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ABSTRACT
TinyOS applications are built with software components that com-
municate through narrow interfaces. Since components enable fine-
grained code reuse, this approach has been successful in creat-
ing applications that make very efficient use of the limited code
and data memory on sensor network nodes. However, the other
important benefit of components—rapid application development
through black-box reuse—remains largely unrealized because in
many cases interfaces have implied usage constraints that can be
the source of frustrating program errors. Developers are commonly
forced to read the source code for components, partially defeating
the purpose of using components in the first place. Our research
helps solve these problems by allowing developers to explicitly
specify and enforcecomponent interface contracts. Due to the ex-
tensive reuse of the most common interfaces, implementing con-
tracts for a small number of frequently reused interfaces permitted
us to extensively check a number of applications. We uncovered
some subtle and previously unknown bugs in applications that have
been in common use for years.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Programming by Contract; D.2.5 [Software Engineering]: Test-
ing and Debugging—Testing tools

General Terms
Design, Reliability, Verification

Keywords
Validation, design by contract, TinyOS, sensor networks, automated
testing

1. INTRODUCTION
TinyOS has been a successful basis for interrupt-driven sensor-

net applications. Its component model is designed to minimize ap-
plication code size by linking in only needed functionality, and to
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Figure 1: An interface contract enforces correct use of a
nesC interface by interposing between the interface’s user and
provider

speed application development through component reuse. Unfortu-
nately, creating reliable TinyOS applications by building on exist-
ing components, especially those written by others, is notoriously
difficult. A principal challenge is that proper use of the TinyOS
interfaces has never been carefully specified, giving developers un-
wanted degrees of freedom. Developers of reusable components
are forced to assume that their interfaces will be misused, requiring
defensive programming that adds development and resource over-
head. Similarly, those reusing existing components are forced to
assume that interface calls may fail, even when used properly, ne-
cessitating development overhead due to error checking and failure
recovery strategies. These problems have been shown to be rele-
vant for the interfaces in TinyOS 1.x, which we checked for this
paper, and we believe they are present in TinyOS 2.0 as well.

As a step towards solving these problems we developedinter-
face contractsfor TinyOS. An interface contract—depicted in Fig-
ure 1—is a checkable, executable specification that codifies the
(previously implicit) rules for correctly using an interface. To check
component implementations against their contracts, we implemented
dynamic contract checkingvia a source-to-source program trans-
formation that adds checks to existing TinyOS applications such
that an error is raised any time an interface is misused.

Contracts provide developers with a good value proposition: a
contract for a given interface has to be specified just once and then
it can be reused for any instance of the interface. Similarly, there
is large potential for reusing contracts across multiple applications
and for reuse over time: the core TinyOS 1.x interfaces have re-
mained fairly stable for several years.

Introducing an effective and efficient contract checking system
into existing TinyOS codes required solving three difficult prob-
lems. The first problem is defining the contracts themselves. This
requires reviewing the TinyOS code base to learn the expected call
patterns, many of which are nonobvious and others are used in con-
tradictory ways in different parts of the code base. Retrofitting con-
tracts into a system that has existed without them for years is fun-
damentally hard. For example, we have repeatedly found that even



Figure 2: Without interface contracts (left), fault isolation in
complex TinyOS applications is difficult. Contracts (right) con-
tinuously check interface invariants, supporting rapid and effi-
cient fault detection.

contracts that we believe to be far too weak are routinely violated
by applications that, for the most part, work. The second problem
is resolving nesC features and idioms with traditional notions of
contracts. The nesC language has several advanced features, such
as the ability for a function call to “fan-out” to multiple callees,
which a contract checker must be able to handle. The third chal-
lenge is defining a contract language that can handle the first two
challenges, is easy to understand, and does not introduce significant
resource overheads on highly constrained sensornet nodes.

