
The Design and Implementation of A Declarative
Sensor Network System

David Chiyuan Chu
Lucian Popa
Arsalan Tavakoli
Joseph M. Hellerstein
Philip Levis
Scott Shenker
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-132

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-132.html

October 16, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

1

The Design and Implementation of A Declarative
Sensor Network System

David Chu∗, Lucian Popa∗, Arsalan Tavakoli∗, Joseph M. Hellerstein∗, Philip Levis†, Scott Shenker∗, Ion Stoica∗
∗EECS Computer Science Division, University of California, Berkeley, CA 94720

Email: {davidchu,popa,arsalan,istoica,hellerstein}@cs.berkeley.edu, shenker@icsi.berkeley.edu
†Department of Electrical Engineering and Department of Computer Science, Stanford University, Stanford, CA

Email: pal@cs.stanford.edu

Abstract—
Sensor networks are notoriously difficult to program, given

that they encompass the complexities of both distributed and
embedded systems. To address this problem, we present the
design and implementation of a declarative sensor network
platform, DSN: a declarative language, compiler and runtime
suitable for programming a broad range of sensornet applica-
tions. We demonstrate that our approach is a natural fit for
sensor networks by specifying several very different classes of
traditional sensor network protocols, services and applications
entirely declaratively – these include tree and geographic routing,
link estimation, data collection, event tracking, version coherency,
and localization. To our knowledge, this is the first time these
disparate sensornet tasks have been addressed by a single high-
level programming environment. We address a number of systems
challenges that arise when building a generic compiler and
runtime environment for the sensornet context; these include
not only issues of limited resources, but also the management
of asynchrony and requirements of predictable execution. Our
results suggest that the declarative approach is well-suited to
sensor networks, and that it can significantly improve software
productivity and quality while still producing efficient, resource-
constrained code.

I. INTRODUCTION

Wireless sensor networks have received significant research
attention in the last decade, spawning multiple conferences,
a variety of hardware and software implementations, and a
nascent industry. Despite years of research, however, sensornet
programming is still very hard. Most sensornet protocols and
applications continue to be written in low-level embedded
languages like NesC [11], and wrestle explicitly with issues of
wireless communication, limited resources, and asynchronous
event processing. This kind of low-level programming is
challenging even for experienced programmers, and hopelessly
complex for typical end users. The design of a general-
purpose, easy-to-use, efficient programming model remains a
major open challenge in the sensor network community.

In this paper we present the design and implementation of
a declarative sensor network (DSN) platform: a programming
language, compiler and runtime system to support declar-
ative specification of wireless sensor network applications.
Declarative languages are known to encourage programmers to
focus on program outcomes (what a program should achieve)
rather than implementation (how the program works). Until
recently, however, their practical impact was limited to core
data management applications like relational databases and

spreadsheets [19]. This picture has changed significantly in
recent years: declarative approaches have proven useful in
a number of new domains, including program analysis [40],
trust management [4], and distributed system diagnosis and
debugging [3], [35]. Of particular interest in the sensornet
context is recent work on declarative networking, which
presents declarative approaches for protocol specification [27]
and overlay network implementation [26]. In these settings,
declarative logic languages have been promoted for their clean
and compact specifications, which can lead to code that is
significantly easier to specify, adapt, debug, and analyze than
traditional procedural code.

Our work on declarative sensor networks originally be-
gan with a simple observation: by definition, sensor net-
work programmers must reason about both data management
and network design. Since declarative languages have been
successfully applied to both these challenges, we expected
them to be a good fit for the sensornet context. To evaluate
this hypothesis, we developed a declarative language that
is appropriate to the sensornet context, and then developed
fully-functional declarative specifications of a broad range
of sensornet applications. In Section IV, we present some
examples of these declarative specifications: a data collection
application akin to TinyDB [29], a software-based link esti-
mator, several multi-hop routing protocols including spanning-
tree and geographic routing, the version coherency protocol
Trickle [24], the localization scheme NoGeo [34] and an
event tracking application faithful to a recently deployed
tracking application [30]. The results of this exercise provide
compelling evidence for our hypothesis: the declarative code
naturally and faithfully captures the logic of even sophisticated
sensornet protocols. In one case the implementation is almost a
line-by-line translation of the protocol inventors’ pseudocode,
directly mapping the high-level reasoning into an executable
language.

Establishing the suitability of the language is of course only
half the challenge: to be useful, the high-level specifications
have to be compiled into code that runs efficiently on resource-
constrained embedded nodes in a wireless network. We chose
to tackle this issue in the context of Berkeley Motes and
TinyOS, with their limited set of hardware resources and
lean system infrastructure. This context presents a number
of challenges that were not addressed in the prior work on
declarative networking for the Internet. These include:

• Predictable Execution: Sensor networks are often in-
tended to run unattended for long durations. Thus, op-
erational predictability is a key concern.

• Memory Constraints: Memory is limited in many current
sensor network platforms. While these constraints may be
eased in some upcoming platforms, other platforms may
keep memory constant in favor of increased miniaturiza-
tion and decreased cost.

• Asynchrony: Because sensor networks are tightly coupled
with their physical environment, asynchronous software
execution is very important. At the same time, asynchrony
can make programming difficult, and it is not traditionally
captured in declarative languages.

We highlight these particular challenges because they had
broad impact on our design decisions in DSN. We will return
to these issues during the course of this paper, in discussions
of our declarative language as well as the system runtime.

Our contributions in this work are threefold:
• First, we present a declarative language called Snlog,

demonstrating its suitability to sensor networks via a
broad variety of example programs that faithfully repli-
cate prior work in a compact and concise manner. We
show that these implementations can be composed into
whole sensor network system stacks comparable to both
proposed and actually deployed sensor network systems.

• Second, we present the architecture and implementation
of our declarative system’s compiler and runtime, which
are targeted specifically to the wireless sensor network
domain.

• Finally, we present an evaluation of the feasibility and
faithfulness of our system, demonstrating that the result-
ing code can run on resource-constrained nodes, and that
the code does indeed perform according to specification.

The rest of the paper is organized as follows. The next
section sets our work in context. Sections III and IV outline the
Snlog language, and provide examples of a variety of protocols
and applications. Sections V and VI present an architectural
overview of the system, along with implementation concerns.
Section VII discusses evaluation methodology, measurements
and results. Section VIII concludes with a discussion.

II. RELATED WORK

Numerous deployment experiences have demonstrated that
developing low-level software for sensor nodes is prohibitively
difficult [36], [39]. This challenge has led to a large body of
work exploring high-level programming models that capture
application semantics in a simple fashion. By borrowing lan-
guages from other domains, these models have demonstrated
that powerful subsets of requisite functionality can be easily
expressed. TinyDB showed that the task of requesting data
from a network can be written via declarative, SQL-like
queries [29] and that a powerful query runtime has signif-
icant flexibility and opportunity for automatic optimization.
Abstract regions [38] and Kairos [14] showed that data-
parallel reductions can capture aggregation over collections
of nodes, and that such programs have a natural trade off
between energy efficiency and precision. SNACK [13] and

Tenet [12] demonstrated that a dataflow model allows multiple
data queries to be optimized into a single efficient program.
Following the same multi-tier system architecture of Tenet,
semantic streams [41] showed that a coordinating base station
can use its knowledge of the network to optimize a declarative
request into sensing tasks for individual sensors.

From these efforts it appears that declarative, data-centric
languages are a natural fit for many sensor network applica-
tions. But this work typically focuses on data-centric matters,
leaving many core networking issues to built-in library func-
tions. Tenet even takes the stance that applications should not
be introducing new protocols, delegating complex communica-
tion to resource-rich higher-level devices. Our goal in DSN is
to more aggressively apply the power of high-level declarative
languages in sensornets, both for data acquisition and for a
wide range of networking logic involved in communicating
that data.

In the Internet domain, the P2 project [25]–[27] demon-
strated that declarative logic languages can concisely describe
many Internet routing protocols and overlay networks. Fur-
thermore, the flexibility the language gives to the runtime for
optimization means that these high-level programs can execute
efficiently.

DSN takes these efforts and brings them together, defining a
declarative, data-centric language for describing data manage-
ment and communication in a wireless sensor network. From
P2, DSN borrows the idea of designing a protocol specification
language based on the recursive query language Datalog.
Sensornets have very different communication abstractions
and requirements than the Internet, however, so from systems
such as ASVMs [22], TinyDB [29], and VM* [18], DSN
borrows techniques and abstractions for higher-level program-
ming in the sensornet domain. Unlike these prior efforts, DSN
pushes declarative specification through an entire system stack,
touching applications above and single-hop communication
below, and achieves this in the kilobytes of RAM and program
memory typical to sensor nodes today.

III. SNLOG LANGUAGE

In this section we give an overview of our declarative
language, Snlog. The typical DSN user, whether an end-user or
an algorithms/service designer, writes only a short declarative
specification using the language described below.

A. Snlog Language

Snlog is a dialect of Datalog [33]. Snlog’s main language
constructs are variables, constants, predicates, facts and rules.
An Snlog program consists of statements, each terminated
with a period. As a quick start, the following is a typical,
but simplified, example of these elements:

measurement (Cels ius , Time) :− t imestamp (Time) ,
temperature (RawReading) , samplingOn (t rue) , Cels ius
= f r aw2ce l s i us (RawReading) .

samplingOn (f a l s e) .

