
23.4.2009 Fasial Aslam 1

Lab course: Programming Sensor
Networks

Lecture-1

Programming Motes using TinyOS and NesC

23.4.2009 Fasial Aslam 2

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
What is NesC?

� NesC

� A superset of C

� One may generate an intermediate C file from a NesC project

� Main feature:

� Separation of declaration and definition

23.4.2009 Fasial Aslam 3

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
What is TinyOS?

� TinyOS
� An event-driven operating system

� Developed using NesC

� Support for many types of motes
� At least 15 Motes types are supported by NesC/TinyOS (source: SNM)

23.4.2009 Fasial Aslam 4

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
NesC Concepts

� Component
� Module

� Configuration

� Interface

� Command

� Event

� Split-Phase

� Task

� Sync Vs Async Commands

23.4.2009 Fasial Aslam 5

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Components

� NesC is a component based C dialect

� A component is similar to Java object
� It provides encapsulated state and couple state with functionality

� A component is not really a Java object
� No inheritance and usually Singleton

� Components have only private variables

� Only functions could be use to pass the variables between components

� Two types of components
� Modules

� Configuration

23.4.2009 Fasial Aslam 6

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Module & Interface

� Module has the implementation of functions

� It uses pure local namespace
� Component has to declare function it uses and provides

� NesC Interface is very Similar to Java Interface
� Declaration of functions

23.4.2009 Fasial Aslam 7

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

NesC Concepts: Module &
Interface

module fooC {
uses interface foobarInterface as fbi;
}

implementation {
void foo() {

call foobar();
}

}

module barC {
uses interface foobarInterface as foobi;

}
implementation {

void bar() {
call foobar();

}
}

Interface foobarInterface {
command void foobar ();

}

module foobarC {
provide interface foobarInterface;

}
implementation {

command void foobarInterface.foobar() {

…
}

}

configuration foobarAppC {

}
implementation {

components fooC, barC;
fooC.fbi -> foobarC;
barC.foobi -> foobarC;

}

23.4.2009 Fasial Aslam 8

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Configuration

� Recall: Components have two types
� Module

� Configuration

� Configuration
� Wire components together

� Has two operations

� user -> provider (or provider <- user)

� = (between two providers mostly)

� Usually use to equate the interface provided by the configuration

Configuration ActiveMessageC {
provides interface Init;
provides interface SplitControl;

}
Implementation {

components CC240ActiveMessageC as AM;
Init = AM;
SplitControl = AM;

}

23.4.2009 Fasial Aslam 9

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Split-Phase

� Split-phase in hardware then split-phase in software
� Two phase

� Downcall : Command – start the operation

� Upcall : Event – operation has been completed

23.4.2009 Fasial Aslam 10

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Command & Event

� All commands are implemented by all providers of an interface

� All events are implemented by all users of an interface

� Example

Interface Send {
command error_t send(message_t* msg, uint8_t len);
event void sendDone(message_t* msg, error_t error);

}

module SendC {
uses interface Send;
uses interface Boot;

}
Implementation {

event void Boot.booted() {
call Send.send(NULL, 0);

}

event void sendDone(message_t* msg, error_t error) {
//do nothing

}

}

23.4.2009 Fasial Aslam 11

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Task

� Task
� Are deferred procedure call

� Event are usually signaled by posting a task

� Task are strictly local to a module

� No parameters

� No return type

� No defined in any interface

� Each task is non-preemptive and atomic with respect to other tasks

� A task can post itself

23.4.2009 Fasial Aslam 12

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Async Vs Sync command

� Async are preemptable commands

� Unlike task Async commands are not atomic with respect to
other commands

� Async command cannot call a Sync command
� Can call other Async commands

� Can post task which may call a Sync command

� Sync commands calls are blocking like normal function call

23.4.2009 Fasial Aslam 13

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Keywords

module FilterMagC {
provides interface StdControl;
provides interface Read<uint16_t>;
uses interface Timer<TMilli>;
uses interface Read<uint16_t> as RawRead;

}
implementation {

uint16_t filterVal = 0;
uint16_t lastVal = 0;
task void readDoneTask();
command error_t StdControl.start() {
return call Timer.startPeriodic(10);

}
command error_t StdControl.stop() {

return call Timer.stop();
}
event void Timer.fired() {

call RawRead.read();
}
event void RawRead.readDone(error_t err, uint16_t val) {

if (err == SUCCESS) {
lastVal = val;
filterVal *= 9;
filterVal /= 10;
filterVal += lastVal / 10;

}
}
command error_t Read.read() {

post readDoneTask();
return SUCCESS;

}
task void readDoneTask() {

signal Read.readDone(SUCCESS, filterVal);
}

Listing 4.15: (Philip Levis, “TinyOS
Programming”, 2006)

23.4.2009 Fasial Aslam 14

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
NesC solution in detail

� Unlike C each NesC function had a unique local name
� Component A calls command B then A$B is the name of such call

� NesC component defines what it uses and provides

� A user is wired to a provides during compilation times (instead
of linking) based on configuration
� NesC has static linking

� Advantages of static linking
� Better optimize codes by compiler

� Less error prone

� Disadvantages
� Less flexible

� Configurations become cumbersome as the project grows

23.4.2009 Fasial Aslam 15

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TinyOS and NesC limitations

� NesC is a low-level languages
� Have many disadvantages inherited from C

� No automatic garbage collection

� Memory leaks

� No portability once code is compiled

� It is not object oriented languages
� Limited design patterns application

� Configurations are difficult to change for a big program

23.4.2009 Fasial Aslam 16

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TinyOS and NesC limitations

� Thread Vs event driven
� TinyOS is event-driven and not a thread base OS

� Threads have better response time

� Event drive OS has less memory requirements

� Event driven model drawbacks:

� requires manual configuration

� Manual state handling

� Difficult to change code without changing already written state handlers

� All Events have to be implemented by a user of an interface
� Even if user of a interface is not interested in many of them

23.4.2009 Fasial Aslam 17

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
References

� Philip Levis, “TinyOS Programming”, 2006

� Kim et al, “Multithreading Optimization Techniques for Sensor Network

Operating Systems”, EWSN 2007

23.4.2009 Fasial Aslam 18

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
The End

� Thank you for listening

