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Abstract
Many Wireless Sensor Network (WSN) applications are

composed of a mixture of deployed devices with varying
capabilities, from extremely constrained 8-bit “Motes” to
less resource-constrained 32-bit “Microservers”. EmStar is
a software environment for developing and deploying com-
plex WSN applications on networks of 32-bit embedded Mi-
croserver platforms, and integrating with networks of Motes.
EmStar consists of libraries that implement message-passing
IPC primitives, tools that support simulation, emulation, and
visualization of live systems, both real and simulated, and
services that support networking, sensing, and time synchro-
nization. While EmStar’s design has favored ease of use and
modularity over efficiency, the resulting increase in overhead
has not been an impediment to any of our current projects.

1 Introduction
The field of wireless sensor networks (WSNs) is growing in
importance [1], with new applications appearing in the com-
mercial, scientific, and military spheres, and an evolving fam-
ily of platforms and hardware. One of the most promising
signs in the field is a growing involvement by researchers
outside the networking systems field who are bringing new
application needs to the table. A recent NSF Workshop re-
port [4] details a number of these needs, building on early ex-
perience with deployments (e.g. GDI [7], CENS [23], James
Reserve [26]).

Many of these applications lead to “tiered architecture”
designs, in which the system is composed of a mixture of
platforms with different costs, capabilities and energy bud-
gets [5] [21]. Low capability nodes, often Crossbow Mica
Motes [24] running TinyOS [17], can perform simple tasks
and provide long life at low cost. The high capability nodes,
or Microservers, generally consume more energy, but in turn
can run more complex software and support more sophisti-
cated sensors. EmStar is a software environment targeted at
Microserver platforms.

Microservers, typically iPAQ or Crossbow Stargate plat-
forms, are central to several new applications at CENS. The

Extensible Sensing System (ESS) employs Microservers as
data sinks to collect and report microclimate data at the James
Reserve. A proposed 50-node seismic network will use Star-
gates to measure and report seismic activity using a high-
precision multichannel Analog to Digital Converter (ADC).
Ongoing research in acoustic sensing uses iPAQ hardware to
do beamforming and animal call detection. Although EmStar
systems do not target Motes as a platform, EmStar systems
can easily interoperate with Motes and Mote networks.

In this paper, we intend to show how EmStar addresses
the needs of WSN applications. To motivate this discussion,
Figure 1 details a hypothetical application for which Em-
Star is well-suited. In this example, several nodes collabo-
rate to acoustically localize an animal based on its call—an
improved version of our system described in [8]. The large
dashed box shows how the system might be implemented
by combining existing EmStar components (gray boxes)
with hypothetical application-specific components (light gray
dashed boxes). Because EmStar systems are composed from
small reusable components, it is easy to plug new application-
specific components into many different layers of the system.

Although most of the implemented components in the dia-
gram are described in more detail later in the paper, we will
briefly introduce them here. The emrun module serves as
a management and watchdog process, starting up, monitor-
ing, and shutting down the system. The emproxy module is a
gateway to a debugging and visualization system. The udpd,
linkstats, neighbors and MicroDiffusion modules implement
a network stack designed to work in the context of wireless
links characterized by highly variable link quality and net-
work topology. The timehist, syncd, and audiod modules
together implement an audio sampling service that supports
accurate correlation of time series across a set of nodes. The
hypothetical modules include FFT, which computes a stream-
ing Fourier transform of the acoustic input, detect, which is
designed to detect a particular acoustic signature, and col-
lab detect, which orchestrates collaborative detection across
several nodes.

This application demonstrates several of the attributes that



Animal Call Localizer

syncd

udpd
link/udp0

gradients

sync/params

data

sensor/audio/fft

FFT

linkstats sensor/audio/0

sync/hist

MicroDiffusion

link/ls0

timehist

audiod

collab_detect

sensor/frog

detect

neighbors
link/ls0/neighbors

emrun
emlog/*

emproxy
clients

status

ADC

802.11
802.11 NIC

Animal Call Localizer

syncd

udpd
link/udp0

gradients

sync/params

data

sensor/audio/fft

FFT

linkstats sensor/audio/0

sync/hist

MicroDiffusion

link/ls0

timehist

audiod

collab_detect

sensor/frog

detect

neighbors
link/ls0/neighbors

emrun
emlog/*

emproxy
clients

status

ADC

802.11
802.11 NIC

Figure 1: To motivate the EmStar design, we show a block diagram of a hypothetical WSN application to which EmStar is well suited.
The diagram shows an improved version of our prototype animal call localization system described in [8]. In the new design, a network of
“Localizer” nodes collaborate over a wireless network to localize an animal by its call. Each node detects the specific audio signature of the
target animal and then collaboratively locates the target by comparing the arrival time of the signal at multiple points. The dashed box is an
exploded view showing how EmStar components might be used to implement the Localizer nodes. The gray boxes represent existing EmStar
modules, while the light gray dashed boxes represent hypothetical application specific modules. The white boxes represent various types of
named device interface, including Sensor Devices, Link Devices, and Status Devices. Arrows indicate client-server relationships. Although
all services have a control channel to EmRun, only four are shown, represented by dashed arcs.

are special to WSNs. First, the nodes in the system have
a higher probability of failure or disconnection than many
Internet-based systems. Wireless connectivity and network
topology can vary greatly, and systems deployed “in the wild”
are also subject to hardware failures with higher probability.
While Internet distributed systems often have low standards
of client reliability, they typically assume a “core” of high
reliability components that is not always present in a WSN.

Second, the digital signal processing (DSP) algorithms
running on each node are complex and must work for a broad
set of inputs that is difficult to characterize. In practice, this
means that certain unexpected conditions may cause unfore-
seen error conditions. Fault tolerance and layers of filtering
are needed to absorb these transients.

Third, energy considerations, along with aforementioned
properties of wireless, influence the design of networking
primitives. These issues favor soft state and hop-by-hop pro-
tocols over end-to-end abstractions. Energy considerations
may also necessitate system-wide coordination to duty cycle
the node. While many of the these issues are similar to those
addressed by TinyOS [17], EmStar is better suited to applica-
tions built on higher performance platforms.

2 Tools and Services

EmStar incorporates many tools and services germane to the
creation of WSN applications. In this section, we briefly de-
scribe these tools and services, without much implementation
detail. In Section 3, we detail key building blocks used to im-
plement these tools. Then, in Section 4 we show how the
implementation makes use of the building blocks.

2.1 EmStar Tools

EmStar tools include support for deployment, simulation,
emulation, and visualization of live systems, both real and
simulated.

EmSim/EmCee Transparent simulation at varying levels
of accuracy is crucial for building and deploying large sys-
tems [9] [11]. Together, EmSim and EmCee comprise several
accuracy regimes. EmSim runs many virtual nodes in paral-
lel, in a pure simulation environment that models radio and
sensor channels. EmCee runs the EmSim core, but provides
an interface to real low-power radios instead of a modeled
channel. The array of radio transceivers used by EmCee is
shown in Figure 2(b).