Our eventual goal is for every interface to have a contract, includ-
ing low-level hardware abstractions. This would allow unit tests in
a simulation environment, where one component is tested in iso-
lation against arbitrary inputs. Unit tests in simulation will detect
some but not all bugs; real nodes should also be able to efficiently
enforce contracts while running full applications. Introducing a few
hundred cycles of overhead per packet transmission may be feasi-
ble, but not on every radio byte interrupt.

Our research has two main benefits. In the short term, as Fig-
ure 2 illustrates, contracts serve as checkable, executable documen-
tation that makes it easier for developers to create correct code, and
to rapidly locate bugs in incorrect code. In the longer term, we
expect that it will be possible to use formal methods to statically
check both individual components and entire applications against
their interface contracts. Checking individual components is very
powerful because it shows that a particular component is correct in
any possible instantiation, rather than just in one specific one. Fur-
thermore, we expect that component-level checking will be useful
in an assume-guarantee reasoning scheme [5] that can inductively
show that an entire application is correct.

2. TINYOS BACKGROUND
TinyOS [7] is a component-based operating system in which

components interact through typed interfaces. The OS is written
in nesC [4], a dialect of C with support for components, interfaces,
concurrency analysis, and network types. Building a TinyOS appli-
cation involves connecting the interfaces of components together.
Interfaces are bidirectional, in that they can describe both the call
that a user can make on a service provider (commands) as well as
calls a provider can make on a user (events). For example, sending
a packet is a command, while receiving a packet is an event. Gen-
erally, an interface supports a narrow but complete abstraction such
as using a timer, writing to a non-volatile log, or receiving packets.

interface SendMsg {
command result_t send (uint16_t addr,

TOS_MsgPtr,
uint8_t len);

event result_t sendDone (TOS_MsgPtr,
result_t success);

}

Figure 3: The SendMsg interface

interface Timer {
command result_t start (char type,

uint32_t interval);
command result_t stop();
event result_t fired();

}

Figure 4: The Timer interface

TinyOS does not support blocking. Instead, slow operations—
especially those that involve hardware latencies—are split-phase.
For example, Figure 3 shows the basic packet communication in-
terface, SendMsg. Rather than wait until an operation (e.g., Send-
Msg.send) completes, the interface command returns immediately,
allowing the application to continue processing. When the opera-
tion does complete, the interface signals the completion event (e.g.,
SendMsg.sendDone), at which point the user can reclaim the packet
buffer. The split-phase semantics has a number of advantages but it
also creates difficulties for developers, who are forced to explicitly
maintain component state across multiple invocations. Split-phase
operation is the source of quite a few of the interface misuses that
we found.

An implementation cannot name another component: compo-
nents interact solely through interfaces. This explicit separation al-
lows programmers to easily change which implementation is used.
For example, a component named AppM that uses SendMsg can be
directly connected to a radio-only communication stack, a radio-
serial hybrid stack, or to a send queue without changing AppM’s
code.

The ability to easily switch between different implementations of
an interface requires that the implementations are interchangeable.
Unfortunately, at present, there is no precise specification of the
semantics and call patterns of most interfaces. As there is a good
deal of latitude in implementation, a component must be able to
handle a wide range of behaviors. This imprecision leads to bloated
code, as every component must be programmed defensively.

3. DESIGNING A CONTRACT SYSTEM
This section describes our contract language and how developers

can use it to specify an interface’s semantics.

3.1 The contract language
Our contracts are specified in a stylized version of C, in or-

der to provide developers with a familiar environment. Figure 4
shows TinyOS’s timer interface and Figure 5 illustrates the basic
contract syntax by showing the contract for one of the interface’s
commands. In this example, the Timer.start() command generates
a state transition only if the command returnsSUCCESS. The con-
tract for an interface call containsPRE andPOST sections, where
precondition and postcondition code is placed. In Figure 5, the



// Global variable which represents
// timer state.
Timer_state_t state = IDLE;

void start (char type, uint32_t interval) {

PRE:
if(state != IDLE) {

ERROR ("NON-IDLE TIMER STARTED");
print_dec_int ((int)ID);

