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ABSTRACT

The ease of deployment of battery-powered and mobile sys-
tems is pushing the network edge far from powered infras-
tructures. A primary challenge in building untethered sys-
tems is offering powerful aggregation points and gateways

between heterogeneous end-points—a role traditionally played

by powered servers. Microservers are battery-powered in-
network nodes that play a number of roles: processing data
from clients, aggregating data, providing responses to queries,
and acting as a network gateway. Providing QoS guarantees
for these services can be extremely energy intensive. Since
increased energy consumption translates to a shorter life-
time, there is a need for a new way to provide these QoS
guarantees at minimal energy consumption.

This paper presents Triage, a tiered hardware and soft-
ware architecture for microservers. Triage extends the life-
time of a microserver by combining two independent, but
connected platforms: a high-power platform that provides
the capability to execute complex tasks and a low-power
platform that provides high responsiveness at low energy
cost. The low-power platform acts similar to a medical
triage unit, examining requests to find critical ones, and
scheduling tasks to optimize the use of the high-power plat-
form. The scheduling decision is based on evaluating each
task’s resource requirements using hardware-assisted profil-
ing of execution time and energy usage. Using three mi-
croserver services, storage, network forwarding, and query
processing, we show that Triage provides more than 300%
increase in microserver lifetime over existing systems while
providing probabilistic quality of service guarantees.
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1. INTRODUCTION

The deployment of battery-powered and mobile systems
is pushing the network edge far from powered infrastruc-
tures. Untethered, mobile, and multi-hop networks support
a wide range of applications from wildlife habitat monitor-
ing [19] and security surveillance [15], to space exploration
and disaster management [5]. Such applications require the
development of highly efficient, long-lived, and low-cost mo-
bile and wireless systems.

One method for balancing efficiency, cost, and lifetime
is to deploy distributed heterogeneous, hierarchical systems,
that combine resource-constrained nodes, such as Motes [23]
with resource-rich microservers [10]. Microservers form an
intermediate battery-powered tier between tethered base-
stations or access points, and resource constrained nodes.
Microservers provide services including complex data pro-
cessing [16] and high-capacity storage to augment storage-
limited nodes [2]. They respond to user queries in a low-
latency manner [16], provide greater range and coverage [15],
and act as a gateway between short range and longer-range
radio networks [10].

Designing long-lived microservers poses a unique chal-
lenge: how can a microserver provide both performance guar-
antees and a long lifetime? These goals are in direct con-
flict with one another: supporting performance guarantees
requires examining each request immediately, as it arrives;
however, providing such vigilance is energy intensive. To
see why, consider the following: normally the microserver
remains in a low-power sleep mode. When a request arrives,
it transitions to a higher-power state, determines if it must
process the request and returns to a low-power state. Un-
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erty that rather than choosing a single hardware platform,
the needs of untethered embedded applications are best met
by combining platforms with complementary hardware char-
acteristics.

Research Contributions: Triage provides a general mech-

anism for building highly energy-efficient and QoS-aware mi-
croservers suitable for many untethered applications, includ-
ing sensor applications, mobile systems, and pervasive com-
puting. Our design and implementation offers three novel
contributions.

First, the core of Triage is a new system architecture de-
signed for a combination of platforms with complementary
characteristics. The architecture is designed for multi-tiered
platforms and uses intelligent schemes to distribute tasks
across tiers to save energy. The Triage system targets com-
mon server functions such as storage, forwarding and query
processing.

Our second major contribution is a set of lightweight, on-
line profiling and scheduling mechanisms. A key challenge
that Triage addresses is how to place the complex profiling
and scheduling logic at the resource constrained platform
in order to maximize energy-efficiency without sacrificing
QoS. We have built a highly optimized in-situ profiling ser-
vice, and two intelligent scheduling algorithms: (a) a soft-
realtime scheduler that uses an As-Late-As-Possible (ALAP)
scheduling policy to provide deadline guarantees to tasks at
minimal energy cost, and (b) a lifetime scheduler that uses
a token-bucket energy rate control algorithm to achieve a
target microserver lifetime while maximizing the number of
tasks that can meet their QoS requirements. This sched-
uler is adapted from previous work on scheduling network
transfers in mobile networks [3].

Third, we have built a prototype of Triage on a platform
combining the Intel/Crossbow Stargate with the TelosB Mote,
augmented with a custom fabricated interface board for in-
situ profiling. On this platform, we show the results of an
extensive set of experiments using different workloads. We
show that Triage provides a 300% increase in microserver
lifetime over existing systems. It provides probabilistic Qual-
ity of Service guarantees and in addition meets all lifetime
goals.

2. MICROSERVER MEASUREMENTS

Microservers typically wait, in a low power state, for an
external request, transition to a high-power state, then pro-
cess the request. For the microserver to be useful, it must
have sufficient computational, networking, and storage re-
sources to complete the request. Unfortunately, platforms
that have sufficient resources to act as a microserver incur
large idling energy costs, even in low-power modes, and can
require significant energy to transition from a low-power to
a high-power state.

Many systems provide a trade-off between the energy needed

for waiting in a low-power state and the cost to transition to
a mode that can process the request. As an example, con-
sider the PDA-class Stargate platform [6]. Though it does
consume little energy when in a suspended state, it requires
several seconds and a large amount of energy to resume op-
eration. This cost is due to a variety of factors including
operating system complexity, the use of large RAM banks,
and processor startup. In contrast, the Stargate can save
energy while waiting using shallower power saving modes,
such as CPU DVFS [8], or wireless PSM [1]—these modes
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Figure 1: Results of the measurement study

require much less energy to transition to an active state, but
consume large amounts of power while waiting for requests.

In contrast to the high costs of PDA-class devices, small
nodes such as Motes provide very efficient idling and power
state transition. This is primarily the result of using a low-
power set of components, including a small, simple micro-
controller, a low-power radio, small amounts of RAM, and
a minimal operating system. However, low-power platforms
have insufficient resources to act as a microserver.