Measurement, timestamp, temperature, and samplingOn are predicates.
By instantiating a predicate with variable assignments, tuples

2

are created for that predicate. A fact is a tuple that is instan-
tiated at the beginning of execution, such as samplingOn(false).
A rule specifies tuples whose instantiations are based on the
truth of a logical expression. The body of a rule defines
a set of preconditions, which if all true, make the head
true. For example, measurement(Celsius,Time) is the head of the
rule on line 1, while the timestamp, temperature, and samplingOn

predicates form its body. This rule can be read as follows:
“if the timestamp is Time, and if the ◦C conversion of a
temperature reading is Celsius, and if sampling is on, then we
have a measurement of Celsius at Time.” As the second line sets
samplingOn to be false, the measurement rule produces no tuples:
its body is never true. f raw2celsius is a function implemented
by a lower level, native code module. Following Datalog
convention, predicates and constants start with lowercase while
letters and variables start with upper case letters: Celsius is a
variable, while true is a constant.

Unification is the process of matching variables across
different predicates in a rule. For example, this rule:

head (A, B, C) :− bodyOne (A, B) , bodyTwo (B, C,) .

says that head is true if bodyOne and bodyTwo each have a tuple
such that the second field of the bodyOne tuple is the same value
as the first field of the bodyTwo tuple. This process is checked
for all tuples generated for the two predicates. In relational
database terminology, unification is an equality join. The ” ”
appearing in the bodyTwo predicate means that in this rule we
do not care what the value of this variable is.
Distributed Execution: In a fashion similar to [26], one argu-
ment of each predicate, the location specifier, is additionally
marked with an “at” symbol (@) representing the host node id
of the predicate. A single rule may involve predicates hosted
at different nodes. For example, the rule:

toSendPredicate (@Z,C) :− l o c a l P r e d i c a t e (@S, Z ,C) .

makes the predicate toSendPredicate(@Z,C) true at host Z if the
predicate localPredicate(@S,Z,C) is true at host S. Practically, this
can be accomplished by each node S checking for predicates of
type localPredicate and sending the corresponding toSendPredicate

to Z. This send is just a simple local neighborhood unicast.
As in [26], there is no explicit syntax for specifying data

transmission in Snlog. Instead, the location specifiers describe
the intended sources and destinations of data. It is up to the
compiler and runtime to decide on a communication pattern to
achieve the declarative specification of each rule’s head given
its body.

In particular, the host variables for two or more body
predicates may differ. For example:

toCheckPredicate (@S,C) :− l o c a l P r e d i c a t e (@S, Z ,C) ,
remotePredicate (@Z,C) .

In such a scenario, internal rule rewriting in DSN automati-
cally rewrites this to:

remotePredicateMsg (@∗ ,Z ,C) :− remotePredicate (@Z,C) .
toCheckPredicate (@S,C) :− l o c a l P r e d i c a t e (@S, Z ,C) ,

remotePredicateMsg (@S, Z ,C) .

where remotePredicateMsg is sent to all neighbors and unifed
locally at each neighbor by the second rule. Snlog introduces
a new @∗ construction to specify a broadcast message. For any
receiver, the predicate is simply rewritten to replace @∗ with
the receiver’s host.
Built-ins: In order to link the declarative user program to
specific sensor network hardware such as sensors, LEDs,
radios, and timers, we allow the user to specify built-in
predicates or to use them from our library. For example, we
use the following Snlog construction to define a predicate that
reads values from the light sensor:

b u i l t i n (l i g h t , LightImplement ingModule) .

where LightImplementingModule is the low level module (written in
a language like nesC [11]) implementing the light predicate.
Currently, there are four built-in predicates in DSN’s library:
the neighbor table link , timers timer, LEDs and temperature
sensors. All of the user programs presented in the remainder of
this paper are built on top of these predicates. These represent
the only interfaces to the sensor network hardware. At the
opposite extreme, one can in principle implement significant
complexity behind built-ins, and use Snlog quite sparingly to
script together the complex built-ins. However, our goal in this
work is to avoid this approach, and show that it is natural to
bring almost all sensornet logic into the high-level declarative
framework.
Specifying Types: To efficiently support Snlog on motes we
gather type information for each of the predicate’s parameters
with a special language construction. For example:

typedef (pred1 , ˆ u i n t 1 6 t , ˆ u i n t 3 2 t , u i n t 8 t) .

Static knowledge of types allows for efficient memory alloca-
tion at compile time. We perform whole-system type-inference
on predicate parameters such that all parameters’ types are
fixed yet only minimal type specifications are necessary. Our
current implementation supports primitive types such as char

and int . Also, Snlog allows programmers to define primary
keys on predicates by using the hat symbol (“ˆ”) in front of
the attribute type. In the example above, the first two attributes
are the primary key. This means that only one tuple with a
unique combination of those attributes can exist in the system
at one time. We support simple “replace or deny” resolution
policies when multiple primary keys of the same value exist.
Materialization and memory Since we deal with very strict
memory constraints, we give substantial control to the user
to specify all of the following per predicate type: a timeout
for tuple existence, a maximum number of allowed tuples per
predicate, and an eviction policy when the maximum size is
achieved:

m a t e r i a l i z e (predicateName , t imeout , maxEntries ,
e v i c t i o n P o l i c y) .

Unlike most logic programming systems, DSN must confront
the realities of limited memory. There are no infinite or even
generous storage spaces, so choosing what to remember is
a real problem. In general, our experience suggests that the
symptoms, i.e., eviction or denied insertion, are not easy to
reason about. Snlog attempts to alleviate this problem for

3

users in two ways. First, memory for each distinct predicate
is allocated statically and not shared with other predicates.
This provides a significant degree of predictability, since
assumptions on available memory can be checked before
execution and possible contention is only among tuples of
the same predicate. Second, the primary key resolution policy
mentioned previously further assists in localizing contention
when primary keys match.
Priorities: Datalog systems typically provide formal semantics
that define the derived set of tuples for each predicate at the
end of program execution [33]. In centralized Datalog engines
this semantics is traditionally achieved by an algorithm known
as “semi-naive” evaluation [33]. This simple algorithm – and
its recent distributed variants [25] – are easy to provide given
generous memory for buffering and reliable communication.
Unfortunately, these are not assets at our disposal in the sensor
network context. In order to achieve predictable results when
memory is exhausted, we use somewhat more operational
semantics, but we give the programmer more control over rule
execution to determine the outcome of the program.

In particular, we allow the programmer to assign priorities
to predicates when firing rules, in a manner reminiscent of
production rule systems like OPS5 [10]. This means that if
we have multiple new tuples from different predicates that
can potentially fire different rule bodies, these tuples will be
processed in order of their predicate’s priority. Though we
make no guarantees over the order in which multiple rules that
are fired by the same predicate are processed, this mechanism
is powerful enough for all applications that we encountered.
The priority specification is done by the following construct:

p r i o r i t y (predicateName , p r i o r i t y V a l u e) .

Priorities take integer values, the default being zero, and
priority increases with numerical values.

Beyond the fact that correct execution of traditional Datalog
is not possible given limited memory, traditional semi-naive
evaluation also provides no control over the order of execution
of predicates. While from a declarative logic perspective, such
order is immaterial, from a systems perspective, it can be
helpful to control that order. For example, when multiple
services exist in the same application, some of which might
be critical (e.g., new code update), priorities can help establish
processing orders.
Suppressing rule execution: For program correctness, we
may desire that tuples of one predicate do not fire a rule.
We achieve this by adding a˜after the non firing predicate:

head (A, B, C) :− t r i g g e r i n g P r e d i c a t e (A, B) ,
nonTr igger ingPred ica te (B, C,) ˜ .

In the above rule, a new tuples of type nonTriggeringPredicate will
not fire the rule but will be available for joins when new
triggeringPredicate tuples fire.
Getting Data Out of Snlog Programs: Users can generate
queries by appending the question-mark (“?”) to predicates,
to specify that the predicates should be output from the Snlog
runtime. For example, the following query outputs tuples from
a particular predicate whenever the second field matches a
particular value:

1 typedef (produce , u i n t 1 6 t , u i n t 8 t , u i n t 3 2 t) .
2 b u i l t i n (produce , SomeProducer) .
3

4 s to re (@Y, Oid , Object) :− produce (@X, Oid , Object) ,
consume (@Y, Oid) .

5 consume (@base, someSensorTypeId) .

Listing 1. Single-Hop Collection

i n t e r e s t i n g P r e d i c a t e (@AllHosts , I n t e r es t i n g Va l ue) ?

When a new tuple (for one of these predicates) is generated,
it is also transmitted to an interface to the outside world, the
current interface being the UART (Universal Asynchronous
Receiver-Transmitter) interface. If no query is specified in a
program, all the predicates are considered of interest and are
sent to the UART interface.

IV. EXAMPLE APPLICATIONS

In this section, we investigate Snlog’s potential for express-
ing core sensor network protocols, services and applications.
Through a series of examples, we tackle different sensor
network problems, at multiple, traditionally distinct levels of
the system stack.
Single-Hop Collection and Dissemination: Our first exam-
ple, Listing 1, is a data collection application that gathers data
at a node from all the other nodes in its network range. It
is simple, but appropriate for many simple sensor network
deployments and is easily expressed with a single rule.