}

POST:
if (R_VAL == SUCCESS) {

if (type == TIMER_ONE_SHOT) {
state = ONE_SHOT;

} else if (type == TIMER_REPEAT) {
state = REPEATING;

}
} else {

state = IDLE;
}

}

Figure 5: Contract for the Timer.start() command

// State field to append to each TOS_Msg
typedef struct TOS_Msg {

TOS_Msg_state_t msg_state;
} TOS_Msg __attribute__((append));

void send( TOS_Msg * msg, uint16_t length) {

POST:
if(R_VAL == SUCCESS){

if(msg->msg_state != USER_OWNED){
ERROR("SEND ERROR:SEND OS_OWNED");

}
msg->msg_state = OS_OWNED;

}

}

Figure 6: Contract for the SendMsg.send() command

safety check is placed in the precondition in order to generate a
failure as early as possible.

Contracts are permitted to examine arguments to interface calls,
and also to examine data referenced by these arguments. Contracts
may access a call’s return value using a specialR VAL variable. As
Figure 5 shows, the return value is often used to make conditional
changes to the interface’s state based on the success or failure of
the call. Contract code may declare state variables; a separate copy
of these variables is instantiated for each use of a contract in an
application. The special variableID is mapped to the parameterized
value of the interface, should one be available. It is provided as a
convenience for making error messages more useful.

Contracts arenot allowed to access component-local informa-
tion that does not flow across some interface. This would violate
our design principle that contracts are about interfaces, not imple-
mentations.

Some interface contracts, such as the one in Figure 5, can be ex-
pressed in terms of checks on the state of the interface. In other
cases, the interface itself is stateless and the contract enforces pre-
conditions and postconditions on data structures in the application.

SendMsg.sendDone()

Error

Buffer owned by application Buffer owned by send stack

SendMsg.send()

SendMsg.sendDone() SendMsg.send()

Figure 7: State machine for SendMsg interface

This is the case for the SendMsg interface shown in Figure 3. To
support this kind of interface, we permit contracts to augment data
structures with new fields, and to access these fields. For example,
Figure 6 shows how a state variable is added to the TinyOS packet
buffer data structure. In this case, when a buffer is passed to Send-
Msg.send(), it is assumed to be unavailable for an additional send()
request until the corresponding sendDone() event fires. Thus, at-
tempting to send the same buffer twice before the first request com-
pletes is a contract violation, although an attempted send() using a
different buffer is not.

3.2 Writing contracts
The first, and most important, step in producing a contract is de-

termining the state machine that is implied by the interface. While
this process seems obvious, getting the contracts written correctly
is non-trivial and required a significant amount of development
time on our part. One of the important contributions of our tool
is providing a set of contracts for the trickiest and most commonly
used interfaces within TinyOS. By providing these we enable rel-
atively thorough checking of existing applications with minimal
additional programming. Once a state machine that encapsulates
the interface’s behavior has been established, the transitions can
be translated into executable contracts. The state machine for the
SendMsg interface (Figure 3) is shown in Figure 7.

Figure 8 shows the number of interfaces contained in our sample
applications and how many we are currently checking. By running
checks on only a few interesting interfaces we are able to cover
roughly half of the total number of interface instances. For this
paper we focused on interfaces that were common enough to apply
to a wide variety of applications and interesting enough to have the
potential to contain worthwhile bugs. Though there are a significant
number of interfaces that we do not cover, the majority of them
are not stateful and hence require no contracts, or are specific to
individual applications.

3.3 Warnings vs. errors
We came to recognize that contract violations have multiple lev-

els of severity, and we adopted the convention that contract viola-
tions are divided into two categories. Warnings indicate usage that
is in poor taste but that does not, as far as we know, directly lead
to application malfunction. For example, a warning is generated
when an application initializes a timer component that already has
a timer set to fire. More severe are errors, which indicate behav-
ior that cannot possibly be correct, such as concurrently passing a
single packet buffer to the receive subsystem multiple times.