We validate these claims through measurements of two
possible microserver configurations, a Stargate and a Mote.
In each case, the microserver receives a request from a nearby
node and responds with a 30kB message. This process re-
peats for 15 minutes. The Stargate microserver responds
using an 802.11 radio, and the Mote uses an 802.15.4 low-
power radio. The Stargate can use PSM-10s+DVFS, and
PSM-33s+DVFS (the lowest-power PSM mode supported
by our card). The 10s, and 33s refers to the wakeup in-
tervals for the WiFi card in PSM mode — i.e., the WiFi
card wakes up every 10s, and 33s to scan for incoming pack-
ets. The Mote does not use any power management. We
show the average power each platform consumes, versus the
amount of time required to forward the message in Figure 1.
In this case, we do not suspend, or shutdown the Stargate,
as the transition times of several seconds would not improve
its performance.

The Stargate is a much more capable platform, with a
faster radio and processor, yielding very fast forwarding
times. However, the high power costs of keeping the plat-
form awake, even with aggressive power-management, gives
a very high average power. In contrast, the Mote uses very
little power, but requires an order-of-magnitude more time
to forward the packet.

For these measurements, we see that neither of the plat-
forms are sufficient to use as an energy-efficient microserver.
While the microserver must contain the resources of the
Stargate to process low-latency requests, it is highly inef-
ficient when waiting for requests. Our goal is to extend the
operating modes of a high-power platform into the regimes
offered by platforms such as the Mote, while retaining the
resource-richness of the Stargate.

3. TRIAGE ARCHITECTURE

Triage provides Quality of Service (QoS) and energy-efficiency



through a combination of a high-power, resource-rich plat-
form and a low-power, resource-constrained platform. The
low-power tier, or tier-0, remains always-on ensuring respon-
siveness at minimal energy cost. The high-power tier, or
tier-1, remains in a power saving mode until its resources
are required for a given service. The low-power platform
acts similar to a medical triage unit, examining requests to
find the critical ones, and as a scheduler to minimize the
number of times the high-power platform is woken. Such a
scheduling mechanism requires accurate in-situ profiling of
the time and energy needs of each task, which is performed
at the low-power platform. The scheduler can optimize for
different criteria—in this paper we focus on two: minimiz-
ing energy consumption while meeting soft-realtime latency
constraints, and meeting a lifetime goal while satisfying as
many task deadlines as possible.

3.1 Hardware Architecture

Triage employs a tiered hardware platform. The tier-0
platform is a very low-power platform, in this case a TelosB
Mote [23], and tier-1 is a more capable and higher-power
platform, in this case a Stargate [30]. In Triage, the two
tiers are tightly coupled and directly communicate over a
wired link. This enables the lower tier to trigger the wake-
up of the higher tier when necessary.

The TelosB Mote is extremely resource-constrained, but
consumes less than one-tenth the power of the Stargate.
This platform works well for always-on operation, simple
packet processing, and providing low-latency responses. The
Stargate platform is significantly more capable but less re-
sponsive due to the high latency of sleep to active transi-
tions. We augment this two-tier platform with a custom
fabricated interface board that provides necessary voltage
conversions for the two platforms, the wakeup interface, as
well as a fuel-gauge chip to measure energy-consumption in-
situ.

3.2 Software Architecture

Figure 2 illustrates the components of the software archi-
tecture. Tier-0 virtualizes resources available on tier-1 using
a collection of surrogates. Surrogates receive requests from
the network and can service them in three ways: by using
locally cached information, by performing local execution,
or by passing them to tier-1 for execution. The surrogates
decide on how to service the request based on information
provided by the profiler and the scheduler. A profiler mea-
sures the energy and processing requirements of tasks and a
scheduler determines, based on the predicted energy cost of
a task, when and where it should be executed to meet QoS
requirements. Requests that have been scheduled for execu-
tion at tier-1 are written into a log and delayed until their
scheduled execution time. This log also serves as a cache of
recent requests.

3.2.1 Surrogates

Surrogates are small software modules that run on tier-0
and provide a service such as storage or forwarding. Though
tier-0 can process simple tasks, such as routing updates
or time synchronization, most tasks require resources only
available at tier-1. When a request arrives at the microserver
the surrogate performs the following process: (1) immedi-
ately execute requests from information cached at tier-0; (2)
if a request cannot be serviced from the cache, ask the sched-

Network Requests

e ez
Prcg:l;esrsyin Storage Forwarding
S N Surrogate Surrogate

urrogate

||, |[T==]

Delayed Request Log/ Profiler QoS Scheduler
Cache

Tier-0 Subsystem (Mote)

Hardware Power
Measurement

E———
|

Wakeup Control

Tier-1 Subsystem (Stargate) Task Execution

Figure 2: Microserver Software Architecture

uler to determine where and when to execute the task; (3) if
the scheduler determines that the task should be executed
at tier-0, execute it immediately; (4) otherwise write the re-
quest into the delayed request log. The delayed request log
acts as a priority queue—the task with the smallest deadline
lies at the head of the queue.

Triage also uses the delayed request log as a cache for the
surrogates. This functionality is particularly useful in stor-
age applications; a read closely following a write to the same
data can be serviced from the log. In order to maximize the
amount of cached data, Triage does not erase the tier-0 log
when a batch of requests is played at tier-1. Instead, the pre-
viously committed log entries and cached results are lazily
overwritten by new requests using an LRU eviction policy.
Though writing into the log consumes energy, we argue that
it is insignificant to the savings from minimising the number
of tier-1 wakeups.

To enable applications to compose the functionality of sev-
eral surrogates, Triage also permits communication between
surrogates using primitives provided by the operating sys-
tem. For instance, a client may query the microserver for
information, and request that the results of the query be sent
to another node. This requires a combination of a storage
surrogate as well as a forwarding surrogate.

3.2.2 Scheduler and Profiler

Triage uses a scheduler, running on tier-0, to provide QoS.
The scheduler relies on a profiler to provide information re-
garding how long each type of task will take to process, and
how much energy it will consume. The profiler measures the
execution time of each task and builds a model of task execu-
tion time. Using this information, the scheduler determines
where and when to execute each request. The scheduler re-
lies on the execution time profiles generated by the profiler.
However, if a task exceeds the typical execution time, it is
not preempted and still carried on till completion.