These simulation regimes speed development and debug-
ging; pure simulation helps to get the code logically correct,
while emulation in the field helps to understand environmen-
tal dynamics before a real deployment. Simulation and emu-
lation do not eliminate the need to debug a deployed system,
but they do tend to reduce it.

In all of these regimes, the EmStar source code and con-
figuration files are identical to those in a deployed system,
making it painless to transition among them during develop-
ment and debugging. This also eliminates accidental code
differences that can arise when running in simulation requires
modifications. Other “real-code” simulation environments in-
clude TOSSim [11] and SimOS [20].

EmView/EmProxy EmView is a graphical visualizer for
EmStar systems. Figure 2(a) shows a screen-shot of EmView
displaying real-time state of a running emulation. Through



Figure 2: (a) EmView and (b) the Ceiling Array

an extensible design, developers can easily add “plugins” for
new applications and services. EmView uses a UDP proto-
col to request status updates from real or simulated nodes.
Although the protocol is only best-effort, the responses are
delivered with low latency, such that EmView captures real-
time system dynamics. EmProxy is a server that runs on a
node or as part of a simulation, and handles requests from
EmView. Based on the request, EmProxy will monitor node
status and report report back changes in real time.

EmRun EmRun starts, stops, and manages running ser-
vices in EmStar It processes a config file that specifies how
the EmStar services are “wired” together, and starts the sys-
tem up in dependency order, maximizing parallelism. Em-
Run also maintains a control channel to each child process
that enables it to monitor process health (respawn dead or
stuck processes), initiate graceful shutdown, and receive no-
tification when starting up that initialization is complete. Log
messages emitted by EmStar services are processed centrally
by EmRun and exposed to interactive clients as in-memory
log rings with runtime-configurable loglevels.

2.2 EmStar Services

EmStar services include support for networking, sensing, and
time synchronization.

Link and Neighborhood Estimation Wireless channels
have a significant “gray zone” where connectivity is unreli-
able and highly time-varying [6]. Node failures are also com-
mon. Therefore, applications are brittle when they assume the
topology is pre-configured. Dynamic neighbor discovery is a
basic service needed by all collaborative applications if they
are to be robust. Potential collaborators must be discovered
at run-time.

EmStar’s Neighbors service monitors links and provides
applications with a list of active, reliable nodes. Applications
are notified when the list changes so that they can take action
in response to environmental changes. The LinkStats service
goes one step further: in exchange for slightly more packet
overhead, it provides much finer-grained reliability statistics.
This can be useful, for example, to a routing algorithm that
weights its path choices by link reliability.

Time Synchronization The ability to relate the times of
events on different nodes is critical to most distributed sens-

ing applications, especially those interested in correlation of
high-frequency phenomena. The TimeSync service provides
a mechanism for converting among CPU clocks (i.e. get-
timeofday()) on neighboring nodes. Rather than attempt to
synchronize the clocks to a specific “master”, TimeSync es-
timates conversion parameters that enable a timestamp from
one node to be interpreted on another node. Timesync can
also compute relations between the local CPU clock and other
clocks in the system, such as sample indices from an ADC or
the clocks of other processor modules [3].

Routing EmStar supports several types of routing: Flood-
ing, Geographical, Quad-Tree, and Diffusion. One of the
founding principles of EmStar is that innovation in routing
and hybrid transport/routing protocols are key research areas
in the development of wireless sensor network systems. Em-
Star “supports” several routing protocols, but it also makes
it easy to invent your own. For example, the authors of Di-
rected Diffusion [16] [18] have ported diffusion to run on top
of EmStar.

2.3 EmStar Device Support
EmStar includes native support for a number of devices, in-
cluding sensors and radio hardware.

HostMote and MoteNIC EmStar systems often need to act
as a gateway to a network of low-energy platforms such as
Mica Motes running TinyOS. The HostMote service imple-
ments a serial line protocol between a Mote and an EmStar
node. HostMote provides an interface to configure the at-
tached Mote and an interface that demultiplexes Mote traffic
to multiple clients. MoteNIC is a packet relay service built
over HostMote. MoteNIC provides a standard EmStar data
link interface, and pipes the traffic to software on the attached
Mote that relays those packets onto the air.

Audio Server The Audio service provides buffered and
continuous streaming interfaces to audio data sampled by
sound hardware. Applications can use the Audio service to
acquire historical data from specific times, or to receive a
stream of data as it arrives. Through integration with the
TimeSync service, an application can relate a specific series
of samples on one node to a series taken at the same time
on another node. The ability to acquire historical data is cru-
cial to implementing triggering and collaboration algorithms
where there may be a significant nondeterministic delay in
communication due to channel contention, multihop commu-
nication, duty cycling, and other sources of delay.

3 Building Blocks
In this section, we will describe in more detail the building
blocks that enabled us to construct the EmStar suite of tools
and services. EmStar systems encapsulate logically separa-
ble modules within individual processes, and enable commu-
nication among these modules through message passing via
device files. This structure provides for fault isolation and



independence of implementation among services and appli-
cations.

In principle, EmStar does not specify anything about the
implementation of its modules, apart from the POSIX system
call interface required to access device files. For example,
most EmStar device interfaces can be used interactively from
the shell, and EmStar servers could be implemented in any
language that supports the system call interface.

In practice, there is much to be gained from using and cre-
ating standard libraries. In the case of EmStar we have im-
plemented these libraries in C, and we have adopted the GLib
event framework to manage select() and to support timers.
Using the event framework we encapsulate complex proto-
col mechanisms in libraries, and integrate them without ex-
plicit coordination. The decision to use C, GLib, and the
POSIX interface was designed to minimize the effort required
to integrate EmStar with arbitrary languages, implementation
styles, and legacy codebases.

We will now describe some key building blocks in more de-
tail: the EmStar IPC mechanisms and associated libraries. We
will explain them in terms of what they do, how they work,
and how they are used.

3.1 FUSD

FUSD, the Framework for User-Space Devices, is essentially
a microkernel extension to Linux. FUSD allows device-
file callbacks to be proxied into user-space and implemented
by user-space programs instead of kernel code. Though
implemented in userspace, FUSD drivers can create de-
vice files that are semantically indistinguishable from kernel-
implemented /dev files, from the point of view of the pro-
cesses that use them. FUSD follows in the tradition of micro-
kernel operating systems that implement POSIX interfaces,
such as QNX [29] and GNU HURD [25].

As we will describe in later sections, this capability is used
by EmStar modules for both communication with other mod-
ules and with users. Of course, many other IPC methods ex-
ist in Linux, including sockets, message queues, and named
pipes. We have found a number of compelling advantages in
using using user-space device drivers for IPC among EmStar
processes. For example, system call return values come from
the EmStar processes themselves, not the kernel; a success-
ful write() guarantees that the data has reached the applica-
tion. Traditional IPC has much weaker semantics, where a
successful write() means only that the data has been accepted
into a kernel buffer, not that it has been read or acknowledged
by an application. FUSD-based IPC obviates the need for ex-
plicit application-level acknowledgment schemes built on top
of sockets or named pipes.