StdControl Timer Send Receive Pot Clock Leds ADC ADCControl RouteControl Other
BlinkTask 3 2 0 0 3 2 2 0 0 0 3
CntToLedsAndRfm 15 6 6 7 2 2 3 3 0 0 23
Surge 25 8 12 12 2 2 6 8 4 3 23
SurgeTinySec 26 8 14 14 2 2 6 8 4 3 49
SurgeReliable 37 10 13 12 2 2 3 4 0 3 61

Figure 8: Number of times each interface is used by some TinyOS applications

4. CHECKING CONTRACTS
We created a source-to-source transformation tool that inputs a

collection of contracts and the C code emitted by the nesC com-
piler, and outputs a new C program that, when run, dynamically
checks interface contracts. Our tool is based on CIL [12], a parser,
typechecker, and intermediate representation for C.

4.1 Adding contract checks
Our tool, shown in Figure 9, performs the following steps.

Determine interface aliasing.Because interface names are
obscured in the nesC compiler’s output, our tool requires some ad-
ditional information before it can add contract checks. The nesC
compiler optionally dumps this kind of wiring information as XML.
We use this feature to map function names in the emitted C code to
their actual interface instances.

Construct callgraph and application wiring from source
code. The nesC compiler uses well-defined name mangling sch-
emes, permitting us to recover component wiring information di-
rectly from the compiler output. By pulling apart the mangled func-
tion names and knowing the interface aliasing for a given applica-
tion, we know which functions implement a given interface, and
which component they belong to. We also build a whole-program
callgraph from the application code, supporting an optimization
that we describe below.

Add contract checking code.Interfaces in TinyOS contain
two different kinds of function calls—commands and events—that
require slightly different treatment by our tool. We instrument
commands by including precondition code at the beginning of the
function and postcondition code before all returns. Instrumenting
events, which originate in low-level code and move up, requires a
different approach. Because there may be necessary logic before
the upcalls, we cannot assume that the state transition occurs at the
beginning of the interface function in question. For this reason, we
instrument before and after each upcall, plugging in the upcall’s
return value for RVAL when needed.

Add contract state variables.Contract state variables come
in two flavors: per-contact and per-data-structure. Per-contract
variables are straightforward to add, as new global variables. Per-
data-structure variables are appended to the end of existing structs.

4.2 Optimizations

Avoiding redundant checking.We found that typically, many
uses of TinyOS interfaces simply pass calls through from one com-
ponent to another without performing any useful computation. Nor-
mally these calls introduce no overhead because they are eliminated
through function inlining. However, if we instrumented all of these

compute
callgraph

find instrumentation
points

instrument code

augment data
structures

add global
state variables

inlining
cleanup and

support
code

contracts

gcc

nesC compiler

Figure 9: Our infrastructure for adding dynamic contract
checks to a TinyOS application

uses of interfaces with contract checks, the overhead would be sig-
nificant. As an optimization, we avoid performing contract checks
in the case where a component passes a call from one instance of
an interface to another instance of the same interface without per-
forming any additional processing.

Inlining and cleanup.The nesC compiler attempts to generate
small object code by inlining small functions and functions that
have one call site. We found that adding contract checking code
to the nesC compiler’s output invalidated its inlining decisions by
making functions larger, resulting in large code size blowup: often
by 400% or more. In previous work [3, 14] we developed an inliner
and a strong dead code eliminator for C. We use these to reduce the
code size overhead of interface contracts. Our inliner makes its
decisions based on code size after contracts are added, enabling it
to make more appropriate inlining decisions.

4.3 Handling contract violations
When a contract is violated, we have a variety of options for re-

porting the error or taking corrective action. To support easier test-
ing of applications in Avrora [17], a cycle-accurate sensor network
simulator, we developed a simple printf-like function for dump-
ing warnings and errors to the simulator console. When contract-
enabled applications are run on real hardware, we suppress warn-
ings and signal errors by using the mote’s three LEDs to blink out
a failure identification code in octal. This code can be turned into
a source code location offline using a separate tool. In a deployed
sensor network, a contract violation should be logged over the net-



work using a logging service and the node should be rebooted; we
have not implemented this.