The question of where to execute a task can be answered
by comparing the amount of energy required to execute it
at each platform. This decision may be even simpler if the
task requires the resources of tier-1 and cannot be executed



on tier-0. The question of when to execute requests is more
complicated. There are two cases when the scheduler must
wake tier-1 and dispatch outstanding tasks. The first case
occurs when the log becomes full. In this case, the scheduler
is automatically invoked by the delayed request log; it wakes
tier-1 and dispatches each outstanding task to the appropri-
ate service. The second case requires the scheduler to con-
sider QoS constraints. Each request can optionally contain
a soft-realtime deadline, or latency constraint, which indi-
cates the time by which a task should be executed. In order
to meet the deadlines with maximum energy efficiency, the
scheduler will delay execution of tasks as long as possible to
increase the amount of time tier-1 remains in a low-power
state. However, if a batch is already being processed, all
tasks irrespective of their deadlines are executed on tier-1.
This is done to avoid the high transition cost of waking up
tier-1. We describe the algorithms used by the scheduler
and profiler in Section 5.

4. EXAMPLE SURROGATES

Some of the common, and basic, functions found in servers
for sensor networking, mobile networking, and pervasive com-
puting are storage, query processing and forwarding. To this
end, we present three example surrogates: a storage system
surrogate, a network forwarding surrogate, and a query pro-
cessing surrogate. As untethered networks proliferate, this
library of surrogates will be expanded, enhanced, and fur-
ther optimized.

4.1 Storage System Surrogate

The storage surrogate enables in-network storage appli-
cations. It accepts read, write, and delete requests for the
tier-1 storage system. Upon receiving a request from the
network, it first determines whether the request is a read
request that can be satisfied by a recent write cached in the
delayed request log. If so, it immediately provides the re-
sult. Otherwise, it asks the scheduler to schedule the task.
The scheduler considers any soft real time deadline provided
with the task and tells the surrogate when the task has been
scheduled. The surrogate then inserts the task into the de-
layed request log.

4.2 Network Forwarding Surrogate

The network forwarding surrogate enables efficient rout-
ing by utilizing both the tier-0 and tier-1 network inter-
faces. When a packet arrives at the surrogate, it exam-
ines the destination address, consults a routing table, and
determines over which radios the destination is reachable.
It immediately passes this information, along with any la-
tency constraint, to the scheduler which determines which
radio should be used to send the packet and when the packet
should be sent. If scheduler determines that the tier-0 radio
should be used, the packet is sent immediately. Otherwise,
the packet is inserted into the delayed request log.

4.3 Query Processing Surrogate

The query processing surrogate provides a simple query
interface for data stored on the microserver. Clients may use
simple queries, such as retrieve all images from the last ten
seconds, or more complex queries, such as retrieve all images
that contain 2 or more objects and are from a particular ge-
ographic region. The queries are specified by the following
fields (1) the type of query (simple/ complex) (2) the images

queried (3) the number of objects desired per image for com-
plex queries (4) latency deadline associated with each query.
The query processing surrogate uses the other surrogates to
create a complex combination of resources, including pro-
cessing, routing, and storage. Tier-1 can execute any query
since it has access to the powerful radio, the primary stor-
age system, and a powerful processor. However, tier-0 can
respond to only simple queries. For example, any query that
can be performed using simple comparisons of cached meta-
data can be performed at the tier-0 system. Therefore, tier-0
maintains an index of results stored from previous queries
in its cache/log.

When the surrogate receives a query, it first determines
whether the query is a simple query that can be executed
over data cached in the delayed request log. We assume that
tasks are statically mapped into simple queries, which can
be executed at either tier, and complex queries that require
the resources of tier-1. If the query can be executed at tier-0,
it is executed immediately. Otherwise, the surrogate passes
the query and any latency constraint to the scheduler. Once
the scheduler has scheduled the query, it is inserted into the
delayed request log.

5. PROFILING AND SCHEDULING

At the heart of Triage is a profiling engine that is used to
estimate the execution time and energy usage for different
tasks, and a scheduling engine that determines how to meet
QoS constraints. In this section, we describe the algorithms
employed by the profiling engine and the scheduling engine
to enable energy-efficient scheduling of tasks.

5.1 Task Profiling Algorithm

Triage employs a profiler to measure the execution time
and energy usage for different tasks. In this discussion, we
focus on determining the typical energy usage and typical
ezecution time for each type of task. Such online profiling is
necessary to deal with the variability in execution time and
energy usage of tasks that involve a combination of process-
ing, communication and storage.

Online profiling involves two steps, task grouping and pa-
rameter estimation. The online profiling engine first iden-
tifies a task as belonging to a certain group based on the
nature of task. This grouping information is assumed to
be provided a priori by the system designer. We believe
that such a grouping is appropriate since many applica-
tions of microservers involve a small and well-specified set of
tasks. For instance, in a camera sensor network, a typical set
of tasks might be {Motion Detection, Face Recognition,
Store Image, Send Data}.

For each of these task groups, the profiler uses a sepa-
rate history of execution times and energy consumption to
build corresponding probability distributions. We focus on
the estimation of the typical execution time since a similar
algorithm can be used for estimating typical energy usage.

Let f(t;) be the probability distribution of time taken to
execute task type i. Further, let X; and o; denote the av-
erage time and standard deviation for task type ¢. The pro-
filer uses the Chebyschev’s inequality (shown in Equation 1)
to determine an interval of time such that the task executes
within that interval with probability at least p. Triage conse-
quently takes the upper bound on the interval as the typical
execution time for the task. This is a conservative estimate,
however for tasks whose execute time distributions are not



known apriori, a conservative strategy is warranted. More-
over, typical execution time refers to the time such that p%
of the requests are likely to be satisfied.

. . ~ g; - g;
Time(i,p) = [X; T 7p,X1 + ﬂ} (1)

The parameter p can be tuned depending on the guarantee
required by a user. For instance, in the camera network used
for surveillance, a Face Recognition task might require a
tight guarantee as the person might move out of the field of
view of the camera sensors. In this case, p can be set to a
high value, say 0.9. Other tasks such as Send Data might be
more elastic, and Store Image might not have any deadline
at all.

Using information collected after the task executes, the
profiler builds two kinds of dynamic models: histograms and
parametrized models. When prior models of execution time
are unavailable, a simple histogram approximates the prob-
ability distribution, f(¢;), and tracks bins of execution times
and energy consumption for each task group. In contrast,
when prior models are available, these can be used to more
accurately model task execution time and energy consump-
tion. For instance, the execution time and energy used in
a communication task is a linear function of the number of
bytes transmitted. In this case, the execution times are fit
to a simple linear model to determine the costs of the two
radios in Triage. Our prototype uses parametrized models
for the storage and network surrogates tuned to the size of
the file and the size of the packet respectively. More com-
plicated models can be built for applications such as video
coding, compression, and encryption. For the query pro-
cessing surrogate we use the histogram-based profiling.

