, if all its three connected literal nodes are coherent and delayed,
ie. Vi€ {1,2,3} bs(z5') = 8/2+¢;, for e; > 0. Since Lemma 3, this clause node will be
informed not earlier than ¢ + min{ey, €5, €3} and the chain to the most delayed literal
node will be informed at § + (min{ey, €2, €3} + max{e, €2,€3})/2 at the earliest.

5. All other clause nodes are neutral.

l.e.

Suppose all literal nodes are coherent, then the number of high clauses equals £ times
the number of unsatisfied clauses of F. This is the easy case. In general we have to face a
“very” non-coherent schedule and take high and low literal nodes into account.

Lemma 4 Let g be the number of low literal nodes, p the number of high literal nodes, and
p' the number of high clause nodes. Then the following holds

1. p=gq,
2. bs(GFe,v0) > 64 p,
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Fig. 5. High and low literal nodes. The middle literal is the only coherent one.

3. bs(Gru,v0) > 6+ (p+3p)/2.
Proof:

1. Consider the set of nodes ', ,, for j € {1,...,a(?)} and o € {0, 1}. For this set let p; x
be the number of high nodes, ¢; , the number of low nodes and r; ;, the number of nodes
with time greater than §/2. By the definition of high and low nodes the following holds
forallie{l,...,n}, ke {l,...,(}:

Tk — Dik + i g = alt) .

From Fact 1 and Lemma 3 we know that half of the literal nodes are informed within

6/2 and the rest later on:
S =822 Yali),
1,k

Then, it follows that:

qg—p=>_rig—pip+gr—ali)=0.
ik

2. Note that each of the P high (delayed) literal node «f, , can be matched to a coherent
delayed literal node a7, ;. Furthermore, a chain of length 6 has to be informed by these
nodes. If the latest of the high nodes and its partners is informed at time /2 + €, then
fact 1 shows that the chain cannot be informed earlier than ¢ + €/2.

The broadcasting time of all literal nodes is different. Therefore it holds € > 2p, proving
bs(Gre,v0) > 64 p.

3. Every clause node is connected to three neutral delayed literal nodes. The task to inform
all chains to the three literal nodes is done at time é + ¢//2 at the earliest, if §/2 + ¢
was the broadcasting time of the latest literal node. For p’ high clause nodes, there are



3p’ corresponding delayed neutral literal nodes and, besides that, there are p delayed
high literal nodes (whose matched partners may intersect with the 3p’ neutral literal
nodes). Nevertheless, the latest high literal node with broadcasting time 6/24 ¢’ causes
a broadcast time on the chain to a neutral delayed literal-node of at least § + /2.

From both groups consider the most delayed literal node vy, Since every literal node
has a different broadcasting time it holds ¢’ > 3p'+p, and thus bg(vmax) > 6+(3p"+p)/2.
|

Suppose all clauses are satisfiable. Then Lemma 2 gives an upper bound for the optimal
broadcasting time of b(Gry,v9) < 6+ 2m + 5.

Let M be the number of clauses in F” and assume that at least KM clauses are unsatisfied
for every assignment. Consider a clause node that represents an unsatisfied clause with
respect to the assignment which is induced by the broadcast schedule. Then at least one of
the following cases can be observed:

— The clause node is high, i.e. its three literal nodes are coherently assigned.
— The clause node is neutral and one of its three literal nodes is low.
— The clause node is neutral and one of its three literal nodes is high.

Since each literal node is chained to one clause node only, this implies
kel M < p4ptqg=p+2p.

Assume p > 3p/, then it follows that p > %(Qp + p’). Then it holds for the broadcasting
time of any busy schedule 5

On the other hand, if p < 3p/, then L(p+ 3p') > 2(2p+ p') and
1 / 3 /

bs(Gresvo) > o4 5(p+3p) = o4 () +2p) .

Note that 2m = 3M and that 6 = 2m - . Combining both cases we get
3 1

bS(GF,bUO) > (5—|—?I{-K-M = 6- (1—|—?-I{) .

For any ¢ > 0 this gives, for sufficient large (

bs(G 1+1Lix 1
s(Gre; vo) > -|-27 >4l
b(G e, v0) 14 2mid 7
Now we choose Kk = % — ¢ according to theorem 1 and get the claimed lower bound % -’
for any ¢’ > 0



4 Conclusions

The complexity of broadcasting time is a key for understanding the obstacles to efficient
communication in networks. This article answers the open question whether broadcasting
can be approximated with any constant factor. Since until now the upper bound factor for

approximating broadcasting time was known as O(lokg)glz%) [Ravi94] and the lower bound
was known as one additive time unit. Thus, a lower constant bound of a factor of % — € is
a big step forward. Yet it does not seem to be the end of the road.

There are a number of interesting special cases open. For planar graphs computing the
exact broadcasting time is A"P-hard. But there are two reasons why good approximation
algorithms seem to be reasonable. The average degree of a planar graph is constant and
for bounded-degree graphs there is a constant factor polynomial time approximation al-
gorithm for broadcasting [Ravi94]. Recently, new tree decomposition techniques for planar
graphs have been introduced and have resulted in polynomial approximation algorithms.
Further, it is known that good tree decompositions help to solve broadcasting more effi-
ciently [JRS96,MRSR95].

There is good hope that the techniques of this paper can be applied as well to ternary
graphs. For the moment a lower bound of 1+ 1/0(log|V]) is known for approximating
broadcasting time [JRS96]. The upper bound for approximating the broadcasting time of a
ternary graph is a constant. So, close upper and lower bounds are still unknown.

However, in practice it is hardly ever possible to determine the ratio between sequential
communication overhead at a single node and parallel communication given by the transfer
rate. A further complication is that even the network structure may be unknown to all
partners because of dynamic unpredictable changes. But even if the network is known in
detail and in advance and given the above simple unit-time model, this paper shows that
establishing a good broadcasting strategy is a computationally infeasible task.
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