FUSD-driven devices are a convenient way for applications
to transport data, expose state, or be configured in a conve-
nient, browseable, named hierarchy—just as the kernel itself
uses the /proc filesystem. These devices can respond to sys-
tem calls using custom semantics. For example, a read from a

packet-interface device (Section 3.2.2) will always begin at a
packet boundary. The customization of system call semantics
is a particularly powerful feature, allowing surprisingly ex-
pressive APIs to be constructed. We will explore this feature
further in Section 3.2.

3.1.1 FUSD Implementation

The proxying of kernel system calls is implemented using a
combination of a kernel module and cooperating user-space
library. The kernel module implements a device, /dev/fusd,
which serves as a control channel between the two. When a
user-space driver calls fusd register(), it uses this channel to
tell the FUSD kernel module the name of the device being
registered. The FUSD kernel module, in turn, registers that
device with the kernel proper using devfs, the Linux device
filesystem. Devfs and the kernel do not know anything un-
usual is happening; it appears from their point of view that
the registered devices are simply being implemented by the
FUSD module.

FUSD drivers are conceptually similar to kernel drivers: a
set of callback functions called in response to system calls
made on file descriptors by user programs. In addition to the
device name, fusd register() accepts a structure full of point-
ers to callback functions, used in response to client system
calls—for example, when another process tries to open, close,
read from, or write to the driver’s device. The callback func-
tions are generally written to conform to the standard defini-
tions of POSIX system call behavior. In many ways, the user-
space FUSD callback functions are identical to their kernel
counterparts.

When a client executes a system call on a FUSD-managed
device (e.g., open() or read()), the kernel activates a callback
in the FUSD kernel module. The module blocks the calling
process, marshals the arguments of the system call, and sends
a message to the user-space driver managing the target device.
In user-space, the library half of FUSD unmarshals the mes-
sage and calls the user-space callback that the FUSD driver
passed to fusd register(). When that user-space callback re-
turns a value, the process happens in reverse: the return value
and its side-effects are marshaled by the library and sent to
the kernel. The FUSD kernel module unmarshals the mes-
sage, matches it with the corresponding outstanding request,
and completes the system call. The calling process is com-
pletely unaware of this trickery; it simply enters the kernel
once, blocks, unblocks, and returns from the system call—
just as it would for a system call to a kernel-managed device.

One of the primary design goals of FUSD is stability. A
FUSD driver cannot corrupt or crash any other part of the sys-
tem, either due to error or malice. Of course, a buggy driver
may corrupt itself (e.g., due to a buffer overrun). However,
strict error checking is implemented at the user/kernel bound-
ary, which prevents drivers from corrupting the kernel or any
other user-space process—including other FUSD drivers, and
even the processes using the devices provided by the errant
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3.1.2 FUSD Performance

While FUSD has many advantages, the performance of
drivers written using FUSD suffers relative to an in-kernel im-
plementation. To quantify the costs of FUSD, we compared
the performance of FUSD and in-kernel implementations of
the /dev/zero device in Linux. To implement /dev/zero us-
ing FUSD, we implemented a server with a read() handler
that returned a zeroed buffer of the requested length. The in-
kernel implementation implemented the same read() handler
directly in the kernel.

Figure 3 shows the results of our experiment, running on a
2.8 GHz Xeon. The figure shows that for small reads, FUSD
is about 17x slower than an in-kernel implementation, while
for long reads, FUSD is only about 3x slower. This reduction
in performance is a combination of two independent sources
of overhead.

The first source of overhead is the additional system call
overhead and scheduling latency incurred when FUSD prox-
ies the client’s system call out to the user-space server. For
each read() call by a client process, the user-space server first
be scheduled, and then must itself call read() once to retrieve
the marshalled system call, and must call writev() once to re-
turn the response with the filled data buffer. This additional
per-call latency dominates for small data transfers.

The second source of overhead is an additional data copy.
Where the native implementation only copies the response
data back to the client, FUSD copies the response data twice:
once to copy it from the user-space server, and again to copy it
back to the client. This cost dominates for large data transfers.

In our experiments, we tested both the 2.6 and 2.4 ker-
nels, and found that 2.6 kernels yielded an improvement for
smaller transfer sizes. The 2.6 kernel has a more signifi-

cant impact when many processes are running in parallel, as
shown in the results of our tests of EmStar simulations in Sec-
tion 4.1.4. Further performance analysis of specific EmStar
FUSD-based interfaces appears in Section 3.3.2.

3.2 Device Patterns
Using FUSD, it is possible to implement character devices
with almost arbitrary semantics. FUSD itself does not enforce
any restrictions on the semantics of system calls, other than
those needed to maintain fault isolation between the client,
server, and kernel. While this absence of restriction makes
FUSD a very powerful tool, we have found that in practice
the interface needs of most applications fall into well-defined
classes, which we term Device Patterns. Device Patterns fac-
tor out the device semantics common to a class of interfaces,
while leaving the rest to be customized in the implementation
of the service.

The EmStar device patterns are implemented by libraries
that hook into the GLib event framework. The libraries en-
capsulate the detailed interface to FUSD, leaving the service
to provide the configuration parameters and callback func-
tions that tailor the semantics of the device to fit the appli-
cation. For example, while the Status Device library defines
the mechanism of handling each read(), it calls back to the
application to represent its current “status” as data.

Relative to other approaches such as log files and status
files, a key property of EmStar device patterns is their active
nature. For example, the Logring Device pattern creates a de-
vice that appears to be a regular log file, but always contains
only the most recent log messages, followed by a stream of
new messages as they arrive. The Status Device pattern ap-
pears to be a file that always contains the most recent state of
the service providing it. However, most status devices also
support poll()-based notification of changes to the state.

The following sections will describe the Device Patterns
defined within EmStar. Most of these patterns were discov-
ered during the development of services that needed them and
later factored out into libraries. In some cases, several similar
instances were discovered, and the various features amalga-
mated into a single pattern.

3.2.1 Status Device

The Status Device pattern provides a device that reports the
current state of a module. The exact semantics of “state” and
its representation in both human-readable and binary forms
are determined by the service. Status Devices are used for
many purposes, from the output of a neighbor discovery ser-
vice to the current configuration and packet transfer statis-
tics for a radio link. Because they are so easy to add, Sta-
tus Devices are often the most convenient way to instrument
a program for debugging purposes, such as the output of the
Neighbors service and the packet reception statistics for links.

Status Devices support both human-readable and binary
representations through two independent callbacks imple-
mented by the service. Since the devices default to ASCII



mode on open(), programs such as cat will read a human-
readable representation. Alternatively, a client can put the de-
vice into binary mode using a special ioctl() call, after which
the device will produce output formatted in service-specific
structs. For programmatic use, binary mode is preferable for
both convenience and compactness.

Status Devices support traditional read-until-EOF seman-
tics. That is, a status report can be any size, and its end is in-
dicated by a zero-length read. But, in a slight break from tra-
ditional POSIX semantics, a client can keep a Status Device
open after EOF and use poll() to receive notification when the
status changes. When the service triggers notification, each
client will see its device become readable and may then read
a new status report.