5.2 Task Scheduling Algorithm

The scheduler that resides on tier-0 uses the profiling in-
formation about tasks to minimize the number of times tier-
1 is woken while still satisfying the task deadlines. The
Triage scheduler uses different algorithms depending on the
optimization criteria. In this work, we discuss two sched-
ulers — the first is optimized to satisfy task deadlines, and
the second is optimized to achieve a target lifetime for the
microserver. While we limit our discussion to these two
schedulers, we note that alternate schedulers that optimize,
or balance, other QoS constraints can be plugged into our
system.

]

5.2.1 Scheduling for Deadline Constraints

The deadline scheduler tries to minimize the energy con-
sumed by the microserver, such that the deadlines of the
incoming tasks are met. Let the set of tasks which are al-
ready batched at tier-O for delayed execution at tier-1 be
denoted by S = {Ti,....,Tx} where task T; has deadline
D(T;), latest start time L(7;), and execution time E(T;).
The latest start time is the latest time at which a task can
begin executing on tier-1 such that the deadlines of all tasks
after and including itself are met, and the execution time is
the time it takes to execute the task on tier-1. L(7;) and
E(T;) are provided by the profiler. Further, we assume that
the list S is sorted by deadlines i.e. D(T3) > D(Tj) if ¢ > j.
Let the wakeup time for tier-1 be W, and the current batch
time, B, correspond to the latest time at which tier-1 needs
to be woken up such that the deadlines of all tasks in the
list S can be satisfied.

time: 64 61 60 57 50 0

Ep=3 Ex=3
D=64 D=60 | W=7 B=50
L=61 L=57
tme: 64 61 58 55 48 0

D=64 | D=62 | D=60 | W=7 B=48

Figure 3: ALAP Example: The figure shows the execu-
tion time and deadline for each task, the wake up latency
for tier-1, and the resulting batching time. A new task
Tc is inserted into the scheduling decreasing the batch
time.

The scheduling framework that we propose is based on
the well-known As Late As Possible (ALAP) scheduler [29].
When a new task arrives, the scheduler first queries the pro-
filer for the typical execution time for the task at tier-1.
Next, the algorithm recomputes the batch time, B, i.e. the
latest time at which tier-1 can be woken such that all the
batched tasks and the new task meet their deadlines. Let
the new task be inserted at index [ into the sorted list S
based on its deadline. The scheduler now needs to ensure
that the insertion of the new task does not result in missed
deadlines for any of the other tasks in the list. The scheduler
only lowers the batch time and never increases it, hence only
the tasks that are before 7} in the list need to be checked for
deadline violation. Thus, for each task T; : [ > ¢ > 1, the
scheduler sets the latest start time such that it does not vi-
olate the deadline constraint of T; or any task with deadline
after T;, i.e. L(T;) = min(L(T3), L(Ti4+1)— E(T3)). The new
batch time, B, is updated to reflect the latest start time for
the first task in the list, i.e. B = L(T1)—W. If B <0, tier-1
is immediately woken and the batch executed. If B > 0, a
timer will fire at time B and tier-1 will be woken. The time
required to update the schedule is linear in the number of
tasks currently in the queue.

We illustrate the deadline scheduling algorithm with a
simple example, shown in Figure 3. Let there be two batched
tasks, T4 with deadline 60 seconds and execution time 3
seconds, and Tp with deadline 64 seconds and execution
time 3 seconds. The latest start times of the two tasks
are L(Ta) = 57 seconds and L(Tg) = 61 seconds respec-
tively, and the batch time, B is 50 seconds, assuming a tier-1
wakeup time, W of 7 seconds. Now, a new task T¢ arrives
with deadline 62 seconds and execution time 3 seconds. The
task is inserted between T4 and Ts. The scheduler checks
whether the current batch time satisfies T¢’s deadline, no-
tices a violation, and pushes T4 forward in the schedule.
Hence, the batch time is set to 48 seconds.

5.2.2 Scheduling for a Lifetime Constraint

While the goal of the deadline scheduler is to miss only
a small percentage of deadlines while minimizing energy us-
age, the objective of the lifetime scheduler is to meet a target
lifetime for the microserver while satisfying as many dead-
lines as possible. The scheduler should also be capable of
handling periods of burstiness. To accomplish this we use
a token-bucket algorithm for the lifetime scheduler. We use



a lifetime scheduler from our previous work on networking
relays [3]. We summarize the algorithm here. Given a tar-
get lifetime, L, and battery capacity, E, energy tokens are
generated at a constant rate of % The total number of
accumulated tokens represents the amount of energy that
is available for use by the system. The amount of energy
used by the system is continually monitored by the energy
profiler, and is queried periodically by the scheduler to de-
termine the rate at which energy is depleted by the system.
The difference between the accumulated energy tokens and
depleted energy tokens at any time represents the surplus
of energy that can be used by the system to execute the
batched tasks.

The lifetime scheduler builds on the deadline scheduling
algorithm that we described in Section 5.2.1. When a new
task arrives, the deadline scheduling algorithm is used to
queue the task and determine the batch time. When this
batch time becomes zero, the lifetime scheduler checks to see
whether there are sufficient energy tokens to wakeup tier-1,
execute all the tasks in the batch, and shutdown tier-1. If so,
tier-1 is woken and the tasks are executed before shutting it
down. The energy profiler is queried to determine how much
energy was used during this batched processing, and the
number of available energy tokens is updated accordingly.
If the number of energy tokens is insufficient to execute the
batch, the wakeup of the tier-1 platform is delayed until
sufficient tokens have accumulated. During this period of
waiting for tokens to accumulate, task deadlines could be
missed, and tasks could be dropped if the size of the task
queue exceeds the storage capacity of the tier-0 platform.