Line 4 is read as: if a node X produces a data object
identified by Oid, and another (neighboring) node Y consumes
Oid, then this Object should be stored with store at Y. As noted
in the listing, the produce predicate is built-in. In the collection
context, it can be thought of as generating a tuple per sensor
reading. Combined with line 5’s fact and line 4’s rule, the
behavior is to send produced readings to the base station.

With a different fact such as consume(@Node,someCtrlTypeId), Node

!= base., the same rule of line 4 that was used for collection
can be reused for dissemination as well. Here, produce can be
thought of as emitting new control tuples; the base station
broadcasts these messages to all nodes in its local neighbor-
hood.
Tree Routing: In-network spanning-tree routing is a well-
studied sensor network routing protocol. Tree construction is a
special case of the Internet’s Distance Vector Routing (DVR)
protocol: nodes simply construct a spanning tree rooted at the
base by choosing their next hop neighbor that advertises the
shortest cost to the base. This tree construction in Snlog is
presented in Listing 2.

In this program link (@Host,Neighbor,Cost) is a built-in that
contains one tuple for each neighbor (line 2). The dest fact
of line 16 defines a tree rooted at node 0. Line 10 and 11 are
the base case and inductive case respectively for recursively
building network paths to the root; nodes further and further
from the root progressively learn of candidate paths. Line 12
uses an additional Snlog construct, MIN aggregation, to com-
pute the shortest cost path seen so far from all paths known.
Lastly, line 13 creates a traditional network forwarding table
i.e., predicates of the form nextHop(Src,Dst,NextHop,Cost).

4

1 typedef (l i n k , u i n t 1 6 t , u i n t 1 6 t , u i n t 8 t) .
2 b u i l t i n (l i n k , LinkTblC) .
3 b u i l t i n (f add , FuncAdd) .
4 typedef (# nextHop , ˆ u i n t 1 6 t , ˆ u i n t 1 6 t , u i n t 1 6 t , u i n t 8 t) .
5 typedef (# shor testCost , ˆ u i n t 1 6 t , ˆ u i n t 1 6 t , u i n t 8 t) .
6 m a t e r i a l i z e (dest , i n f i n i t e , 1 , ev ic t random) .
7 p r i o r i t y (shor testCost , 1) .
8

9 %−−−− Tree c ons t r u c t i on
10 path (@S,D,D,C) :− dest (@S,D) ˜ , l i n k (@S,D,C) .
11 path (@S,D, Z ,C) :− dest (@S,D) ˜ , l i n k (@S, Z ,C1) ,

nextHop (@Z,D,W,C2) , C=f add (C1,C2) , S != W.
12 shor tes tCos t (@S,D,<MIN ,C>) :− path (@S,D, Z ,C) ,

shor tes tCos t (@S,D,C2) ˜ , C < C2.
13 nextHop (@S,D, Z ,C) :− shor tes tCos t (@S,D,C) , path (@S,D, Z ,C) ˜ .
14

15 %−−−−− Tree roo t
16 dest (@∗ ,0) . % base i d i s zero
17 shor tes tCos t (@∗ ,0 ,255) . % boots t rap cost to base

Listing 2. Tree Routing

Lines 1-7 define types, primary key and table policies, and
built-ins. From this point onward, we shall elide initialization
statements unless they are material to our discussion.

This tree construction differs from one that might be
possible with abundant memory. Note that Snlog rules are
unordered, so rules that share tuple producer-consumer re-
lationships may not necessarily execute in the expected se-
quential order due to asynchrony of tuple arrivals contending
for limited tuple storage. For example, the rules of line 10
and 11 may first generate path tuples that cause eviction. This
manifests two problems. First, path tuples generated by line 13
and needed by line 12 may be evicted; proper next hops are
not formed even though the paths to them were known at some
point. Priority on shortestCost solves this problem. Second, in
line 12, we need to check path against shortestCost such that only
a shortestCost strictly smaller than the current one results.

For the sake of simplicity, Listing 2 does not deal with
failing links. This can easily be solved by minor rule modifi-
cations that periodically reconstruct the tree.

Besides serving as data collection sinks, trees are the
routing primitives of several proposed schemes [8], [9], [12].
Construction of multiple trees for Listing 2 is very easy; a
second tree only requires the addition of two other facts like
line 16 and line 17. We are not aware of any sensornet tree
implementations that support multiple instances, and certainly
not so easily.
Multi-hop Collection Application: To perform multi-hop
collection, we forward packets on top of tree routing at
periodic intervals. This is very similar to the predominant use-
case of TinyDB [29]. The program is shown in Listing 3.

Line 1 imports our previous tree routing such that we
can use its nextHop interface. Lines 4-5 periodically prepare
temperature for transmission.

The timer(Src,TimerId,TimerVal) built-in clears any pending timer
with identifier TimerId and sets a single shot timer TimerVal

milliseconds into the future with this identifier (lines 4). Line 5
makes these timers periodic.
Geographic Routing: Geographic routing is often important
for sensor networks embedded in the real world. Greedy
geographic routing sends packets toward the neighbor with the
minimum distance to the destination [16]. Listing 4 presents

1 impor t (’ t r ee . sn l ’) .
2

3 %−−−− Per iod i c Temperature Transmissions
4 toTransmi t (@S, Reading) :− temperature (@S, Reading) ,

t imer (@S,1 ,) .
5 t imer (@S,1 , Tval) :− t imer (@S,1 , Tval) .
6

7 %−−−− Message Forwarding
8 % package message f o r t ransmiss ion
9 message (@Next , Src , Dst , Obj) :− toTransmi t (@Src , Obj) ,

nextHop (@Src , Dst , Next , Cost) ˜ .
10 % forward to nexthop
11 message (@Next , Src , Dst , Obj) :− message (@Crt , Src , Dst , Obj) ,

nextHop (@Crt , Dst , Next , Cost) ˜ .
12 % sto re when at d e s t i n a t i o n
13 s to re (@S, Src , Obj) :− message (@S, Src , Dst , Obj) , S == Dst .

Listing 3. Multi-hop Collection/Dissemination

1 p r i o r i t y (computedDistances , 2) .
2 p r i o r i t y (shor testCost , 1) .
3

4 % broadcast own l o c a t i o n to neighbors
5 l o c a t i o n (@∗ ,S , Xs , Ys) :− l o c a t i o n (@S,S, Xs , Ys) .
6

7 %−−−− geographic r o u t i n g and forward ing
8 % forward message along nextHop
9 message (@Next , Src , Dst , Xd , Yd , Data) :−

message (@Crt , Src , Dst , Xd , Yd , Data) ,
nextHop (@Crt , Next , Xd , Yd) , Dst != Cr t .

10

11 % dynamica l ly choose neighbor w i th min d i s t to d e s t i n a t i o n
as nextHop

12 computedDistances (@Crt ,N, Xd , Yd , D i s t) :−
message (@Crt , Src , Dst , Xd , Yd , Data) , l i n k (@S,N, Cost) ,
l o c a t i o n (@Crt ,N, Xn , Yn) , D i s t =
f d i s t a n c e (Xd , Yd , Xn , Yn) , Dst != S .

13 shor tes tCos t (@S, Xd , Yd,<MIN , Dis t >) :−
computedDistances (@S, , Xd , Yd , D i s t) .

14 nextHop (@Crt , Next , Xd , Yd) :− shor tes tCos t (@Crt , Xd , Yd , D i s t) ,
computedDistances (@S, Next , Xd , Yd , D i s t) , D i s t <
f d i s t a n c e (Xd , Yd ,MyX,MyY) , l o c a t i o n (@Crt , Crt ,MyX,MyY) .

15

16 % f a l l b a c k r o u t i n g e . g . r i g h t−hand r u l e or convex h u l l
17 f a l l b a c k (@Crt , Xd , Yd , D i s t) :− shor tes tCos t (@Crt , Xd , Yd , D i s t) ,

computedDistances (@S, Next , Xd , Yd , D i s t) , D i s t >=
f d i s t a n c e (Xd , Yd ,MyX,MyY) , l o c a t i o n (@Crt , Crt ,MyX,MyY) .

18

19 %−−−− example messages sent
20 message (@Src , Src , Dst , Xd , Yd , Value) :−

temperature (@Src , Value) , tempera tu reCo l lec to r (@Src , Dst) ,
l o c a t i o n (@Src , Dst , Xd , Yd) .

Listing 4. Geographic Routing

this protocol.
In line 9 neighboring nodes exchange location information.

When a message tuple is received, we compute the distances
from all neighbors to the destination location and then we
chose as the next hop the node with the smallest distance
(line 12-14). The euclidean distance between two coordi-
nates is computed by f distance. In line 9, the forwarding is
straightforward and is similar to Listing 1. An example initial
application-level message is shown in line 20.

Departing from tree routing, geographic routing determines
the next hop dynamically on a per-message basis. However,
a user is still free to interchange these two routing protocols
with only a minimal amount of work since they both ultimately
export similar nextHop predicates.