This process highlights a key property of the status device:
while every new report is guaranteed to be the current state,
a client is not guaranteed to see every intermediate state tran-
sition. The corollary to this is that if no clients care about
the state, no work is done to compute it. Applications that
desire queue semantics should use the Packet Device pattern
(described in Section 3.2.2).

Like many EmStar device patterns, the Status Device sup-
ports multiple concurrent clients. Intended to support one-
to-many status reporting, this feature has the interesting side
effect of increasing system transparency. A new client that
opens the device for debugging or monitoring purposes will
observe the same sequence of state changes as any other
client, effectively snooping on the “traffic” from that service
to its clients. The ability to do this interactively is a powerful
development and troubleshooting tool.

A Status Device can implement an optional write() handler,
which can be used to configure client-specific state such as
options or filters. For example, a routing protocol that main-
tained multiple routing trees might expose its routing tables
as a status device that was client-configurable to select only
one of the trees.

3.2.2 Packet Device

The Packet Device pattern provides a read/write device that
provides a queued multi-client packet interface. This pattern
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Figure 4: Block diagram of the (a) Status and (b) Packet Device
patterns. In the Packet Device diagram, the “F” boxes are client-
configurable filters, and the curved arrows from Client1 represent
ioctl() based configuration of queue lengths and message filtering.
Trapezoid boxes represent multiplexing of clients.

is generally intended for packet data, such as the interface
to a radio, a fragmentation service, or a routing service, but
it is also convenient for many other interfaces where queue
semantics are desired.

Reads and writes to a Packet Device must transfer a com-
plete packet in each system call. If read() is not supplied with
a large enough buffer to contain the packet, the packet will be
truncated. A Packet Device may be used in either a blocking
or poll()-driven mode. In poll(), readable means there is at
least one packet in its input queue, and writable means that a
previously filled queue has dropped below half full.

Packet Device supports per-client input and output queues
with client-configurable lengths. When at least one client’s
output queue contains data, the Packet Device processes the
client queues serially in round-robin order, and presents the
server with one packet at a time. This supports the common
case of servers that are controlling access to a rate-limited
serial channel.

To deliver a packet to clients, the server must call into the
Packet Device library. Packets can be delivered to individual
clients, but the common case is to deliver the packet to all
clients, subject to a client-specified filter. This method en-
hances the transparency of the system by enabling a “promis-
cuous” client to see all traffic passing through the device.

3.2.3 Command Device

The Command Device pattern provides an interface similar
to the writable entries in the Linux /proc filesystem, which
enable user processes to modify configurations and trigger
actions. In response to a write(), the provider of the device
processes and executes the command, and indicates any prob-
lem with the command by returning an error code. Command
Device does not support any form of delayed or asynchronous
return to the client.

While Command Devices can accept arbitrary binary data,
they typically parse a simple ASCII command format. Using
ASCII enables interactivity from the shell and often makes
client code more readable. Using a binary structure might be
slightly more efficient, but performance is not a concern for
low-rate configuration changes.

The Command Device pattern also includes a read() han-
dler, which is typically used to report “usage” information.
Thus, an interactive user can get a command summary us-
ing cat and then issue the command using echo. Alterna-
tively, the Command Device may report state information in
response to a read. This behavior would be more in keeping
with the style used in the /proc filesystem, and is explicitly
implemented in a specialization of Command Device called
the Options Device pattern.

3.2.4 Query Device

The Device Patterns we have covered up to now provide use-
ful semantics, but none of them really provides the seman-
tics of RPC. To address this, the Query Device pattern im-
plements a transactional, request/response semantics. To ex-
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ecute a transaction, a client first opens the device and writes
the request data. Then, the client uses poll() to wait for the
file to become readable, and reads back the response in the
same way as reading a Status Device. For those services that
provide human-readable interfaces, we use a universal client
called echocat that performs these steps and reports the out-
put.

It is interesting to note that the Query Device was not one
of the first device types implemented; rather, most configura-
tion interfaces in EmStar have been implemented by separate
Status and Command devices. In practice, any given config-
urable service will have many clients that need to be apprised
of its current configuration, independent of whether they need
to change the configuration. This is exacerbated by the high
level of dynamics in sensor network applications. Further-
more, to build more robust systems we often use soft-state
to store configurations. The current configuration is periodi-
cally read and then modified if necessary. The asynchronous
Command/Status approach achieves these objectives while
addressing a wide range of potential faults.

To the service implementing a Query Device, this pattern
offers a simple, transaction-oriented interface. The service
defines a callback to handle new transactions. Queries from
the client are queued and are passed serially to the transac-
tion processing callback, similar to the way the output queues
are handled in a Packet Device. If the transaction is not com-
plete when the callback returns, it can be completed asyn-
chronously. At the time of completion, a response is reported
to the device library, which it then makes available to the
client. The service may also optionally provide a callback to
provide usage information, in the event that the client reads
the device before any query has been submitted.

Clients of a Query Device are normally serviced in round-
robin order. However, some applications need to allow a
client to “lock” the device and perform several back-to-back
transactions. The service may choose to give a current client
the “lock”, with an optional timeout. The lock will be broken

if the timeout expires, or if the client with the lock closes its
file descriptor.

3.3 Domain-Specific Interfaces

In Section 3.2 we described several device patterns, generally
useful primitives that can be applied to a wide variety of pur-
poses. In this section, we will describe a few examples of
more domain-specific interfaces, that are composed from de-
vice patterns, but are designed to support the implementation
of specific types of services.

3.3.1 Data Link Interface

The Data Link interface is a specification of a standard inter-
face for network stack modules. The Data Link interface is
composed of three device files: data, command, and status.
These three interfaces appear together in a directory named
for the specific stack module.

The data device is a Packet Device interface that is used to
exchange packets with the network. All packets transmitted
on this interface begin with a standard link header that speci-
fies common fields. This link header masks certain cosmetic
differences in the actual over-the-air headers used by different
MAC layers, such as the Berkeley MAC [17] and SMAC [22]
layers supported on Mica Motes.

The command and status devices provide asynchronous
access to the configuration of a stack module. The status de-
vice reports the current configuration of the module (such as
its channel, sleep state, link address, etc.) as well as the lat-
est packet transfer and error statistics. The command device
is used to issue configuration commands, for example to set
the channel, sleep state, etc. The set of valid commands and
the set of values reported in status varies with the underlying
capabilities of the hardware. However, the binary format of
the status output is standard across all modules (currently, the
union of all features).

Several “link drivers” have been implemented in EmStar,
to provide interfaces to radio link hardware including 802.11,
and several flavors of the Mica Mote. The 802.11 driver
overlays the socket interface, sending and receiving packets
through the Linux network stack. Two versions of the Mote
driver exist, one that supports the standard Berkeley MAC
and one that supports SMAC. Because all of these drivers
conform to the link interface spec, some applications can
work more or less transparently over different physical radio
hardware. In the event that an application needs information
about the radio layer (e.g. the nominal link capacity), that in-
formation is available from the status device.