5. RESULTS
This section summarizes our results from adding dynamic con-

tract checking to several TinyOS 1.x applications.

5.1 Overhead of dynamic checking
Figure 10 shows the percentage change in data size, code size,

and duty cycle due to dynamically checking contracts on the in-
terfaces listed in Figure 11. As described in Section 4, we used
our inliner and dead code eliminator to avoid unnecessary resource
bloat. To ensure a fair comparison, the numbers in Figure 10 com-
pare the original application, inlined and cleaned up (reducing code
and data size by a few percent relative to the default compilation),
against the application with contract checks, inlined and cleaned
up. Duty cycle—the fraction of time a sensornet application spends
with the processor running—was computed using Avrora [17].

The most significant impact on our applications was an increase
in data size through the addition of variables to track interface state.
In situations where we add fields to data structures this can be es-
pecially problematic, because we must conservatively augment all
instances of each type of structure that is augmented by any con-
tract. Another kind of bloat comes from parameterized interfaces,
necessitating an array of interface state variables.

The increase in application CPU usage as a result of our con-
tract checks—measured by observing the change in duty cycle—is
negligible. In spite of instrumenting several widely used interfaces,
many of which perform processor-intensive tasks like transmitting
packets over the radio, the actual processing overhead for check-
ing the contracts is low. The primary reason for this is that inter-
face calls, which only happen when crossing from one module to
another, are not often included inside the main processing loops.
Also, a properly designed low-level component will place upcalls
to external interfaces (and thus our associated contract checks) in a
long-running task, not in an interrupt handler. This convention has
been consistently adhered to in the applications we tested.

5.2 Bugs found
Running TinyOS applications compiled with contract checking

revealed bugs in several applications. For purposes of this section,
a bug is a clear-cut interface contract violation. In many cases,
application-specific semantics are such that these bugs are tolerated
in one way or another. Indeed, that is what we would expect since
the applications we tested are part of the TinyOS distribution and
have been in use for several years. Even so, we believe these bugs
should be found and fixed: the components in question are intended
for reuse and are part of the core TinyOS distribution. Design im-
provements in TinyOS 2.0 [9, 10] correct some of these problems,
attesting to their validity. The fact that such subtle problems can
be uncovered by enforcing relatively simple contracts suggests that
our approach has merit. Here we describe some of the most inter-
esting bugs.

5.2.1 Split-phase dispatch
Many-to-one wiring, while central to the design of TinyOS, is

a source of subtle errors, especially for split-phase operations. If
multiple users wire to the service interface, then the completion
event of a request from one user is signaled to all users. For exam-
ple, in the Surge application, the SendMsg interface provided by
QueuedSendM component is used by three different components:
BCastM, MultiHopEngineM, and MultiHopLEPSM.

In this situation, BCastM, MultiHopEngineM, and MultiHop-
LEPSM are wired to the same SendMsg interface. The Queued-
SendM component has no information to determine which of the
three users called SendMsg.send(). Therefore, when it signals Send-
Msg.sendDone(), the event handler is called on all three users. Be-
cause QueuedSendM can have multiple outstanding packets, it is
possible that more than one of the users has a packet in the send
queue. Therefore, more than one of them might be waiting for a
SendMsg.sendDone(). If the user does not check that the buffer
passed into the SendMsg.sendDone() event is its own, then it might
incorrectly conclude that its transmission has completed when the
packet is still in the queue. Both BCastM and MultihopEngineM
correctly perform the check, but MultihopLEPSM, which is re-
sponsible for link estimation, does not. It can therefore corrupt
routing beacons, possibly causing routing failures. Like many of
the errors uncovered with our tool, this problem does not man-
ifest itself until the application’s components are wired together.
Inspection or analysis of the individual nesC components in isola-
tion is insufficient to detect many of the problems discussed here.
The example shown above can be seen in the QueuedSendM com-
ponent’s QueueSendMsg.sendDone() call in the C source file for
Surge, Surgereliable, and Surge with TinySec.