Neither of our scheduling algorithms take into account the
availability of DVFS states at tier-1. Evaluating and pro-
filing multiple DVFS states would possibly permit greater
efficiency by allowing tier-1 to sleep longer, however this
pushes the complexity of the scheduler to O(k™) for n tasks
and k power modes — the scheduling problem can be shown
to be NP-Hard. We are currently investigating approximate
heuristics that are computationally feasible for the tier-0
node. These heuristics can be implemented on top of the
scheduling algorithms described in this section to determine
when tier-1 should be woken up.

5.2.3 Idle State Management

One remaining issue is the state in which the scheduler
leaves tier-1 while it batches new requests at tier-0—there
are two options, suspension and shutdown. Suspension re-
quires more idle power than shutting down the platform,
but the transition cost is lower. For example, the Stargate
platform with a CF 802.11 card draws 60.46 mW in suspend
mode and costs 3.67 J and 32 J of energy to wake up from
suspend and shutdown respectively.

The Triage scheduler determines the appropriate idle state
for tier-1 based on the expected time between wakeups of
tier-1. The expected time between wakeups are calculated
over the last k wakeups, where k is a constant. We estimate
the cost of each state based on the expected idle time, and
choose the state that minimizes this cost.

While this approach is sufficient for many applications,
the choice of idle state does enforce a minimum latency that
the microserver can support. For example, if tier-1 is shut-
down due to infrequently arriving tasks, the next task that
requires tier-1 will have to wait at least as much time as
tier-1 requires to wake from shutdown. In the case of the

Figure 4: Prototype Triage System

Stargate, this minimum latency is 15.6 seconds. In order
to deal with this problem, more sophisticated profiling tech-
niques could be used to anticipate the latency requirements
of upcoming tasks and choose the proper idle state accord-

ingly.

6. IMPLEMENTATION

In order to evaluate our approach we have implemented a
working prototype of Triage, shown in Figure 4.

6.1 Prototype Hardware

We constructed a prototype using a Crossbow Stargate
(tier-1) [30] and a TelosB Mote (tier-0) [23]. The Stargate
contains a 32-bit, 400MHz PXA255 XScale processor, 64
MB of RAM, 32 MB of internal flash, and a WiF1i interface.
The TelosB Mote contains an 8-bit, 8 MHz microcontroller,
10kB of RAM, 1 MB of external flash, and an 802.15.4 ra-
dio. These hardware platforms were chosen because they
handle the range of workloads that we have targeted, are
separated in power consumption by more than an order-of-
magnitude (300mW-3000mW and 20mW-100mW), are eas-
ily programmable, and are well supported. The Stargate
platform runs Linux, making available a broad range of soft-
ware tools and services. We used the power-gating technique
with a relay to switch off power to the CF card when the
Stargate is suspended [22]. This technique brought down
the suspension power of the Stargate to a modest 61 mW.

We used a power supply board designed for attaching both
boards to a single battery [28]. This board provides an
additional hardware element necessary to Triage, a Maxim
DS2770 fuel gauge chip. The fuel gauge chip gives accurate
readings of the energy left in the battery, and the amount
of energy used by the system during task execution. As
described, the scheduler uses this profiling information to
control the platform energy policy.

One limitation of our current implementation is the trans-
fer speed from the TelosB Mote to the Stargate. The two
devices communicate over a USB line which is limited to 230
kbps. However, data needs to be read from the flash and
then transfered over the USB which increases the total time
required for the transfer. As a result, transferring 1024 kB
of batched work along with protocol overhead takes more
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TelosB Max. Power Consumption 100 mW
Stargate Bootup Energy 32 J
Stargate Bootup Time 15.6 s
Stargate Resume Energy 3.7J
Stargate Resume Time 2.6 s
Stargate Suspension Power 60.5 mW
Stargate Idle Power (WiFi in PSM-idle mode) | 912.3 mW

Figure 6: Platform Measurements

than 150 seconds and wastes a great deal of energy while
blocked on serial I/O. We are currently investigating more
efficient means of communication. Even with this limitation
the current prototype shows extremely high gains in energy
efficiency.

6.2 Surrogates and Log

As part of this prototype, we implemented three surro-
gates: storage, network forwarding, and query processing.
The delayed request log is managed on the TelosB’s flash
storage using a custom designed file system. We imple-
mented these components as TinyOS modules written in
nesC [9]. The forwarding, storage, and query processing
surrogates comprise 535, 480, and 540 lines of nesC code
respectively, and the custom file system consists of roughly
1600 lines of code. The profiler and scheduler consist of
1360 lines of code. We also implemented an execution en-
gine that runs on the Stargate and executes tasks when they
are received from the Mote *.

7. EVALUATION

We evaluate the performance of Triage through a exten-
sive set of experiments. First, we provide micro benchmarks
that validate our use of a two-tier platform to achieve a com-
bination of capability, energy-efficiency and responsiveness.
Second, we evaluate the deadline and lifetime schedulers,
and demonstrate their effectiveness in achieving their goals.
Third, we focus on the performance of the profiler, and its
accuracy when used with the forwarding surrogate. Fourth,
we demonstrate how the Triage system is able to adapt itself
to different QoS constraints at minimal energy consumption.
Finally, we show the energy consumption of different inde-
pendent components of the system and identify potential
bottlenecks in the system.

'The source code for Triage 1is available at
http://prisms.cs.umass.edu/hpm/triage.html.

We use a camera sensor network application in our evalu-
ation. The application involves in-network processing, stor-
age and forwarding and forms an adequate testbed for Triage.
The experimental setup is shown in Figure 5. Motes emulate
cameras in the network and feed images of variable sizes to
the microserver. The other nodes in the network are client
Motes attached to a device equipped with a 802.11b inter-
face. Therefore, results of queries can be routed back to a
client using a 802.15.4 or a 802.11b link. All power measure-
ments were taken using a NI-PCI 6251 DAQ with a SC-2345
signal conditioning unit.

In our evaluation, we compare Triage with three other
systems.

1. PSM-DVFS : This is a single-tiered dual radio system
which uses WiFi PSM and DVFS (dynamic voltage
frequency scaling) to save power on the Stargate. The
system runs a DVFS algorithm which uses previously
measured data to identify the lowest DVFS state on
the Stargate where the given deadline can be satisfied.
The wakeup interval in PSM mode for the 802.11 card
is set to the maximum value supported by the card
(33 secs). This provides an accurate comparison with
a system which does not use the hardware architecture
of Triage.