In addition to providing support for multiple underlying
radio types, the standard Data Link interface enables a vari-
ety of useful “pass-through” stack modules and routing mod-
ules. Two standard modules in EmStar network stacks are
LinkStats and Fragmentation. Both of these sit between a
client and an underlying radio driver module, transparently to
the client. In addition to passing data through, they proxy and
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Figure 6: Measurements of the EmStar stack on a 700 MHz Pentium III running the 2.4.20 kernel. The throughput graph shows the
performance of a single process sending at maximum rate over a 100Mbit Ethernet, as a function of packet length, through different EmStar
stacks. The solid curve represents link saturation, while the other curves compare the performance of sending directly to a socket with that
of sending through additional layers. The error bars are 95% confidence intervals. The latency graph shows the average round-trip delay of a
ping message over the loopback interface, as a function of packet length, through different EmStar stacks. Both graphs show that performance
is dominated by per-packet overhead rather than data transfer, consistent with previous results about FUSD.

modify status information, for example updating the MTU
specification.

3.3.2 Cost Analysis of the Data Link Interface

Our discussion up to this point has yet to address the cost of
this architecture. In order to quantify some of these costs,
we performed a series of experiments, the results of which
are shown in Figure 6. We found that while our architecture
introduces a measurable increase in latency and decrease in
throughput relative to a highly integrated and optimized so-
lution, these costs have a negligible impact when applied to
a low bandwidth communications channel. This is an im-
portant case, since EmStar is intended for WSN applications
which typically are designed to have a high ratio of CPU to
communication.

To assess the costs of EmStar, we measured the costs in-
curred by layering additional modules over an EmStar link
device. The udp-raw curves represent a non-EmStar bench-
mark, in which we used a UDP socket directly. The udp-dev
curves represent a minimal EmStar configuration, in which
we used the EmStar UDP Link device. For a two-layer stack,
we added the EmStar LinkStats module, represented by the
+linkstats curves. For a three-layer stack, we added a Frag-
mentation module over LinkStats, shown by the +frag curves.

Our first experiment characterized the cost of EmStar in
terms of throughput. In Figure 6(a), our test application sent
UDP packets as quickly as possible over a 100Mbit Ethernet
channel. We ran this application over our four configurations,
comparing direct sends to a socket with three EmStar config-
urations. For each configuration, the time required to send
1000 packets was measured, and the results of 10 such tri-
als were averaged. The graph shows that per-packet overhead
prevents the application from saturating the link until larger

packet sizes sufficiently amortize the per-packet costs. Per-
packet costs include scheduling latency and system call over-
head, while message-passing across the user-kernel boundary
results in additional per-byte costs.

Our second experiment characterized the cost of EmStar in
terms of latency. In Figure 6(b), our test application sent UDP
“ping” packets over the loopback interface to a ping replier
on the same machine. We measured the round-trip times for
1000 packets and averaged them to estimate the latency for
our four configurations. Since the latency over loopback is
negligible (shown in the “udp-raw” curve), all of the mea-
sured latency represents EmStar overhead. In each case, a
ping round trip traverses the stack four times, thus is approxi-
mately 4x the latency of a single traversal. The data show that
crossing an EmStar interface costs about 66 microseconds on
this architecture, without a strong dependence on the length
of the message being passed.

While these experiments show definite costs to the EmStar
architecture, these costs are less critical for WSN applications
where communications channels have lower bandwidths and
higher latency relative to the rate of local processing. For ex-
ample, many of our applications use a Mote as a radio inter-
face, which has a maximum bandwidth of about 19.2Kbit/sec
and incurs a latency of 125 milliseconds to transmit a 200
byte packet over serial to the Mote and then over the chan-
nel. Given this type of interface, the additional latency and
bandwidth costs of EmStar are negligible.

3.3.3 Sensor Device

Two of the applications that drove the development of Em-
Star centered around acquisition and processing of audio data.
One application, a ranging and localization system [15], ex-
tracts and processes audio clips from a specific time in the



past. The other, a continuous frog call detection and localiza-
tion system [8], receives data in a continuous stream. Both
applications needed to be able to correlate time series data
captured on a distributed set of nodes, thus timing relation-
ships among the nodes needed to be maintained.

The Sensor Device interface encapsulates a ring buffer that
stores a history of sampled data, and integrates with the Em-
Star Time Synch service to enable clients to relate local sen-
sor data to sensor data from other nodes. A client of the sen-
sor device can open the device and issue a request for a range
of samples. When the sample data is captured, the client is
notified and the data is streamed back to the client as it con-
tinues to arrive.

Keeping a history of recent sensor data and being able to
relate the sample timing across the network is critical to many
sensor network applications. By retaining a history of sam-
pled data, it is much easier to implement applications where
an event detected on one node triggers further investigation
and sensing at other nodes. Without local buffering, the vari-
ance in multi-hop communications times makes it difficult to
abstract the triggered application from the communications
stack.

3.4 EmStar Events and Client APIs

One of the benefits of the EmStar design is that services and
applications are separate processes and communicate through
POSIX system calls. As such, EmStar clients and applica-
tions can be implemented in a wide variety of languages and
styles. However, a large part of the convenience of EmStar
as a development environment comes from a set of helper li-
braries that improve the elegance and simplicity of building
robust applications.

In Section 3.2 we noted that an important part of device
patterns is the library that implements them on the service
side. Most device patterns also include a client-side “API”
library, that provides basic utility functions, GLib compatible
notification interfaces, and a crashproofing feature intended
to prevent cascading failures.

Crashproofing is intended to prevent the failure of a lower-
level service from causing exceptions in clients that would
lead them to abort. It achieves this by encapsulating the
mechanism required to open and configure the device, and
automatically triggering that mechanism to re-open the de-
vice whenever it closes unexpectedly.

A client’s use of crashproof devices is completely trans-
parent. The client constructs a structure specifying the device
name, a handler callback, and the client configuration, includ-
ing desired queue lengths, filters, etc. Then, the client calls
a constructor function that opens and configures the device,
and starts watching it. In the event of a crash and reopen, the
information originally provided by the client will be used to
reconfigure the new descriptor. Crashproof client libraries are
supplied for both Packet and Status devices.

4 Examples
The last section enumerated a number of building blocks that
are the foundation for the EmStar environment. In this Sec-
tion, we will describe how we have used them to construct
several key EmStar tools and services.

4.1 EmSim and EmCee
EmSim and EmCee are tools designed to simulate unmodi-
fied EmStar systems at varying points on the continuum from
simulation to deployment. EmSim is a pure simulation en-
vironment, in which many virtual nodes are run in parallel,
interacting with a simulated environment and radio channel.
EmCee is a slightly modified version of EmSim that provides
an interface to real low-power radios in place of a simulated
channel.

EmSim itself is made up of modules. The main EmSim
module maintains a central repository for node information,
initially sourced from a configuration file, and exposed as a
Status Device. EmSim then launches other modules that are
responsible for implementing the simulated “world model”
based on the node configuration. After the world is in place,
EmSim begins the simulation, starting up and shutting down
virtual nodes at the appropriate times.

4.1.1 Running Virtual Nodes

The uniform use of the /dev filesystem for all of our I/O and
IPC leads to a very elegant mechanism for transparency be-
tween simulation, various levels of reality, and real deploy-
ments. The mechanism relies on name mangling to cause all
references to /dev/* to be redirected deeper into the hierarchy,
to /dev/sim/groupX/nodeY/*. This is achieved through two
simple conventions.