This appears to be a fundamental problem with the organization
of the TinyOS 1.x communication layers, which create multiple in-
terface layers that all use the same variable within the send data
structure to determine event routing. This creates a hole in the idea
that a shared component can be treated as solely owned by includ-
ing a parameter in the interface definition, since it is predicated on
global knowledge of which message types have been already de-
fined. This problem has been addressed in TinyOS 2.0 through the
use of virtualized sending abstractions [10].

5.2.2 Interface specification ambiguities
If an interface is weakly specified, then some implementations

take stronger checking approaches than others. This creates a sit-
uation where it is not clear which side of an interface is respon-
sible for checking error conditions. A component tested against a
strict implementation may assume the other side of the interface
performs the checks. But if that component is wired to a looser
implementation that assumes the caller performs the checks, then
havoc can ensue.

For example, when the SendMsg.send() call is successful, own-
ership of the packet buffer is passed to the SendMsg provider. A
subsequent SendMsg.sendDone() event transfers of ownership of
the buffer back to the SendMsg user. It is an error for a compo-
nent to access the buffer while the other component owns it. For
example, if the user modifies the buffer after a successful call to
SendMsg.send(), then it may cause the data payload and the pre-
computed CRC to become inconsistent, leading to a failed CRC
check at the receiver.

Some components that provide SendMsg, such as the AMProm-
iscuous component that is part of the TinyOS core, implement ex-
tra checking: since this component can only transmit one buffer
at a time, it rejects multiple sends of the same buffer. Since a re-
peated send() will automatically fail, with no reads or writes to the
buffer, multiple requests are not a source of program errors. Other
implementations of SendMsg will tolerate multiple pending send
requests, notably QueuedSendM, and in those instances multiple
sends of the same buffercancompromise its integrity.

In fact, this functionality was discovered when the QueuedSendM
module attempted to send a single buffer via AMPromiscuous twice,
violating a prior, stricter, version of the SendMsg contract. Because
of the unstated checking in AMPromiscuous, this does not result in



Resource Usage: Without contracts / With contracts (% increase)
Data size (bytes) Code size (bytes) Duty Cycle (%)Warnings Verified errors

BlinkTask 52 / 89 (71.1%) 1540 / 1918 (26.5%) 0.0280 / 0.0283 (1.1%) 0 0
CntToLedsAndRfm 450 / 534 (18.2%) 10572 / 11476 (8.6%) 6.310 / 6.314 (0.063%) 6 0
Surge 1931 / 2242 (16.1%) 16196 / 17306 (6.8%) 7.789 / 7.792 (0.037%) 37 4
SurgeReliable 2165 / 2490 (15.0%) 21532 / 22818 (6.0%) 9.139 / 9.140 (0.013%) 42 5
Surge with TinySec 2174 / 2476 (13.9%) 24968 / 27398 (4.5%) 8.069 / 8.201 (1.64%) 47 6
HighFrequencySampling 851 / 944 (10.9%) 17082 / 18002 (5.4%) 5.844 / 5.845 (0.017%) 5 0

Figure 10: Results from running applications with dynamic contract checking

Lines of code Warnings Verified errors
in contract found found

Send 60 0 7
Timer 57 2 6
Receive 37 0 1
StdControl 66 73 1
ADCControl 47 17 0

Figure 11: Contract statistics. The warning and error counts
refer, respectively, to instances of minor and serious contract
violations in application source code. For example, a StdCon-
trol being started multiple times would generate a warning,
whereas a StdControl being started without being initialized
is an error.

a program error, but it is interesting to note that the proper oper-
ation of the QueuedSendM component relies on AMPromiscuous
enforcing sending restrictions that QueuedSendM itself does not.
These ambiguities are an obstacle to component reuse, and enforc-
ing contracts will allow developers to make assumptions about the
behavior of subcomponents with greater confidence. It should be
noted that TinyOS 2.0 has eliminated this inconsistency by disal-
lowing multiple sends from the same component in AMQueue, its
version of QueuedSendM [8].