2. WoW* : The system is similar to Wake-on-Wireless
[26]. The published Wake-on-Wireless system wakes
up when it receives a network packet. WoW* how-
ever, wakes up tier-1 whenever a task arrives at tier-0.
Tasks are always executed on tier-1. WoW* is a sys-
tem which uses the hardware architecture of Triage
but does not use its software architecture.

3. Triage-Batch : The Triage-Batch system uses the same
hardware as Triage. However, it does not use any on-
line profiling, scheduling or caching. It batches a task
as long as its deadline permits and then wakes up tier-1
to execute the task.

7.1 Static Energy Costs

In order to provide better intuition into the behavior of
our prototype, we measure the static energy costs that di-
rectly impact Triage’s performance. These values, shown in
Figure 6, are the basis for the energy savings achieved by
Triage. We observe that the idle cost of the Stargate plat-
form with WiFi card in PSM mode is 6 times the sum of
the suspend power of the Stargate and the maximum power
consumed by the TelosB. Therefore, offloading tasks to tier-
0 while keeping tier-1 asleep can lead to substantial energy
savings. However, the Stargate’s transition from suspend to
active costs as much energy as 36 seconds of computation on
tier-0. Transitioning from shutdown to active is equivalent
to 319 seconds of active tier-0 computation. Therefore, re-
placing expensive state transitions at tier-1 with low-power,
tier-0 computation as long as possible can lead to minimal
energy costs for the system.

7.2 Soft-Realtime Scheduling

In order to evaluate the deadline scheduling algorithm,
we observe how a Triage microserver performs in the pres-
ence of different latency constraints. In this experiment the
microserver answers queries of client Motes for objects in
images. Such a query is common in surveillance applica-
tions where a user might want to detect movements at a
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Figure 7: Histogram of the time taken to execute image
classifier on Stargate

scene or extract important features of a scene. The objects
in the image are computed using the kmeans classifier at
the microserver and the classified image is sent back to the
client.

The histogram of the amount of time taken to classify
random 100-by-100 images using the kmeans algorithm is
shown in Figure 7. The figure illustrates the large variance
in the amount of time taken to classify an image. Moreover,
it is clear that the time taken to classify an image does not
follow a known probability distribution. Hence, accurate
time profiling for the application is crucial to the success of
the scheduler in meeting the deadline constraint at minimal
energy consumption. The profiler uses a threshold of p = 0.9
in Equation 1 to determine the typical execution time of each
task, i.e., at least 90% of the time the microserver will meet
its deadline for tasks.

We evaluate the scheduler on two task arrival distributions—

(i). when tasks arrive at a constant rate of one per 30 sec-
onds (ii). when tasks arrive in bursts of three queries—the
inter arrival time between bursts follow a Poisson distribu-
tion with mean 30 seconds. While the first scenario exhibits
a constant load on the system which is easy to learn, the
second task arrival distribution tests loads which are unpre-
dictable. Therefore, the system has to accurately predict
and adapt to the variable load patterns to perform well.

We varied the latency constraint on the task in the ex-
periment and we measure the power consumed by the mi-
croserver and the percentage of tasks completed within the
deadline. Each point on the z-axis represents experiments
where the latency constraint is chosen uniformly at random
within the interval [x—30, 2430] seconds. 100-by-100 images
are sent to the microserver at a rate of one per minute. The
results are compared with the Triage-Batch system. This is
because the Triage-Batch system keeps the tier-1 system in
the low-power mode for a longer period of time.

The results of the experiment are shown in Figure 8 and
Figure 9. The first thing to note in Figure 9 is that for
each workload the Triage deadline scheduler is always able
to meet at least 90% of the latency constraints. Triage is able
to adapt to bursty unpredictable task arrival distributions.
This demonstrates both the accuracy of the non-parametric
histogram profiler of Triage, which is able to precisely de-
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more power in order to meet more deadlines.
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Figure 9: Percentage of Queries executed within dead-
line. Triage meets more than 95% of all deadlines while
Triage-Batch is able to meet only 70% of all deadlines

termine the computational needs required for these queries,
and the accuracy of the deadline scheduler, which correctly
schedules the wakeup of tier-1 to meet the desired latency
constraints. Without profiling the execution time of tasks or
the deadline scheduler, the Triage-Batch scheduler is unable
to determine when to wake tier-1 and regularly misses dead-
lines, especially when latency constraints are small. This is
because scheduling errors are more likely to occur at the
beginning of each batch of tasks. Allowing longer latencies
results in larger batches of tasks and more tasks that are
processed ahead of their deadlines. However, it is worth
noting that the Triage system only consumes slightly more
power than the Triage-Batch system.

The second observation from the experiment is that the
Triage system satisfies all constraints irrespective of the task
arrival distribution. However, both systems consume more
power for the bursty task arrival distribution. This is be-
cause, even though the mean inter-arrival time between bursts
is the same as the interval between arrival of constant rate
tasks, the number of tasks executed for bursty task arrival
is more than the constant task arrival distribution.
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Triage’s use of the lifetime scheduler for a goal of 60
minutes. For the first 30 minutes the load is light and
the microserver accumulates an energy surplus. For the
last thirty minutes it uses the surplus at the detriment
of meeting deadlines.

7.3 Lifetime Scheduling

To show that the lifetime scheduler is able to meet a life-
time goal, we subject the microserver to a similar experi-
ment as before using Query Processing. However, we use
simple queries for an images stored in the Stargate storage.
In order to expedite this experiment, we use a small battery
capacity of 100 mAhr—enough energy for the microserver
to operate at maximum load for 9 minutes. We set the life-
time goal of the server to be 60 minutes. For the first 30
minutes, all queries arrive at a constant rate of one per 30
seconds with a latency constraint uniformly distributed over
the interval [150, 210] seconds. For the remaining time, the
server sees a more intense load with queries arriving with
latency constraints uniformly distributed over the interval
[5,15] seconds. Figure 10 shows the results of this experi-
ment. The slope of the straight line demonstrates the life-
time goal divided by the energy capacity of the server—this
is the overall average power goal.