First, all EmStar modules must include the call to
misc init() early in their main() function. This func-
tion checks for certain environment variables to determine
whether the module is running in “simulation mode”, and
what its group and node IDs are. The second convention is
to wrap every instance of a device file name with sim path().
This macro will perform name-mangling based on the infor-
mation discovered in misc init(). For simplicity, we typically
include the sim path() wrapper at the definition of device
names in interface header files.

This approach enables easy and transparent simulation of
many nodes on the same machine. This is not the case for
many other network software implementations. Whenever
the system being developed relies on mechanisms inside the
kernel that can’t readily be partitioned into virtual machines,
it will be difficult to implement a transparent simulation.

For example, ad-hoc routing code that directly configures
the network interfaces and kernel routing table is very diffi-
cult to simulate transparently. While a simulation environ-
ment such as ns-2 [27] does attempt to run much of the same
algorithmic code as the real system, it does so in a very in-
trusive, #ifdef-heavy way. This makes it cumbersome to keep



the live system in sync with the ns-2 version.
In contrast, EmStar modules don’t even need to be recom-

piled to switch from simulation to reality, and the EmStar
device hierarchy provides transparency into the workings of
each simulated EmStar node. However, this flexibility comes
at a cost in performance. An ad-hoc routing algorithm that
dragged every packet to user-space would likely suffer poorer
performance.

4.1.2 Simulated World Models

The capability to transparently redirect EmStar IPC channels
enables us to provide a world for the simulated nodes to see,
and in some cases, affect. There are many examples of net-
work simulation environments in the networking community,
some of which support radio channel modeling [27][28]. In
addition, the robotics community has devoted much effort to
creating world models [12]. For sensor networks, the robotic
simulations are often more appropriate, because they are de-
signed to model a system sensing the environment, and in-
tended to test and debug control systems and behaviors that
must be reactive and resilient.

The existence of EmStar device patterns simplifies the con-
struction of simulated devices, because all of the complexity
of the interface behavior can be reused. Even more impor-
tant, by using the same libraries, the chances of subtle be-
havior differences are reduced. Typically, a “simulation mod-
ule” reads the node configuration from EmSim’s Status De-
vice and then exposes perhaps hundreds of devices, one for
each node. Requests to each exposed device are processed
according to a simulation of the effects of the environment,
or in some cases in accordance with traces of real data.

The notification channel in EmStar status devices enables
EmSim to easily support configurations changes during a
simulation. Updates to the central node configuration—such
as changes in the position of nodes—trigger notification in
the simulation modules. The modules can then read the new
configuration and update their models appropriately. In addi-
tion, we can close the loop by creating a simulation module
that provides an actuation interface—for example enabling
the node to move itself. In response to a request to move,
this module could issue a command to EmSim to update that
node’s position and notify all clients.

4.1.3 Using Real Channels in the Lab

EmCee is a variant of EmSim that integrates a set of virtual
nodes to a set of real radio interfaces, positioned out in the
world. We have two EmCee-compatible testbeds: the ceiling
array and the portable array. The ceiling array is composed
of 55 Crossbow Mica1 Motes, permanently attached to the
ceiling of our lab on a 4 foot grid. Serial cabling runs back
to two 32-port ethernet to serial multiplexers. The portable
array is composed of 16 Crossbow Mica2 Motes and a 16-
port serial multiplexer, that can be taken out to the field [6].

The serial multiplexers are configured so that their serial
ports appear to be normal serial devices on a Linux server (or

laptop in the portable case). To support EmCee, the HostMote
and MoteNIC services support an “EmCee mode” where they
open a set of serial ports specified in a config file and expose
their devices within the appropriate virtual node spaces.

Thus, the difference between EmSim and EmCee is mini-
mal. Where EmSim would start up a radio channel simula-
tor to provide virtual radio link devices, EmCee starts up the
MoteNIC service in “EmCee mode”, which creates real radio
link devices that map to multiplexer serial ports and thus to
real Motes.

Our experience with EmCee has shown it is well worth the
infrastructure investment. Users have consistently observed
that using real radios is substantially different from our best
efforts at creating a modeled radio channel [2][6]. Even chan-
nels driven by empirical data captured using the ceiling ar-
ray don’t seem to adequately capture the real dynamics. Al-
though testing with EmCee is still not the same as a real de-
ployment, the reduction in effort relative to a deployment far
outweighs the reduction in reality for a large part of the de-
velopment and testing process.

4.1.4 Performance of EmSim/EmCee

Currently, an important limitation of our simulator is that it
can only run in real-time, using real timers and interrupts
from the underlying operating system. In contrast, a discrete-
event simulator such as ns-2 runs in its own virtual time, and
therefore can run for as long as necessary to complete the
simulation without affecting the results. Discrete-event sim-
ulations can also be made completely deterministic, allowing
the developer to more easily reproduce an intermittent bug.

The real-time nature of EmSim/EmCee makes perfor-
mance an important consideration. With perfect efficiency,
the simulator platform would need the aggregate computa-
tional power of all simulated nodes. In reality, extra head-
room is needed for nonlinear costs of running many processes
on a single computer.

To test the actual efficiency, we ran test simulations on
two SMP-enabled servers. One had 4 700MHz Pentium-III
processors, running Linux kernel 2.4.20. The other had 2
2.8GHz Xeon processors, with hyperthreading disabled, run-
ning Linux 2.6.3. We tested both kernels because Linux 2.6
has a “O(1) scheduler”—i.e., the 2.6 scheduler performs con-
stant work per context switch regardless of run-queue size.
2.6 kernels also have much finer-grained locking, thus better
kernel parallelism. The FUSD kernel module also has fine-
grained locking.

In our initial testing, the default Linux scheduler was used;
no explicit assignment of processes to CPUs was made. Each
“node” consisted of two processes that exchanged data at
maximum possible rate via a EmStar Status Device. The re-
sults are in Figure 7.

We draw several conclusions from the data. First, the
Linux 2.6 scheduler does seem to be a win. Even with dif-
ferences in CPU speed factored out, it supported much larger
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Figure 7: Performance of a simple EmSim simulation, varying the number of nodes simulated, and the number of CPUs available on the
simulator platform. Linux kernels 2.4.20 (left) and 2.6.3 (right) were tested. Each “node” is two processes that continuously exchange data
via a EmStar Status Interface. We plot the aggregate transfer rate summed across all simulated nodes. Results are normalized so that y = 1

corresponds to the speed achieved by a single-node simulation (2 processes) running on a single CPU.

simulations than the 2.4 scheduler (512 vs. 128 nodes). In ad-
dition, it supported better parallelism: Linux 2.6 with 2 CPUs
had, on average, 1.7 times more throughput than for a single
CPU, compared to 1.5 times for Linux 2.4. However, Linux
2.6 simulations suffered much higher jitter, i.e. differences in
performance from node to node. The cause of this unfairness
is still under investigation.