One well-studied component of geographic routing is not
included in our example above: “fallback routing” i.e., when
the current node responsible for a message is the local mini-

5

1 % send cu r ren t round l o c a t i o n to neighbors
2 neighbor (@∗ ,S ,MyX,MyY, Round) :− t imer (@S,2 ,) ,

est imatedLoc (@S,MyX,MyY, Round) , round (@S, Round) .
3

4 % r e l a x a t i o n step f o r i n t e r i o r nodes
5 % by averaging neighbor ’ s l o c a t i o n s
6 estimatedX (@S,<AVG, Xs>,Round) :−

neighbor (@S,S, Xs , Ys , Round) ,
round (@S, Round) , t imer (@S,1 ,) , notPer imeter (@S) .

7 estimatedY (@S,<AVG, Ys>,Round) :−
neighbor (@S,S, Xs , Ys , Round) ,
round (@S, Round) , t imer (@S,1 ,) , notPer imeter (@S) .

8 est imatedLoc (@S, Xs , Yx , Round) :− estimatedX (@S, Xs , Round) ,
est imatedY (@S, Ys , Round) , round (Round) ,
notPer imeter (@S) .

9

10 % per imeter nodes j u s t re f r esh t h e i r f i x e d l o c a t i o n
11 est imatedLoc (@S, Xs , Ys , Round) :− f i xedLoc (@S, Xs , Ys) ,

round (Round) , t imer (@S,1 ,) , per imeter (@S) .
12

13 % increase the round a f t e r we have computed the new
est imate

14 round (@S, Round2) :− est imatedLoc (@S, Xs , Ys , Round1) , Round2 =
f i n c r (Round1) .

15 l o c a t i o n (@S, Xs , Ys) :− est imatedLoc (@S, Xs , Ys ,) .
16

17 % est ima t ion window and broadcast t imers
18 t imer (@S,1 ,1000) :− round (@S, Round) , Round < 1000.
19 t imer (@S,2 ,200) :− round (@S, Round) , Round < 1000.

Listing 5. Virtual Coordinates Localization

mum but not the end destination. Line 17 invokes the fallback
mechanism. The simplest fallback schemes i.e., planariza-
tion [16], are also easy to implement declaratively. However,
more advanced schemes such as [20] require several dozens of
rules, due to the algorithm’s inherent complexities. We discuss
details about how we might ease such tasks at the language
level in Section VIII.

Note that priorities are used in this program as well. For
similar reasons to tree routing discussed above, we give higher
priority to the computedDistances predicate because we do not
want another message to fill the computedDistances predicate
space before the current message has identified its next hop.
This is also a reason why we give shortestCost a higher priority
than normal.
Localization: The previous example left unanswered how
location information is initially established. One option is
to provide location as a built-in e.g., as an interface to GPS.
Due to cost, most individual nodes are typically not equipped
with direct location sensors. A second reasonable option is
to manually specify locations with location facts; this is the
common case in some deployments e.g., geological surveys.
The third option, localization, computes node coordinates.
Among the many algorithms in this space, NoGeo is is
noteworthy for its ability to do without bootstrap location
information [34]. This service is shown in Listing 5.

The NoGeo algorithm has three levels of complexity. For
brevity and ease of exposition, we only present the first which
assumes a region’s perimeter nodes know their locations.
The algorithm proceeds as follows: At short beaconing inter-
vals, neighbors periodically exchange their current locations
(line 2). At long estimation intervals, interior nodes compute
their own new location estimates by averaging together loca-
tions heard from all neighbors (lines 6-8). Perimeter nodes
always send the same fixed location estimation and never

1 b u i l t i n (f randInUpperHal f , FuncRandInUpperHalf) .
2 p r i o r i t y (tauVal , 10) .
3

4 % tau exp i res :
5 % Double tau up to TauHi . Reset c , p ick a new t .
6 tauVal (@X, T2) :− t imer (@X,1 , T1) , T1 < 30000 ,

T2= f m u l t 2 (T1) .
7 tauVal (@X,60000) :− t imer (@X,1 , T1) , T1 >= 30000.
8 t imer (@X,2 , T3) :− tauVal (@X, T2) , T3 =

f rand InUpperHa l f (T2) .
9 t imer (@X,1 , T2) :− tauVal (@X, T2) .

10 msgCnt (@X, 0) :− tauVal (@X, T2) .
11

12 % t exp i res : I f c < k , t r ansm i t .
13 msg ver (@∗ ,Y , Oid , Ver) :− ver (@Y, Oid , Ver) , t imer (@Y,2 ,) ,

msgCnt (@Y,C) , C < 1.
14

15 % rece ive same metadata : Increment c .
16 msgCnt (@X,C2) :− msg ver (@X,Y, Oid , CurVer) ,

ver (@X, Oid , CurVer) , msgCnt (@X,C) , C2 = f i n c r (C) .
17

18 % rece ive newer metadata :
19 % Set tau to TauLow . Reset c , p ick a new t .
20 tauVal (@X,1000) :− msg ver (@X,Y, Oid , NewVer) ,

ver (@X, Oid , OldVer) , NewVer > OldVer .
21

22 % rece ive newer data :
23 % Set tau to TauLow . Reset c , p ick a new t .
24 tauVal (@X,1000) :− msg store (@X,Y, Oid , NewVer , Obj) ,

ver (@X, Oid , OldVer) , NewVer > OldVer .
25

26 % rece ive o lde r metadata : Send updates .
27 msg store (@∗ ,X , Oid , NewVer , Obj) :− msg ver (@X,Y, Oid , OldVer) ,

ver (@X, Oid , NewVer) , NewVer > OldVer ,
s to re (@X, Oid , NewVer , Obj) .

28

29 % update vers ion upon suc cess fu l l y r e ce i v i n g s to re
30 s to re (@X, Oid , NewVer , Obj) :− msg store (@X, , Oid , NewVer , Obj) .

s to re (@X, Oid , OldVer , Obj) , NewVer > OldVer .
31 ver (@X, Oid , NewVer , Obj) :− s to re (@X, Oid , NewVer , Obj) .

Listing 6. Version Coherency

update their own estimate (line 11). To save space in our
discussion, we omit the simple one-line facts that specify
the fixed locations of perimeter nodes and initial randomly-
estimated locations of interior nodes. After several rounds,
nodes’ locations converge to points in network connectivity-
based coordinate space. The result is a location predicate which
can be exported for use by other services such as geographic
routing in listing 4.
Version Coherency: Listing 1 showed a data dissemination
example. In such situations, it is often desirable to provide
coherency as well e.g., all nodes run the same disseminated
SQL query. Various sensor network protocols for eventual con-
sistency provide such version coherency. Listing 6 illustrates
a declarative implementation of a leading approach: version
coherency with the Trickle dissemination policy [24].

The Trickle algorithm provides conservative exponential-
wait gossip of metadata when there is nothing new (line 13),
aggressive gossip when there is new metadata or new data
present (lines 20 and 24), both counter-balanced with polite
gossip when there are competing announcers (line 16).

The algorithm is inherently timer intensive. The t timer, cor-
responding to timer(,1,) in the listing, performs exponential-
increase of each advertisement epoch. Timer τ , corresponding
to timer(,2,), performs jittered sending in the latter half of
each epoch in order to avoid send synchronization. Lines 30
and 31 store and update to the new version once the new data

6

1 b u i l t i n (t rack ingS igna l , TrackingSensorModule) .
2 impor t (’ t r ee . sn l ’) .
3

4 % on detec t ion , send message towards c l u s t e r head
5 message (@Next , Src , Dst ,MyX,MyY, Val) :−

t r a c k i n g S i g n a l (@Src , Val) , detectorNode (@Src) ,
l o c a t i o n (@Src ,MyX,MyY) , c lusterHead (@Src , Dst) ,
nextHop (@Src , Dst , Next , Cost) .

6 message (@Next , Src , Dst ,X,Y, Val) :−
message (@Crt , Src , Dst ,X,Y, Val) ,
nextHop (@Crt , Dst , Next , Cost) .

7

8 % Epoch−based p o s i t i o n es t ima t ion
9 storedTrackData (@Dst , Epoch ,X,Y, Val) :−

message (@Dst , Src , Dst ,X,Y, Val) , crtEpoch (@Dst , Epoch) .
10 c r tXEs t ima t ion (@S, Epoch,<AVG,X>) :−

crtEpoch (@S, Epoch) , storedTrackData (@S, Epoch ,X,Y,V) .
11 c r tYEs t ima t ion (@S, Epoch,<AVG,Y>) :−

crtEpoch (@S, Epoch) , storedTrackData (@S, Epoch ,X,Y,V) .
12

13 % epoch management
14 crtEpoch (@S, Epoch2) :− t imer (@S,1 ,) ,

crtEpoch (@S, Epoch1) ,Epoch2 = f i n c r (Epoch1) .
15 t imer (@S, Tid , Tval) :− t imer (@S, Tid , Tval) .

Listing 7. Tracking

is received.
Despite the algorithm’s apparent complexity, we were very

pleasantly surprised by how easy it was to implement in Snlog.
In fact, the comments in Listing 6 are directly from the original
Trickle paper pseudocode [24]. Save for setting timers in
lines 6-10, each line of pseudocode translates directly into one
rule. This example in particular lends evidence to our claim
that Snlog is at an appropriate level of abstraction for sensor
network programming.
Tracking Application: Listing 7 shows a multi-hop entity
tracking application implemented in Snlog. This is built on top
of a routing mechanism (in this example we use tree routing).
The specification is faithful to what has been presented in
recently deployed tracking applications [30].