Recall that when using the lifetime scheduler, Triage pri-
oritizes lifetime over latency constraints. It attempts to
meet the latency constraint whenever it can, and the token-
bucket algorithm allows for bursts of short, energy intensive
workloads. For this algorithm to operate correctly, Triage
must accurately profile the energy use of tasks and track the
overall energy consumption of the microserver to account
for profiling errors. For the first 30 minutes, the server
consumes less energy than is required to meet its lifetime
goal. During this time the server’s workload is insufficient
to drain the bucket, so Triage is free to schedule all tasks
and therefore meets its deadlines. After operating for 10
minutes under a more intense workload, Triage continues
to meet its deadlines, but it begins to consume the surplus
energy that has accrued. At 45 minutes, Triage runs out
of surplus energy and begins to sacrifice latency constraints
for conserving energy. Note that Triage meets the lifetime
goal with an excess energy of about 3mAh. The WoW* and
PSM-DVEFS systems are unable to meet the lifetime con-
straint. Their batteries die out at 38th and 21st minutes
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Figure 11: Time Profile Accuracy. This shows the for-
warding surrogate choosing between two radios based on
a latency constraint. For 80KB of data is switches from
the 802.15.4 radio to the 802.11 radio to meet the con-
straint.

respectively. Therefore, these systems are left without any
battery for 37% and 65% of the time.

7.4 Task Profiling

The profiling function of the microserver is essential in
providing soft-realtime guarantees. We use simple parame-
terized linear models for the forwarding surrogate and gen-
eral histogram models for the more complex tasks like image
processing where good models are not known apriori. The
model parameters are learned by Triage over time. The effi-
cacy of the histogram model was shown in Section 7.2. We
present the efficacy of the parameterized model here. We
use an experimental setup where variable sized images are
sent from the camera Motes to the microserver at a fixed
rate of one image per minute to be routed to some destina-
tion Mote. The destination could correspond to a central
processing server or another node. Since the linear model
for the amount of time taken to route data for the two ra-
dios is a function of the amount of data that Triage wants to
send over the radio, we vary the size of the images sent dur-
ing the experiment—this corresponds to images of different
resolutions required by a client.

Each forwarding request has a fixed latency constraint of
15 seconds. We show the results of the experiments in Fig-
ure 11 and Figure 12. We compare our results with the
PSM-DVFS and WoW* systems. Comparing these systems
we see several effects. First, Triage is able to profile the
time required for forwarding tasks correctly and send them
by their required latency constraint for data sizes less than
100KB. Triage uses the 802.15.4 radio at the lower data
rates, and above 80KB of data it must wake the tier-1 system
to make the latency constraint. Second, as Triage can use
the TelosB-node alone to transfer data it can achieve 200%
increase in lifetime over WoW* system and 500% increase
in lifetime over PSM-DVFS system. The savings clearly
demonstrate the benefit of using a tiered architecture. The
architecture provides the microserver with the flexibility of
using resources on either tier intelligently—leading to sub-
stantial energy savings. Third, both WoW* and Triage are
unable to meet the latency constraint for 120KB images.
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Figure 12: Time Profile Power Consumption. This
shows the forwarding surrogate power consumption
based on the amount of data it sends. At 80KB of data it
must switch to the 802.11 radio to meet the latency con-
straint, thus using more power. The WoW* and PSM-
DVFS solutions use more power as they only use the
802.11 radio to send data.

This is due to the USB data transfer bottleneck for multi-
tiered system. The PSM-DVFS system meets all deadlines
at a much higher energy cost.

7.5 Scaling to QoS Constraints

The primary goal of Triage is to balance energy consump-
tion of the server with a given QoS constraint. Triage uses a
combination of task profiling, scheduling, caching, and idle
state management to determine the minimal cost at which
a QoS constraint can be satisfied.

We perform the following experiment to validate the above
claim. Camera Motes feed 100-by-100 images into the mi-
croserver at a rate of one per minute. Client Motes request
images from the microserver at a rate of one per 30 seconds.
Each query request is for a single image taken T" seconds ago,
where T is exponentially distributed with a mean 100 min-
utes. This represents applications where newer data is more
valuable to the user than old data. We vary the latency con-
straint on the task in the experiment. We compare Triage
with PSM-DVFS and WoW* systems. The results are shown
in Figure 13. We see that Triage consumes 300% less power
than WoW* and 600% less power than the PSM-DVFS sys-
tem. Triage uses a combination of serving requests from
cached data, scheduling and delayed execution to amortize
the transition cost of the tier-1 platform over a long period
of time and hence shows large power savings.

7.6 Component Power Consumption

Finally, we demonstrate the power consumed by inde-
pendent components of Triage. We perform an experiment
where 100-by-100 images are sent to the microserver at a
rate of 1 per minute. The client Motes request classified
images with a task arrival rate distributed in the interval
[30,60] seconds. This application provides for a combina-~
tion of storage, data transfer, processing and data forward-
ing. The power trace collected is shown in Figure 14. The
break-down of the average power consumed by different in-
dependent components of the system are show in Figure 15.
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Figure 13: Scaling to QoS constraints. Triage finds the
minimal energy cost at which a QoS constraint can be
satisfied. The WoW?* system and PSM-DVFS system
consume 3x and 5x more power than Triage respectively.
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Figure 14: Power Traces for the Triage, WoW?* and
PSM-DVFS systems.

We find that the PSM-DVFS system suffers from a huge
idle cost of keeping the Stargate platform awake with the
WiFi card in PSM-idle mode. This problem is solved by the
WoW* system by using the hardware architecture of Triage
and duty-cycling the Stargate. However, the WoW* sys-
tem suffers from a huge transition energy cost, since it has
to wake up the Stargate on every task arrival. The above
problem is solved by Triage using its software architecture
and amortizing the transition cost of a long interval of time.
However, we find that the USB-transfer cost is a potential
bottleneck for both the Triage and WoW* systems and the
performance of Triage could be improved if the bottleneck
is eliminated using low power DMA (direct memory access)
between the Mote and the Stargate.

8. RELATED WORK

The design and implementation of Triage draws from sev-
eral related research areas.

8.1 Microservers and Clustering
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systems.

Several sensor network systems utilize a subset of the par-
ticipating nodes as aggregaters, central processing nodes, or
gateways [10]. This work can be classified into algorithms
for networks of homogeneous devices and algorithms for net-
works of heterogeneous devices. In homogeneous systems
such as Heed [31] and LEACH [12], the leader, or cluster-
head, rotates among nodes in the network. The goal is to
distribute the extra energy drain incurred by the leader. In
heterogeneous systems, larger, more powerful nodes called
microservers herd other smaller nodes [11]. Our work fo-
cuses on the latter scenario and addresses the need for a
power-aware software and hardware architecture to reduce
the energy drain on the resource-rich nodes.