The data also emphasize the high cost of FUSD inter-
process communication across processes not running on the
same CPU. This can be seen in that a single-node (2-process)
simulation ran on a single-CPU platform at nearly at nearly
twice the speed as on 2-, 3- or 4-CPU platform. The Linux
scheduler, by default, places the Status Device Client and
Server processes on separate CPUs if available. In applica-
tions that have a very high communication-to-computation
ratio, as in our test workload, the overhead of extra CPUs is
a much higher cost than the benefit of extra cycles. However,
many EmStar applications (and WSN applications in general)
strive to do as much computation as possible per unit of com-
munication, making these limitations of SMP model a virtual
non-issue in “real” simulations.

4.2 EmRun

EmRun starts up, maintains, and shuts down an EmStar sys-
tem according to the policy specified in a config file. There
are three key points in its design: process respawn, in-
memory logging, and fast startup, graceful shutdown.

Respawn Process respawn is neither new, nor difficult to
achieve, but it is very important to an EmStar system. It is
difficult to track down every bug, especially ones that occur
very infrequently, such as a floating-point error processing an
unusual set of data. Nonetheless, in a deployment, even in-
frequent crashes are still a problem. Often, process respawn
is sufficient to work around the problem; eventually, the sys-
tem will recover. EmStar’s process respawn is unique be-

cause it happens in the context of ”Crashproofed” interfaces
(Section 3.4). When an EmStar process crashes and restarts,
Crashproofing prevents a ripple effect, and the system oper-
ates correctly when the process is respawned.

In-Memory Logs EmRun saves each process’ output to in-
memory log rings that are available interactively from the
/dev/emlog/* hierarchy. These illustrate the power of FUSD
devices relative to traditional logfiles. Unlike rotating logs,
EmStar log rings never need to be switched, never grow be-
yond a maximum size, and always contain only recent data.

Fast Startup EmRun’s fast startup and graceful shutdown
is critical for a system that needs to duty cycle to conserve
energy. The implementation depends on a control channel
that EmStar services establish back to EmRun when they
start up. EmStar services notify EmRun when their initial-
ization is complete, signaling that they are now ready to re-
spond to requests. The emrun init() library function, called
by the service, communicates with EmRun by writing a mes-
sage to /dev/emrun/.int/control. EmRun then launches other
processes waiting for that service, based on a configured de-
pendency graph.

This feedback enables EmRun to start independent pro-
cesses with maximal parallelism, and to wait exactly as long
as it needs to wait before starting dependent processes. This
scheme is far superior to the naive approach of waiting be-
tween daemon starts for pre-determined times, i.e., the ubiq-
uitous “sleep 2” statements found in *NIX boot scripts. Vari-
ous factors can make startup times difficult to predict and high
in variance, such as flash filesystem garbage collection. On
each boot, a static sleep value will either be too long, causing
slow startup, or too short, causing services to fail when their
prerequisites are not yet available.

Graceful Shutdown The control channel is also critical to
supporting graceful shutdown. EmRun can send a message
through that channel, requesting that the service shut down,



saving state if needed. EmRun then waits for SIGCHLD to
indicate that the service has terminated. If the process is un-
responsive, it will be killed by a signal.

An interesting property of the EmRun control channel is
one that differentiates FUSD from other approaches. When
proxying system calls to a service, FUSD includes the PID,
UID, and GID of the client along with the marshalled sys-
tem call. This means that EmRun can implictly match up
the client connections on the control channel to the child pro-
cesses it has spawned, and reject connections from non-child
processes. This property is not yet used much in EmStar but
it provides an interesting vector for customizing device be-
havior.

4.3 Time-Synchronized Sampling in EmStar
Several of the driving applications for EmStar have involved
distributed processing of high-rate audio: audible acoustic
ranging, acoustic beamforming, and animal call detection are
a few of the applications. We used earlier versions of Em-
Star to tackle a few of these problems [10][15][8]. Referring
back to the animal call localization application of Figure 1,
we see how the “syncd” and “audiod” services collaborate so
that “collab detect” can correlate events detected on nodes
across the network. In this section, we will describe these
services in more detail.

TimeSync Between Nodes The TimeSync service uses
Reference Broadcast Synchronization (RBS) [3] to compute
relationships among the CPU clocks on nodes in a given
broadcast domain. This technique correlates the arrival times
of broadcast packets at different nodes and uses linear regres-
sion to estimate conversion parameters among clocks that re-
ceive broadcasts in common. We chose RBS because tech-
niques based on measuring send times, such as TPSN [14],
are not generally applicable without support at the MAC
layer. Requiring this support would rule out many possible
radios, including 802.11 cards.

A key insight in RBS is that it is better to enable conver-
sion than to attempt to train a clock to follow some remote
“master” clock. Training a clock has many negative reper-
cussions for the design of a sampling system caused by clock
discontinuities and distortions.

Thus, TimeSync is really a “time conversion” ser-
vice. The output of the regression is reported through the
/dev/sync/params/ticker device, in a complete listing of all
known pairwise conversions. Clients of TimeSync read this
device to get the latest conversion parameters, then convert
times from one timebase to another. The code for reading
the device and converting among clocks is implemented in a
library.

TimeSync within a Node Many systems have more than
one clock. For example, a Stargate board, with an attached
Mote and an audio card has three independent clocks. Thus
to compare audio time series from two independent nodes, an
index in a time series must be converted first to local CPU

time, then to remote CPU time, and finally to a remote audio
sample index.

The TimeSync service provides an interface for other ser-
vices to supply pair-wise observations to it, i.e. a CPU times-
tamp and a clock-X timestamp. This interface uses a Direc-
tory device to enable clients to create a new clock, and as-
sociate it with a numeric identifier. The client then writes
periodic observations of that clock to the timesync command
device /dev/sync/params/command. The observations are fit
using linear regression to compute a relationship between the
two local clocks.

The Audio Server The Audio service provides a Sensor
Device output It defines a “sample clock”, which is the in-
dex of samples in a stream, and submits observations relating
the sample clock to the CPU time to TimeSync.

A client of the Audio service can extract a sequence of data
from a specific time period by first using TimeSync to convert
the begin and end times to sample indices and then placing
a request to the Audio service for that sample range. Con-
versely, a feature detected in the streaming output at a par-
ticular sample offset can be converted to a CPU time. These
clock relations can also be used to compute and correct the
skew in sample rates between devices, which can otherwise
cause significant problems.

Generating the synch observations requires minor changes
to the audio driver in the kernel. We have made patches
for two audio drivers: the iPAQ built-in audio driver and the
Crystal cs4281. In both cases, incoming DMA interrupts are
timestamped and retrieved by the Audio service via ioctl().
While this approach makes the system harder to port to new
platforms and hardware, it is a better solution for building
sensing platforms.

The more common solution, the “synchronized start” fea-
ture of many sound cards, has numerous drawbacks. First,
it only gives you one data point for the run, where our tech-
nique gives you a continous stream of points to average. Sec-
ond, it is subject to drift, and since the end is not timestamped
there is no way to accurately determine the actual sample rate.
Third, it forces the system to coordinate use of the audio hard-
ware, whereas the Audio server runs continuously and allows
access by multiple clients.