The algorithm works as follows: the trackingSignal built-in
predicate is fired when a node detects the entity, at which
point a message is sent to the cluster head node (lines 5 and 6).
The cluster head node periodically averages the positions of
the nodes that sent messages, and in this way computes an
estimate of the tracked object’s position. To correctly compute
the destination for each epoch, the storedTrackData predicate
labels received messages with the estimation epoch in which
they were received (lines 9-11). Epoch management occurs in
the usual way (lines 14-15).
Link Estimation: Good link estimators are important in
wireless environments [42]. Several of the previous examples
assumed a built-in link table for managing local neighbors
and their costs. This is a reasonable choice when the link-
estimator is radio hardware-assisted. Hardware-independent
link estimators typically use average beacon reception rates
to calculate packet reception rate (PRR) per neighbor as
an indicator of link cost. Listing 8 shows that it is even
possible to implement the commonly-used beaconing EWMA
(exponentially weighted moving average) link estimator [42]
in Snlog.

Each neighbor sends beacons every 5 seconds (lines 5-10).
f ewma computes the EWMA PRR based on the current bea-

1 typedef (# i n i t , ˆ u i n t 1 6 t , ˆ u i n t 1 6 t , u i n t 3 2 t) .
2

3 %−−−− Per iod i c beacons
4 % beacon sequence number
5 seq (@S, Seq2) :− t imer (@S,1 ,) , seq (@S, Seq1) , Seq2 =

f i n c r (Seq1) .
6 % broadcast beacon
7 beacon (@∗ ,S , Seq) :− seq (@S, Seq) .
8 % p e r i o d i c t imers
9 t imer (@∗ ,1 ,5000) . % beacon frequency

10 t imer (@S, Tid , Tval) :− t imer (@S, Tid , Tval) .
11

12 %−−−− Link es t ima t i on
13 % inco rpo ra te new beacon i n t o l i n k cost
14 l i n k (@S,N, NewPrr) :− beacon (@S,N,NewSeq) ,

lastSeq (@S,N, OldSeq) ˜ , l i n k (@S,N, PrrOld) ˜ , NewPrr =
f ewma (NewSeq, OldSeq , OldPrr) .

15 % record the l a s t seq rece ived
16 lastSeq (@S,N, Seq) :− l i n k (@S,N, PrrNew) , beacon (@S,N, Seq) ˜ .
17

18 %−−−− I n i t i a l i z a t i o n
19 i n i t (@S,N, Seq) :− beacon (@S,N, Seq) .
20 l i n k (@S,N,255) :− i n i t (@S,N, Seq) .

Listing 8. EWMA Link Estimation

con’s sequence number, the last recorded beacon’s sequence
number, and the previously computed PRR (line 14). It is
trivial to change this set of rules to update the prr using a
time window instead of for each beacon.

This example demonstrates several uses of recursion in
Snlog: incrementing the sequence number, recomputing the
estimated link PRR, and periodic timer setting. However, it
also illustrates a bootstrapping issue: link estimation recursion
requires a base case link and lastSeq tuples, but it is not possible
to specify these as facts since the identities of neighbors
are not known a priori. To solve this problem, we initialize
link and lastSeq the first time we hear a beacon with lines 19
and 20, making critical use of the no-replace primary key
policy (indicated by a hash symbol) in line 1 in order not
to overwrite link on every beacon. Section VIII discssues other
possible language mechanisms to address this problem.

When combined with Listings 2 and 1, Listing 8 constitutes
an end-user application written entirely in Snlog, save for the
built-in sensor temperature and the built-in timer timer.
Other Applications and Snlog Extensions: We have also
considered using Snlog to implement other sensor network
protocols such as in-network aggregation [28], beacon vector
coordinate and routing BVR [9], data-centric storage protocols
such as pathDCS [8], geographic routing fallback schemes
such as right hand-rules and convex hulls [16], [20]. Our
conclusion is that these applications can be implemented in
Snlog with no fundamental challenges.

V. SYSTEM ARCHITECTURE

In this section we present a high level view of our system
design and implementation. The high level architecture for
transforming Snlog code into binary code that runs on motes
is shown in Figure 1. At the core of the framework lies the
Snlog compiler that transforms the Snlog specification into
the nesC language [11] native to TinyOS [2]. The generated
components, along with preexisting compiler libraries, are
further compiled by the nesC compiler into a dataflow engine

7

Network support

Generated nesC code

store(…) :- prod(…), cons(…).
…
path(…) :- link(…), dest(…).
…

Binary Image

Snlog Compiler/Optimizer
Snlog
Program

GenericPredicateTemplate
…
…

nesC
Templates

nesC Backend

Execution Planner

Snlog Frontend

nesC Compiler

Built-in Predicates

Type system

Database Operators

Runtime
Components

RuntimeTemplate
…
…

DSN Runtime Support

Fig. 1. DSN Architecture. Snlog is compiled into binary code and distributed
to the network, at which point each node executes the query processor runtime.

the network

Join Join Proj

tupleready

Join AggProj Sel

table
(compiler generated)

builtin
(user’s library)

database operators
(compiler’s library)

push interfaces

pull interfaces

thread of control

event signal

Sel Ag Proj

… … …

… …

… …

runtime
daemon

mac daemon

tupleready

tupleready
sendready

tupleready sendready

Fig. 2. DSN Implementation structure. Each rule is compiled into a dataflow
chain of database operators.

implementing a minimal query processor. This resulting binary
image is then programmed into all nodes in the network.

As an overview, each rule from the Snlog program gets
transformed in the compiled code into a sequence of com-
ponents that represent database operators like join, select,
and project, which, to facilitate chaining, implement uniform
push/pull interfaces. Figure 2 presents an overall view of the
runtime component layout.

A. The Compiler

A fundamental choice of DSN is heavy use of PC-side
program compilation as opposed to mote-side program inter-
pretation. This relates directly to our goals of reducing runtime
memory footprint and providing predictable operation.

The compiler parses the Snlog program and does a set
of high level transformations and optimizations, including
rewriting distributed rules as described in Section III. Next,
it translates the program into an intermediary dataflow repre-

sentation that uses chains of database operators (such as joins
and selects) to describe the program. Then, for each chain, the
compiler issues nesC code by instantiating components from a
set of compiler library generic templates. Finally, the generated
components, the system runtime and any necessary library
runtime components are compiled together into a binary image
using the nesC compiler.
B. The Runtime

We chose to implement the runtime system as a compiled
dataflow of the user provided rules in the Snlog program. As is
well known in the database community, declarative logic maps
neatly to dataflow implementations. An example compiled
runtime is shown in Figure 2.

The constrained resources and predictability concerns of
sensor nodes make full fledged query processors for our pur-
poses (e.g., runtime rule interpreters) difficult to justify. While
interpreters are used in several high-level sensor network
languages for data acquisition [22], [29], we were wary of
the performance implications of interpreting low-level services
such as link estimators. In addition, we felt static compiler-
assisted checks prior to deployment were worth the loss of
flexibility. As a result of aggressive compilation, the resulting
runtime system is equivalent to a dedicated query processor
compiled for the initial set of rules, allowing new tuples (but
not new rules) to be dynamically inserted into the network.
Recall from our examples in Section IV that tuples are often
enough to control system execution.

C. Code Installation

We rely on traditional embedded systems reprogrammers
to distribute initial binary images onto each node prior to
deployment. There may be cases when it is desirable to change
the binary images on the nodes in the field, perhaps to modify
the query processor to handle new classes of queries. Wireless
code dissemination for reprogramming purposes has been rela-
tively well studied in sensor networks [21]. In DSN, this could
potentially be implemented by a built-in predicate responsible
for microprocessor reprogramming though we leave this for
future work.

VI. IMPLEMENTATION

A. Implementation Choices

In the following, we explain the most important implemen-
tation choices we made and how they affect the performance
and semantics of the system.
Dynamic vs Static allocation

TinyOS does not have a default dynamic memory allocation
library. On the other hand, database systems often make
substantial use of dynamic memory allocation, and previous
systems like TinyDB [29] have implemented dynamic memory
allocation for their own use. In our implementation, we
decided to use static allocation exclusively, for the follow-
ing reasons. First, we believe that static allocation with a
per-predicate granularity gives programmers good visibility
and control over the common case when memory is fully
consumed. By contrast, out-of-memory exceptions during dy-
namic allocation are less natural to expose at the logic level,

8

and would require significant exception-handling logic for
even the simplest programs. Second, our previous experiences
indicated that we save a nontrivial amount of code space in
our binaries that would be required for the actual dynamic
allocator code and its bookkeeping data structures. Finally,
because tuple creation, deletion and modification of different
sizes is common in DSN, the potential gains of dynamic
allocation could be hard to achieve due to fragmentation.
Instead, in our system all data is allocated at compile time.
This is a fairly common way to make embedded systems more
robust and predictable.
Memory Footprint Optimization

In general, in our implementation we chose to optimize
for memory usage over computation since memory is a very
limited resource in typical sensor network platforms, whereas
processors are often idle.