8.2 Energy Management

Reducing the power consumption of mobile devices has
been the subject of much research. Approaches include scal-
ing the CPU voltage and frequency [8], managing wireless
interface usage [1], turning off banks of RAM [13], or employ-
ing microsleep [4, 14]. In a larger device, such as a Stargate,
these techniques still do not enable a power mode compara-
ble to a Mote device. While these efforts target optimization
for laptops and PDAs, our architecture targets microservers
for wireless networks, and is designed to exploit a hardware
platform with complementary components.

Papathanasiou and Scott made an observation similar to
ours: batching work, or increasing idle periods, leads to
greater energy efficiency [21]. However, the goal of the their
work was to increase burstiness in laptop disk drives.

In our previous work, we designed a multi-tiered multi-
radio architecture to design solar-powered energy efficient
DTN routers [3]. The architecture uses a mobility predic-
tion engine, and a lifetime scheduler to efficiently route net-
work packets at minimal energy cost. Unlike Triage, which
is an architecture to build general purpose microservers in a
static sensor network setting, the throwbox architecture fo-
cused on application of a similar hardware architecture in a
more mobile scenario. Although the design and algorithms
were specific to disruption tolerant networking and cannot
be applied to static sensor networks, the paper shows the
efficacy of the hardware architecture in a mobile network
scenario where contacts are sparse and short-lived.

The Wake-on-Wireless project (WoW) [26] proposes a hi-
erarchy of devices for PDAs, including a low-power receiver
that can wake the PDA. Our goal is similar to WoW, to re-
duce power consumption in battery powered devices. Their
focus was solely on exploiting low-power radios, whereas
Triage tackles the significantly broader problem of building
energy-efficient, QoS-aware microservers.

Our Turducken system [27] employs multiple hardware
tiers in the context of an always-on laptop system. The sys-
tem designer predetermines the tasks to be executed on a
tier. Unlike Triage, in Turducken task sharing is static and
the system lacks a clean software architecture for automatic
distribution of tasks among tiers. Moreover, Turducken sys-
tem provides an always-on capability to laptops at minimal
energy cost while Triage is an architecture for building a
power efficient general purpose microserver in a static sen-
sor network setting.

Narayanan et. al use a history-based scheme to predict the
effect of application fidelity on resource consumption [20].
The predictors designed in the paper were specific to the
platform and input data on which they are executed. Such
predictors allows a system to learn over time, the behavior of
an application and can provide feedback about its resource
consumption. The paper uses the predictors in an operating
system platform to monitor logs and predict how application
resource consumption varies with fidelity.

8.3 Sensor Platforms

Recently, many embedded sensor platforms have emerged.
These platforms span a broad spectrum of power require-
ments and functionality. A popular instance of sensor plat-
forms is the family of Motes. These nodes are commercially
available, widely used, and include the Crossbow MicaZ and
Mica2Dot as well as the Telos node. All of these nodes con-
sume peak power between 10-100mW and are tuned to be
highly power efficient.

There are also several more capable but still very power-
efficient sensor nodes such as the Yale XYZ [18]. This node
has dynamic frequency scaling capability and can operate
between 2MHz and 56MHz with a power consumption of
up to 3x greater than a Mote at comparable clock speeds.
Such intermediate platforms can be used as clusterheads in
applications that have moderate computation requirements.

Our architecture targets resource-rich but power efficient
sensor platforms that combine two processing elements—one
small and one large. Such architectures have been used in
other research efforts. The Stargate platform [30] incorpo-
rates a connector to a Mica or Telos Mote, but the intention
was to provide a gateway for Mote radios, rather than to
optimize the energy efficiency of the platform. The PASTA
node is an architecture that combines a trip-wire board with
a DSP processor together with a PXA processor [25], and the
LEAP platform [7] integrates a higher-end processor-radio
module (Intel PXA255 XScale running Linux) with a lower-
end processor-radio module (TI MSP430). The mPlatform
is another modular sensor platform which provides real time
processing for requests on heterogeneous processors [17]. While
these efforts employ hierarchical structures, they do not pro-
vide software architectures or algorithms for intelligently
controlling the use of the hardware infrastructure.

9. CONCLUSIONS

This paper presents the design, implementation, and eval-



uation of Triage, an architecture for QoS-aware, energy-
efficient microservers. Our work exploits hierarchical hard-
ware with two connected platforms, one with high capability
for executing a batch of tasks and one with high energy-
efficiency while waiting for new tasks to arrive. A novel as-
pect of our work is our energy and QoS-optimized scheduler
that uses extensive in-situ profiling capabilities to efficiently
execute storage, communication and processing tasks. We
demonstrate the use of two schedulers in Triage, an As-Late-
As-Possible scheduler that optimizes for task deadlines, and
a token-bucket based scheduler that optimizes for node life-
time. Our results show that Triage provides a 300% increase
in microserver lifetime over existing systems and provides
probabilistic quality of service guarantees.

While our Triage prototype demonstrates the potential for
long-lived QoS-aware microservers, we believe that the ceil-
ing is significantly higher than what we have demonstrated
in this paper. First, we only considered an always-on tier-0
platform since efficient duty-cycling support is not yet avail-
able for the CC2420 radio on the Telos Mote. We believe
that Triage can provide significantly more benefits if tier-0
were also duty-cycled, especially when requests are infre-
quent. For instance, we can reduce the tier-O energy by
a factor of 10 while increasing average latency by 1 sec-
ond [24]. In such a scenario, a WoW-style system could be
used to control the wakeups of tier-0 which can consequently
wakeup tier-1 when required—this is something we aim to
study as future work. Second, the hardware used in the cur-
rent prototype is not ideal for a number of reasons including
the large latency in waking the Stargate from suspension, its
low bandwidth available to transfer data from the Telos to
the Stargate. The large latency to wake the Stargate is the
greatest limiting factor as it restricts the smallest latency
requests that the microserver can support. As low-power
platforms continue to evolve we expect that most of these
bottlenecks will improve making Triage an even more use-
ful and efficient system for untethered sensor deployments,
mobile computing, and ubiquitous computing.
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