5 Design Philosophy and Aesthetics

In this section, we will describe some of the ideas behind the
choices we made in the design of EmStar. These choices were
motivated by the issues faced by WSNs, which have much in
common with traditional distributed systems.

5.1 No Local/Remote Transparency

One of the disadvantages of FUSD relative to sockets is
that connections to FUSD services are always local, whereas
sockets provide transparency between local and remote con-
nections. Nonetheless, we elected to base EmStar on FUSD



because we felt that the advantages outweighed the disadvan-
tages.

The primary reason for giving up remote transparency in
EmStar is that remote access is rarely transparent in WSNs.
Communications links in WSNs are characterized by high
or variable latency, varying link quality, evolving topologies,
and generally low bandwidth. In addition, the energy cost
of communication in WSNs motivates innovative protocols
that minimize communications, make use of broadcast chan-
nels, tolerate high latency, and make tradeoffs explicit to the
system designer. Remote communication in WSNs is demon-
strably different than local communication, and very little is
achieved by masking that fact.

In abandoning remote transparency, the client gains the
benefit of knowing that each synchronous call will be re-
ceived and processed by the server with low latency. While an
improperly implemented server can introduce delays, there is
never a need to worry that the network might introduce unex-
pected delay. Requests that are known to be time consuming
can be explicitly implemented so that the results are returned
asynchronously via notification (e.g. Query Device).

5.2 Intra-Node Fault Tolerance

Tolerance of node and communications failures is important
to the design of all distributed systems. In WSNs, node
robustness takes on an even greater importance. First, the
cost of replacing or repairing embedded nodes can be much
higher, especially when network access to the node is unre-
liable or a physical journey is required—in extreme cases,
nodes may be physically irretrievable. Second, many scien-
tific applications of WSNs intend to discover new properties
of their environment, which may expose the system to new
inputs and exercise new bugs.

We address fault tolerance within a node in several ways:
EmRun respawn, “crashproofing”, soft-state refresh, and
transactional interface design. We discussed EmRun respawn
and crashproofing in Sections 4.2 and 3.4, as a means of keep-
ing the EmStar services running and preventing cascading
failures when an underlying service fails.

While soft-state and transactional design are standard tech-
niques in distributed systems, in EmStar we apply these tech-
niques to IPC as well. Status devices are typically used in
a soft-state mode. Rather than reporting more economical
“diffs”, every status update reports the complete current state,
leaving the client to decide how to respond based on its own
state. To limit the damage caused by a missing notification
signal, clients periodically request a refresh in the absence of
notification. When the aggregate update rate is low it is usu-
ally easy to make the case for trading efficiency for robustness
and simplicity.

Similar considerations hold in the reverse direction.
Clients that push state to a service typically use transactional
semantics with a soft-state refresh. Rather than allowing the
client and server to get out of synch (e.g. in the event of a

server restart), the client periodically resubmits its complete
state to the service, enabling the service to make appropriate
corrections if there is a discrepancy. Where the state in ques-
tion is very large, there may be reason to implement a more
complex scheme, but for small amounts of state, simplicity
and robustness carry the day. While trading off efficiency for
robustness may not be the right approach for all applications
and hardware platforms, it has worked well for the applica-
tions we have built.

5.3 Code Reuse

Code reuse and modularity were major design goals of Em-
Star. EmStar achieves reusabililty through disciplined design,
driven by factoring useful components from existing imple-
mentations. For example, each device pattern was originally
implemented as a part of several different services, and then
factored out into a unified solution to a class of problems.
Table 1 shows a quantitative picture of reuse.

The design of EmStar services has followed the dictum
“encapsulate mechanism, not policy”. This approach encour-
ages reuse, and reduces system complexity while maintain-
ing simple interfaces between modules. EmStar implements
modules as independent processes rather than as libraries,
eliminating a wide variety of unanticipated interactions, thus
better controlling complexity as the number of modules in-
creases.

Building Block Server Uses Client Uses

Status Device and derivatives 40 22
Command Device 17 N/A
Packet Device 10 5
Data Link Interface 12 32

Table 1: Reuse statistics culled from LXR.

5.4 Reactivity

Reactivity is one of the most interesting characteristics of
WSNs. They must react to hard-to-predict changes in their
environment in order to operate as designed. Often the tasks
themselves require a reaction, for example a distributed con-
trol system or a distributed sensing application that triggers
other sensing activities. EmStar supports reactivity through
notification interfaces in EmStar devices. Most EmStar ser-
vices and applications are written in an event-driven style that
lends itself to reactive design.

5.5 High Visibility

While the decision to stress visibility in the EmStar design
was partly motivated by aesthetics, it has paid off handsomely
in overall ease of use, development, and debugging. The abil-
ity to browse the IPC interfaces in the shell, to see human-
readable outputs of internal state, and in many cases to man-
ually trigger actions makes for very convenient development
of a system that could otherwise be quite cumbersome. Tools
like EmView also benefit greatly from stack transparency, be-



cause EmView can snoop on traffic travelling in the middle
of the stack in real time, without modifying the stack itself.

6 Related Work

In addition to related work we mentioned throughout this pa-
per, in this section we highlight the most related systems.

The closest system to EmStar is TinyOS [17]. TinyOS ad-
dresses the same problem space, only geared to the much
smaller Mote platform. As such, much TinyOS development
effort must focus on reducing memory and CPU usage. By
operating with fewer constraints, EmStar can focus on more
complex applications and on improving robustness in the face
of growing complexity. A key attribute of TinyOS that Em-
Star lacks is the capacity to perform system-wide compile
time optimizations. Because EmStar supports forms of dy-
namic binding that do not exist in TinyOS, many compile-
time optimizations are ruled out.

Click [19] is a modular software system designed to sup-
port implementation of routers. While Click is designed for
a different application space, there are many similarities, in-
cluding an emphasis on modularity. A key difference is that
like TinyOS, Click leverages language properties and static
configuration to perform global optimizations. EmStar in-
stead supports dynamic configuration and provides greater
levels of fault isolation between modules.

Player/Stage [12] is a software system designed for
robotics that supports “real-code” simulation. Player is based
on sockets protocols, which have the advantage of remote
transparency but are not browseable.

7 Conclusion and Future Work

We have found EmStar to be a very useful development en-
vironment for WSNs. We use EmStar at CENS in several
current development efforts, including a 50-node seismic de-
ployment and the ESS microclimate sensing system. We also
support other groups using EmStar, including the NIMS [13]
robotic ecology project and ISI ILENSE.

Our current platform focus is the Crossbow/Intel Stargate
platform, an inexpensive Linux platform based on the XScale
processor. Stargates are much easier to customize than other
COTS platforms such as iPAQs.

We plan several extensions to EmStar, including: bet-
ter integration between Motes and Microservers based on a
TinyOS “VM”, virtualization of EmSim’s clock to enable
“simulation pause” and larger simulations, remote device
acess over local networks via sockets, and efficient support
for high-bandwidth sensor interfaces such as audio, image
data, and DSPs using a shared-memory data channel.
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