Code vs. Data Trade off: Our dataflow construction is
convenient because, at a minimum, it only requires a handful
of generic database operators. This leads to an interesting
choice on how to create instances of these operators. Many
microprocessors common in sensor nodes present artificial
boundaries between code storage (ROM) and data storage
(RAM). Thus, operator instance parameters can either be
stored as code or data. We permit both modes of parameter
generation: code-heavy generation generates (efficient) code
for every operator instance, whereas data-heavy generation
generates different data parameters for use by a single generic
operator.

For our current TelosB platform [32], in most cases it
makes sense to use generic implementations and generate data
parameters because of the hardware’s relative abundance of
ROM. However, for other popular platforms, the reverse is
true. The choice ultimately becomes an optimization problem
to minimize the total bytes generated subject to the particular
hardware’s constraints on ROM and RAM. Currently this deci-
sion is controlled by a compiler option that affects all dataflow
operators in a program, but in principle this optimization could
be made automatically based on hardware parameters.

Reduce Temporary Storage: To further improve memory
footprint, we routinely favored recomputation over temporary
storage. First, we do not use temporary tables in between
database operators but rather feed individual tuples one at a
time to each chain of operators. Second, all database operator
components are implemented such that they use the minimal
temporary storage necessary. For instance, even though hash
joins are computationally much more efficient for evaluating
unifications, our use of nested loop joins avoids any extra
storage beyond what is already allocated per predicate. Our
aggregation withholds use of traditional group tables by per-
forming two table scans on inputs rather than one. Finally,
when passing parameters between different components, we
do not pass tuples but rather generalized tuples, Gtuples,
containing pointers to the already materialized tuples. Gtuples
themselves are caller-allocated and the number necessary is
known at compile time. The use of Gtuples saves significant
memory space and data copying, and is similar to approaches
in traditional databases [15].
Rule Level Atomicity

In our environment, rules not requiring rewrite are guar-
anteed to execute atomically. We find that this permits effi-
cient implementation as well as convenient semantics for the
programmer. First, as compared to any forms of multi-rule
atomicity, our implementation is simpler and more efficient
since it does not have to take into account complex relation-
ships between rules. In conjunction with rule level atomicity,
priorities assist with execution control and are discretionary
rather than mandatory. Second, by finishing completely the
execution of a rule before starting a new rule we avoid many
potential race conditions in the system due to the asynchronous
nature of predicates (e.g., tuples received on the network) and
to the fact that we share code among components.

B. Implementation Description

Below we present more details on the DSN system imple-
mentation such as component interactions and the network
interface. We call a “table” the implementation component
that holds the tuples for a predicate.
Compiler

Frontend and Intermediary The frontend is formed by
the following components: the lexical analyzer; the parser;
the high level transformer and optimizer (HLTO); and the
execution planner (EP). The parser translates the rules and
facts into a list which is then processed by the HLTO, whose
most important goal is rule rewriting. The EP translates each
rule into a sequence of database operators. There are four
classes of operators our system uses: Join, Select, Aggregate
and Project. For each rule, the execution planner generates
several dataflow join plans, one for each of the of the different
body predicates that can trigger the rule.

Backend nesC Generator The nesC Generator translates the
list of intermediary operators into a compilable nesC program.
For each major component of our system we use template
nesC source files. For example, we have templates for the
main runtime task and each of the operators. The generator
inserts compile-time parameters in the template files, and
also generates linking and initialization code. Examples of
generated data are: the number of columns and their types
for each predicate, the specific initialization sequences for
each component, and the exact attributes that are joined and
projected. Similarly, the generator constructs the appropriate
mapping calls between the generated components to create the
desired rule.
Runtime Interactions

Our dataflow engine requires all operators to have either
a push open/send/close or pull open/get/close interface. Typ-
ically, the runtime daemon pushes tuples along the main
operator path until they end up in materialized tables, as
in Figure 2. This provides rule-level atomicity. To handle
asynchrony, the runtime daemon and network daemon act as
pull to push converters (pumps) and materialized tables act as
push to pull converters (buffers). This is similar to Click [17].

A challenging task in making the runtime framework behave
correctly is to achieve the right execution behavior from the
generic components depending on their place in the execution
chain. For instance, a specific join operator inside a rule

9

receiving a Gtuple has to: pull data from the appropriate
secondary table and join on the expected set of attributes.
A project operator has to know on which columns to project
depending on the rule it is in. Furthermore, function arguments
and returns must be appropriately arranged. To manage the
above problem under data-heavy generation, we keep all
necessary data parameters in essentially a compact parse tree
such that it is accessible by all components at runtime. The
component in charge of holding these parameters is called
ParamStore. The task of ensuring the different operational
components get the appropriate parameters is done by our
compiler’s static linking. Under code-heavy generation, we
duplicate calling code multiple times inlining parameters as
constants.
Built-in Predicates

The use of the well-understood, narrow operator interfaces
not only makes it very easy to chain together operators, but
also means writing built-in predicates is straightforward. In
general, users can write arbitrary rules containing built-in
predicates and can also include initial facts for them. Some
built-ins only make sense to appear in the body (sensors) or
only in the head (actuators) of rules, while others may be
overloaded to provide meaningful functionality on both the
head and body (e.g., timer). We permit this by allowing built-
ins to only provide their meaningful subset of interfaces.
Interfacing the Network

As discussed in Section III, we chose to let the DSN
user specify the entire system stack from the link layer up.
Given the desire to be portable across a variety of radio and
link layers, we have built on top of SP, a unifying link layer
abstraction designed to decouple the network layer from the
link layer [31], [37].

VII. EVALUATION

In this section we evaluate a subset of the Snlog programs
described in Section IV. We measure DSN’s behavior and
performance in comparison with native TinyOS nesC appli-
cations using the 28 node UC Berkeley testbed [1] (Fig. 3)
and TOSSIM [23], the standard TinyOS simulator.

Fig. 3. 28 mote Omega Testbed at UC Berkeley

A. Applications and Metrics

We present evaluations of tree formation, collection, and
the Trickle version coherency protocol relative to preexisting

native implementations. Furthermore we describe our experi-
ence in deploying a DSN tracking application at a conference
demo.

Three fundamental goals guide our evaluation. First, given
DSN’s substantially different architecture, we want to establish
the correctness of the Snlog programs by demonstrating that
they faithfully emulate the behavior of native implementations.
Second, given the current resource-constrained nature of sen-
sor network platforms, we must demonstrate the feasibility of
running DSN on the motes. Finally, we perform a quantitative
analysis of the level of effort required to program in Snlog,
relative to other options.

To demonstrate the correctness of our system, we employ
application-specific metrics. To evaluate tree-formation, we
look at the distribution of node-to-root hop-counts. We then
run collection over the tree-formed by this initial algorithm,
measuring end-to-end reliability and total network traffic.
For Trickle, we measure the data dissemination rate as well
as the number of application-specific messages required. To
demonstrate feasibility, we compare code and data sizes for
Snlog applications with native implementations. Finally, we
count lines of user written code to quantify the programming
effort.

B. Summary of Results

The data shows that DSN successfully meets algorithmic
correctness. DSN Tree forms a routing tree very similar to
that formed by the TinyOS reference implementation in terms
of hop-count distribution and our collection implementation
achieves the same reliability as the native implementation.
Finally, DSN Trickle provides near-perfect emulation of the
behavior of the native Trickle implementation.

In terms of feasibility, DSN implementations are larger
in code and data size than native implementations. For our
profiled applications, our overall footprint (code + data) is
always within a factor of three of native implementation and all
our programs fit the current resource constraints. Additionally,
significant compiler optimization opportunities still remain.

Concerning programming effort, the quantitative analysis is
clear: the number of lines of nesC required for the native
implementations are typically orders of magnitude greater than
the number of rules necessary to specify the application in
Snlog. For example tree construction requires only 6 rules in
Snlog, as opposed to over 500 lines of nesC for the native
implementation.

C. Tree/Collection Correctness Tests

For tree formation, we compared our algorithm presented
in Section IV to MintRoute [43], the de facto standard for
tree formation/routing in TinyOS. To vary node neighborhood
density, we used two radio power levels: power level 3 (-
28dBm), which is the lowest specified power level for our
platform’s radio, and power level 4 (-25dBm). Results higher
than power level 4 were uninteresting as, given our testbed,
the network was entirely single-hop.

Figure 4(a) shows a distribution of the frequency of nodes
in each hop-count for each implementation. As a measure of

10

0

5

10

15

20

25

1-Hop 2-Hop
-28 dBm

Fr
eq

ue
nc

y

MintRoute
DSN

0

5

10

15

20

25

30

1-Hop 2-Hop
-25 dBm

Fr
eq

ue
nc

y

(a) Hop Count Distribution - The frequency distribution of number of hops to
the root for nodes at two power levels

0

500

1000

1500

2000

2500

-28 dBm -25 dBm

To
ta

l A
pp

lic
at

io
n

M
es

sa
ge

s
Se

nt

MintRoute
DSN

0%

20%

40%

60%

80%

100%

-28 dBm -25 dBm

O
ve

ra
ll

A
pp

lic
at

io
n

En
d-

to
-E

nd
 R

el
ia

bi
lit

y

(b) Total Application Messages Transmitted and Overall Network End-to-End
Reliability for Collection

Fig. 4. Results from experiments involving tree-formation and collection on the university testbed

routing behavior, we record the distance from the root, in terms
of hops, for each node. Node 11, the farthest node in the
bottom left corner in Figure 3 was assigned the root of the
tree.