5.2.3 Initialization problems
TinyOS operates on the principle that each module is responsible

for initializing and starting any subcomponents that it uses. This
design feature results in shared low-level interfaces being repeat-
edly initialized and started as all the modules that use them come
online. This is obviously inefficient, and the many multiple ini-
tialization/start warnings for the StdControl interface in Figure 11
illustrate how widespread this behavior is.

In the instance of CC1000RadioIntM, which is the default radio
module for the mica platform, the component will begin a one-shot
timer every time it starts. Since the start command is repeatedly
called, resetting the one-shot timer each time, this contract mis-
use skews the amount of time before the timer fires. Even though
TinyOS is not a hard real-time system, contract misuseis respon-
sible for the Timer module not fulfilling its basic functionality,
namely failing to trigger an event at the appropriate interval. While
this is a benign bug to the best of our knowledge, in a situation
where precise timing is required this would result in a difficult to
debug error.

Repeated initialization of CC1000RadioIntM is a source of er-
rors in Surge, SurgeReliable, and Surge with TinySec, because
they have similar usage of the underlying radio component. This
problem has been recognized, and largely dealt with, in TinyOS 2.0
by separating the initialization and module start features [9].

5.3 Unexpected interface usage
An important result of our work is nailing down the semantics

of interfaces. In many situations, we have found the actual us-
age to be somewhat ad hoc, and by specifying a concrete interface
contract we discovered redundancies and hidden requirements for
seemingly straightforward interfaces.

For example, the mica2 platform provides an implementation of
the ADCControl interface to control its analog to digital converters.
To make use of the ADC, the hardware must be initialized, each
component has to register itself with a port in the ADC, and then
can use the ADC normally. Under the programming conventions
given, however, the port registration takes place before initializa-
tion. Since using the interface, and underlying hardware, before
initializing it is an obvious error, the ADCControl.bindPort() com-
mand contains a hidden call to the low-level initialization function,
which is duplicated in the subsequent ADCControl.init() call. The
hidden call is also contained in a separate call to the implementa-
tion’s global initialization function, further confusing the situation.
The result of this redundancy is that the ADCControl is initialized
at least two extra times for each component that uses it, and the
actual initialization function must be constructed in such a way as
to allow port requests and initialization to be interleaved without
corrupting its state.

We cannot in good conscience call this a contract violation, since
the established convention is maintained throughout, but it is at
least inefficient. Deeper examination of the implied usage require-
ments of commonly used interfaces often reveal similar inconsis-
tencies and interface quirks that provide ample opportunity for pro-
gramming difficulties. Imagine developers writing a new ADC-
Control implementation for different hardware. If they were un-
aware that they should expect their initialization routine to be called
multiple times at random points in the program, it is unlikely they
would code it with those constraints in mind. Odd errors will re-
sult. We would hope that our contract checking tool would encour-
age more straightforward programming by shedding light on these
previously buried problems.

6. FUTURE WORK

Cross-contract checks.Since our contracts are standalone units,
we cannot specify constraints that span multiple interfaces. For
example, although it is a serious error for a buffer to be simulta-
neously used by both a Send and Receive interface, our contract
system cannot detect this problem.

Contract requirements beyond command/event instru-
mentation.Our current contract system can check invariants when-
ever control flow crosses a component boundary. This is insuffi-
cient to check some properties that we would like to check. For
example, in addition to verifying that an application respects the



message buffer state machine shown in Figure 7, we would like to
check that no component references a buffer that it does not own.
This requires instrumenting memory operations: a finer-grained
kind of program transformation than our current system supports.