We see that both DSN and MintRoute present similar
distributions, although under DSN, nodes are on average closer
to the root, from a hop-count perspective. This discrepancy is
due to the fact the two implementations use different link es-
timators. MintRoute implements its own link estimator, while
DSN uses the one provided by the SP layer. If desired, a new
link estimator could be specified in Snlog, as demonstrated in
Section IV, though we did not feel this was warranted given
the similarity of the behavior of the two implementations.

The collection algorithm for DSN, presented in Section IV,
runs on top of the tree formation algorithm discussed above.
For testing the pre-existing implementation, we used TinyOS’s
SurgeTelos application, which periodically sends a data mes-
sage to the root using the tree formed by the underlying routing
layer, MintRoute. Link layer retransmissions were enabled
and the back-channel was again used to maintain real-time
information.

Figure 4(b) shows the results of the experiments for
two metrics: overall end-to-end reliability, and total message
transmissions in the network. The network-wide end-to-end
reliability of the network was calculated by averaging the
packet reception rate from each node at the root. We see
that DSN and SurgeTelos perform nearly identically, with
an absolute difference of 1-2%. On the other hand, DSN
transmits substantially fewer total messages in order to achieve
this similar reliability. Picking poorer links would cause more
link retransmissions, thereby increasing the total number of
messages; the fact that DSN uses fewer messages suggests
that its link estimation did not degrade its performance.

D. Trickle Correctness Tests

In order to demonstrate that the Snlog version of Trickle
presented in Section IV is an accurate implementation of the
the Trickle dissemination protocol, we compare the runtime
behavior of our implementation against Drip, a widely used

TinyOS implementation. To emulate networks with longer
hopcounts and make a more precise comparison, we performed
the tests in simulation rather than on the previous two hop
testbed. Data is gathered from simulations over two grid
topologies of 60 nodes: one is essentially linear, arranging
the nodes in a 30x2 layout and the other is a more balanced
rectangular 10x6 grid. The nodes are situated uniformly 20
feet apart and the dissemination starts from one corner of the
network.

Figure 5 presents simulation results for the data dissemina-
tion rate using the two implementations. These results affirm
that the behavior of the DSN and the native implementation
of Trickle are practically identical.

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Seconds

N
od

es
 U

pd
at

ed

DSN Trickle 30x2
Native Trickle 30x2
DSN Trickle 10x6
Native Trickle 10x6

Fig. 5. Trickle dissemination rate in Tossim simulation.

In addition, we counted the total number of messages
sent by the two algorithms and the number of message
suppressions. Table I presents the total number of Trickle
messages sent by both implementations and the total number
of suppressed messages for the 30x2 topology. Again, these
results demonstrate the close emulation of native Trickle by

11

our DSN implementation.

TABLE I
TRICKLE MESSAGES

DSNTrickle Drip
Total Messages Sent 299 332
Suppressed Messages 344 368

E. Tracking Demo

We recently demoed the tracking application specified in
Snlog (and presented in Section IV) [5]. Our set-up consisted
of nine TelosB nodes deployed in a 3x3 grid with radio set
such that each node only heard from spatially adjacent neigh-
bors. A corner-node base station was connected to a laptop,
which was used for displaying real-time tracking results and
up-to-date network statistics collect from the network. A tenth
“intruder” node broadcasted beacon messages periodically
and the stationary nodes then tracked the movement of this
intruder and reported their observations to the base station.
The demo was successful in the sense that it highlighted the
specification, compilation, deployment, and real-time response
of a tracking application similar to actually deployed tracking
applications [30].

F. Lines of Code

Measuring the programmer level of effort is a difficult task,
both because quantifying such effort is not well-defined and
a host of factors influence this effort level. However, as a
course measure of this programming difficulty, we present a
side-by-side comparison of the number of lines of nesC native
code against the number of lines of Snlog logic specifications
necessary to achieve comparable functionality. This approach
provides a quantifiable metric for comparing the level of effort
necessary across different programming paradigms.

Table II provides a comparison in lines of code for multiple
(functionally equivalent) implementations of tree routing, data
collection, Trickle and tracking. The native version refers to
the original implementation, which is currently part of the
TinyOS tree [2]. NLA, or network layer architecture, is the
implementation presented in [7], which decomposes network
protocols into basic blocks as part of the overall sensornet
architecture [6].

The reduction in lines of code when using Snlog is dramatic
at roughly two orders of magnitude. TinyDB is also extremely
compact, consisting of a single line query. However, as dis-
cussed in section II, TinyDB is limited to only data acquisition,
rather than entire protocol and application specification. We
conjecture that such a large quantitative distinction translates
into a qualitatively measurable difference in programming
effort level. To this we also add our subjective (and very
biased) views that during the development process, we strongly
preferred programming in Snlog, as opposed to nesC.

G. Feasibility

Code/Data size: The TelosB mote, the main platform on
which DSN was tested, provides 48KB of ROM for code, and

TABLE II
CODE AND DATA SIZE COMPARISON

Program Lines of Code
Mono NLA TinyDB DSN

Tree Routing 580 106a N/A 6 Rules (12 lines)
Collection 863 - 1 12 Rules (23 lines)

Trickle 560 - N/A 13 Rules (25 lines)
Tracking 950b - N/A 13 Rules (34 c lines)

aNLA decomposes protocols into four basic blocks in such a way that the
protocol-specific non-reusable code is generally limited to a single component.
This value represents the lines of code for that specific component for tree
routing.

bNote that this implementation may contain extra functionality beyond the
DSN version, although we attempted to minimize this estimation error as best
we could

cIncludes 9 location facts.

10KB of RAM for data. Given these tight memory constraints,
one of our initial concerns was whether we could build a
declarative system that fits these capabilities.

Table III presents a comparison in code and data size for the
three applications profiled in Table II. For a fair comparison,
the presented memory footprints for the native applications
do not include modules offering extra functionality which our
implementation does not support.1

TABLE III
CODE AND DATA SIZE COMPARISON

Program Total Code Size (kilobytes) Data Size (kilobytes)
Mono NLA DSN Mono NLA DSN

Tree Routing 18.2 24.8 26.2 0.8 2.8 3.1
Collection 25.8 - 29.2 1 - 4

Trickle 12.3 - 26.1 0.4 - 3.9
Tracking 26.7 - 27.9 0.9 - 7.8

The main reason for the larger DSN code size is the size
of the database operators. As an important observation, note
that this represents a fixed cost that has to be paid for all
applications using our framework. This architectural fixed cost
is around 22kB of code, which includes the code for the radio
and link layer. As we can see in Table III, constructing bigger
applications has only a small impact on code size.

On the other hand, the main reason for which the DSN data
size is significantly larger than the other implementations is the
amount of parameters needed for the database operators and
the allocated tables. This is a variable cost that increases with
the number of rules, though, for all applications we tested, it
fit the hardware platform capabilities. Moreover, although not
yet implemented, there is significant room for optimization
and improvement in our compiler backend. Finally, if data size
were to become a problem, the data memory can be transfered
into code memory by generating more operator code and less
operator parameters (see Section VI).

The overall memory footprint (measured as both code and
data) of DSN implementations approaches that of the native
implementations as the complexity of the program increases.

1Note however that the extracted modules still have a small impact on the
code size due to external calls and links to/from them.

12

Such behavior is expected given DSN’s relatively large fixed
cost, contrasted with a small variable cost.

We also mention that our system is in general much more
flexible than the original implementations. For instance, we
are able to create multiple trees with the addition of a single
Snlog initial fact, and no additional code (unlike the native
implementation).

As a final note, technology trends are likely to produce
two possible directions for hardware: sensor nodes with sig-
nificantly more memory (for which memory overhead will
be less relevant), and sensor nodes with comparably limited
memory but ever-decreasing physical footprints and power
consumption. For the latter case, we believe we have proved
by our choice of Telos platform and TinyOS today that the
overheads of declarative programming are likely to remain
feasible as technology trends move forward.
Overhead: Two additional potential concerns in any system
are network packet size overhead and runtime delay overhead.
Our system adds only a single byte to packets sent over the
network, serving as an internal predicate identifier for the
tuple payload. Finally, from a runtime delay perspective, we
have not experienced any delays or timer related issues when
running declarative programs.

VIII. DISCUSSION AND FUTURE WORK

In this section we briefly discuss the impact of the threshold
between Snlog rules and native (“built-in”) program compo-
nents, as well as present the current limitations of the system
and our intended future work.

A. Architectural Flexibility

A user writing a Snlog declarative program has the choice of
implementing any funcationality natively. The availability of
this choice presents a big advantage in terms of flexibility and
the space of implementable applications. At one extreme, the
user could declare aggressviely e.g., specifying link estimators
as in Listing 8) and even link layer acknowledgements. Though
this is easy to do, having access to lower level buffers,
control interfaces, and timing information may be desirable
and necessary as one proceeds downard towards hardware. At
the other extreme, each native program can be seen as a built-
in predicate which is fired by an initial fact.

There are two important takeaway points here. First, the
user can choose the threshold based on the competing factors
of ease and implementation and desired efficiency. Second,
the space of applications that can be tackled by our system is
equivalent to that implementable by any native program.

In DSN, the default threshold between native and declarative
is at the device drivers for sensors and at the link layer and
neighbor table for the network. Previous work has identified
this as the “narrow waist” of shared funcationality for sensor
networks [6], [31], [37].

B. Limitations

Perhaps the main new challenge raised in our work is the
modeling and management of limited memory resources, and

the way that this interacts with rule scheduling and asynchrony.
One set of questions surrounds the mechanisms we have
provided to deal with these issues. On the scheduling front,
our current approach using priorities worked fairly nicely for
the various examples we tried, but we are aware of its limited
expressiveness, and are pursuing other options as well. A more
expressive but heavyweight mechanism could be to enable
transactional firing of subsets of rules, possibly with nested
transactions for nested subsets of rules. In terms of memory
allocation, our decision to use static memory allocation on a
per-predicate granularity is also limiting. An alternative option
we have considered is to let users define additional Snlog rules
to specify eviction policies that can dynamically reallocate
memory across predicates; such rules could naturally express
content-based decisions (e.g. “value of information” rules, like
allocating memory to sensor predicates in proportion to their
variance in time).

Elegant mechanisms are one avenue for handling the chal-
lenges arising from limited memory. Another approach is to
come up with a new declarative semantics that lets program-
mers formally and intuitively cope with these limitations.
It seems difficult in general to preserve traditional Datalog
semantics with arbitrary tuple evictions, even if programmers
are given more expressive ways to control execution and
memory. Instead of giving users control over execution, it
would be “more declarative” to have them specify priorities
over the contents of predicates at the end of execution. As one
example, perhaps the entire language model could be recast
around a notion of “ranked” results (a la web search), and the
system would always be guaranteed to produce the “top-k”
tuples for each predicate. Users would then be responsible for
providing ranking expressions akin to SQL’s “ORDER BY”
clause. This example seems quite challenging to guarantee
for complex programs, but we are attracted to the idea of
developing a fully declarative approach to coping with limited
memory.

IX. CONCLUSION

Data and communication are fundamental to sensor net-
works. Emboldened with these two guiding principles, we
have presented a declarative solution to specify entire sensor
network system stacks. By example, we showed several real
Snlog programs that address disparate functional needs of
sensor networks, often in orders of magnitude fewer lines
of code, yet with program text still matching the designer’s
intuition on program behavior. This lends considerable support
to our hypothesis that the declarative approach may be a good
match to sensor network programming.

Our DSN system implementation shows that these declar-
ative implementations are faithful to native code implemen-
tations and are feasible to support on current sensor network
hardware platforms.

REFERENCES

[1] Omega testbed website: omega.cs.berkeley.edu.
[2] Tinyos website: www.tinyos.net.
[3] S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of Asyn-

chronous Discrete Event Systems - Datalog to the Rescue! In ACM
PODS, 2005.

13

[4] M. Y. Becker and P. Sewell. Cassandra: Distributed Access Control
Policies with Tunable Expressiveness. In 5th IEEE International
Workshop on Policies for Distributed Systems and Networks, 2004.

[5] D. Chu, A. Tavakoli, L. Popa, and J. M. Hellerstein. Entirely declarative
sensor network systems. In VLDB ’06: Proceedings of the Thirty Second
International Conference on Very Large Data Bases, 2006.

[6] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, and J. Zhao.
Towards a Sensor Network Architecture: Lowering the Waistline. In
Proceedings of HotOS, 2005.

[7] C. Ee, R. Fonseca, S. Kim, A. Tavakoli, D. Culler, S. Shenker, and
I. Stoica. A Network Layer Architecture for Sensornets. In Under
Submission, 2006.

[8] C. Ee, S. Ratnasamay, and S. Shenker. Practical data-centric storage. In
NSDI, 2006.

[9] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker,
and I. Stoica. Beacon vector routing: Scalable point-to-point routing in
wireless sensornets. In NSDI ’05, 2005.

[10] C. Forgy. OPS5 user’s manual. Technical Report CMU-CS-81-135,
Carnegie Mellon University, 1981.

[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: A holistic approach to networked embedded systems.
In In ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2003., 2003.

[12] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira,
D. Estrin, R. Govindan, and E. Kohler. The tenet architecture for tiered
sensor networks. In Sensys, 2006.

[13] B. Greenstein, E. Kohler, and D. Estrin. A sensor network application
construction kit (snack). In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
69–80, New York, NY, USA, 2004. ACM Press.

[14] R. Gummadi, N. Kothari, R. Govindan, and T. Millstein. Kairos: a
macro-programming system for wireless sensor networks. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating systems
principles, pages 1–2, New York, NY, USA, 2005. ACM Press.

[15] J. M. Hellerstein and M. Stonebraker. Anatomy of a database system.
Readings in Database Systems, 4th Edition.

[16] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing
for wireless networks. In Mobile Computing and Networking, pages
243–254, 2000.

[17] E. Kohler, R. Morris, J. J. Benjie Chen, and M. F. Kaashoek. The click
modular router. In Proceedings of the 17th Symposium on Operating
Systems Principles, 2000.

[18] J. Koshy and R. Pandey. Vm*: Synthesizing scalable runtime environ-
ments for sensor networks. In In Proceedings of the third international
Conference on Embedded Networked Sensor Systems (Sensys), 2005.

[19] B. Lampson. Getting computers to understand. J. ACM, 50(1), 2003.
[20] B. Leong, B. Liskov, and R. Morris. Geographic routing without

planarization. In NSDI, 2006.
[21] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks.

In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS X), 2002.

[22] P. Levis, D. Gay, and D. Culler. Active sensor networks. In NSDI, 2005.
[23] P. Levis, N. Lee, M. Welsh, , and D. Culler. Tossim: Accurate and

scalable simulation of entire tinyos applications. In In Proceedings of the
First ACM Conference on Embedded Networked Sensor Systems (SenSys
2003)., 2003.

[24] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks. In In First Symposium on Network Systems Design and
Implementation (NSDI), Mar 2004.

[25] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking with distributed recursive query processing. In ACM SIG-
MOD International Conference on Management of Data, June 2006.

[26] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing declarative overlays. In SOSP ’05: Proceedings
of the twentieth ACM symposium on Operating systems principles, pages
75–90, New York, NY, USA, 2005. ACM Press.

[27] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
routing: Extensible routing with declarative queries. In ACM SIGCOMM
Conference on Data Communication, August 2005.

[28] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny
aggregation service for ad-hoc sensor networks. In OSDI, 2002.

[29] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: An
acquisitional query processing system for sensor networks. Transactions
on Database Systems (TODS), March 2005.

[30] S. Oh, P. Chen, M. Manzo, and S. Sastry. Instrumenting wireless
sensor networks for real-time surveillance. In Proc. of the International
Conference on Robotics and Automation, May 2006.

[31] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica.
A unifying link abstraction for wireless sensor networks. In SenSys ’05:
Proceedings of the 3rd international conference on Embedded networked
sensor systems, pages 76–89, New York, NY, USA, 2005. ACM Press.

[32] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In Proceedings of the 4th international symposium
on Information Processing in Sensor Networks, 2005.

[33] R. Ramakrishnan and J. D. Ullman. A survey of research on deductive
database systems. Journal of Logic Programming, 23(2):125–149, 1993.

[34] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing
without location information. In MobiCom ’03: Proceedings of the 9th
annual international conference on Mobile computing and networking,
pages 96–108, New York, NY, USA, 2003. ACM Press.

[35] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Distributed Monitor-
ing and Forensics in Overlay Networks. In Eurosys, 2006.

[36] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from
a sensor network expedition. In 1st European Workshop on Wireless
Sensor Networks (EWSN), 2004.

[37] A. Tavakoli, J. Taneja, P. Dutta, D. Culler, S. Shenker, and I. Stoica.
Evaluation and Enhancement of a Unifying Link Abstraction for Sen-
sornets. In UC Berkeley Technical Report, 2006.

[38] M. Welsh and G. Mainland. Programming sensor networks using
abstract regions. In NSDI, 2004.

[39] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and yield in a volcano monitoring sensor network. In In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2006), 2006.

[40] J. Whaley and M. S. Lam. Cloning-Based Context-Sensitive Pointer
Alias Analysis Using Binary Decision Diagrams. In PLDI, 2004.

[41] K. Whitehouse, J. Liu, and F. Zhao. Semantic streams: a framework for
composable inference over sensor data. In The Third European Workshop
on Wireless Sensor Networks (EWSN), Springer-Verlag Lecture Notes in
Computer Science, February 2006.

[42] A. Woo and D. Culler. Evaluation of efficient link reliability estimators
for low-power wireless networks, 2003.

[43] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. In SenSys ’03: Proceedings
of the 1st international conference on Embedded networked sensor
systems, pages 14–27, New York, NY, USA, 2003. ACM Press.

14

	Introduction
	Related Work
	Snlog Language
	Snlog Language

	Example Applications
	System Architecture
	The Compiler
	The Runtime
	Code Installation

	Implementation
	Implementation Choices
	Implementation Description

	Evaluation
	Applications and Metrics
	Summary of Results
	Tree/Collection Correctness Tests
	Trickle Correctness Tests
	Tracking Demo
	Lines of Code
	Feasibility

	Discussion and Future Work
	Architectural Flexibility
	Limitations

	Conclusion
	References