Calls of Death Generation.Explicit contracts will allow us
to inductively validate a software component. Using a simulation
environment such as TOSSIM or Avrora, we would like to auto-
matically generate unit tests for individual components. These unit
tests will execute stub code filling in the other side of all of a com-
ponent’s interfaces. This will allow us to ask whether a component
follows its contracts given that all other components follow theirs.
This approach is analogous to input-of-death systems that explore
the complete set of possible inputs using lazy binding in order to
generate an input that causes a crash [1].

Static checking.The modular nature of nesC and TinyOS ap-
plications makes the idea of static checking very attractive. Even
though most embedded applications are small and relatively straight-
forward, the degree of concurrency present makes checking the en-
tire program prohibitively expensive. However, checking individ-
ual components within the framework of a contract is an interest-
ing possibility, using stub generation techniques similar to those
described above.

7. RELATED WORK

Interface contracts.Design by contract [11] is a well-known
software engineering technique that is based on ideas from formal
specification and verification. Relative to existing work on con-
tracts, our research innovates by applying contracts to the nesC
language. Features such as commands, events, fan in, fan out, and
parameterized interfaces must all be supported. In addition, we
developed a source to source translation tool, that is fairly straight-
forward to use, that transparently inserts dynamic contract checks
into TinyOS applications.

Tool support for reliable sensor networks.Volgyesi et
al.’s Gratis tool [18] is the most closely related sensornet work
to ours. Gratis is a GUI-based tool for composing sensornet ap-
plications with support for verification of component compositions
based oninterface automata. Like our contracts, interface automata
encode otherwise implicit rules for interface usage. The primary
different between interface automata and our contracts is that in-
terface automata are statically checked against each other (as op-
posed to being checked against code) using a formally defined no-
tion of compatibility. On the other hand, our contracts are dynami-
cally checked against executions of actual component implementa-
tions. Chakrabarti et al. [2] previously applied interface automata
to TinyOS applications,

Sympathy [13] is a distributed logging, debugging, and fault di-
agnosis infrastructure for sensornets. Sympathy appears to be al-
most perfectly complementary to our contract work: it could be
used to log contract failure events and relay them to a base station.

t-kernel [6], SoS [15], Virgil [16], and our type-safe version of
TinyOS [14] all use language-based protection to avoid memory
safety violations in sensornet applications. This kind of protection
is also complementary to interface contract checking. We expect
that using the two techniques together will make it significantly
easier to develop reliable sensornet applications.

8. CONCLUSION
We developed interface contracts for TinyOS components. Con-

tracts are executable specifications of proper interface usage that
also serve as documentation, providing developers with an alterna-
tive to inferring interface usage by reading code. Contract checking
exposes bugs and hidden assumptions, and also permits developers
to write fewer lines of defensive error-handling code.

We implemented contracts for a number of commonly-used TinyOS
1.x interfaces, as well as a source-to-source translation tool for
adding dynamic contract checks to existing TinyOS applications,
with modest resource overheads. We checked a number of appli-
cations, uncovering several instances of bugs and unexpected pro-
gram behavior. The set of contracts that we implemented covers
roughly half of the interfaces instances used in our test applica-
tions, and a substantially higher percentage of the most interesting
and tricky ones.

Interestingly, several problems that our contracts uncovered in
TinyOS 1.x applications were precisely those that had motivated
the design of TinyOS 2.0. This confirms the TinyOS 2.x develop-
ers’ intuitions that there were significant quirks and latent bugs in
TinyOS 1.x applications.

We believe that interface contracts are highly beneficial to sen-
sornet application developers: they make many aspects of develop-
ment easier, and allow a modest investment in contract generation
to be employed to test a large section of the code base. In the long
run, every TinyOS interface should be accompanied by a contract,
and contracts should be routinely, or continuously, checked. Fur-
thermore, static checking methods should be used to verify, once
and for all, that stable components correctly implement the desired
functionality.
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