
30.4.2009 Fasial Aslam 1

Lab course: Programming Sensor

Networks

Lecture-2

Introduction to JVM and TakaTuka

30.4.2009 Fasial Aslam 2

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Java Pros & Cons

� Pros

� User friendly object oriented language

� Many users and tools

� Cons

� Slow

� Bad for battery lifetime

� Large binary file and virtual machine code

� Cannot fit programs on mote flash

� Large RAM requirements

30.4.2009 Fasial Aslam 3

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TakaTuka JVM

� Objectives

� To mitigate Java Cons

� For tiny devices with very small resources

� Support dozen of devices currently using TinyOS

30.4.2009 Fasial Aslam 4

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TakaTuka Optimization

� Flash optimization

� To reduce the size:

� Java binary

� virtual machine

� Current status:

� Nearly finished

� RAM optimization

� Should finished by June/July 2009

� New garbage collection strategy

� New operand stack management algorithm

30.4.2009 Fasial Aslam 5

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TakaTuka Optimization

� Performance optimization

� Not yet started

� Will start work after RAM optimization

30.4.2009 Fasial Aslam 6

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

Summary of Flash

Optimization

� Class-file has three parts

� Bytecode

� Each method has a array of instructions that are executed by a JVM

interpreter (or Just-in-Time compiler)

� Constant pool

� A set constant values used by the bytecode

� Structural informations and flags

30.4.2009 Fasial Aslam 7

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

Constant Pool (CP)

Optimization

� Typical CP has unique information per classfile

� TakaTuka CP has unique information per project

� Typical CP has information required for debugging, extending

a program, loading, running etc.

� TakaTuka CP has only information required for running a program

30.4.2009 Fasial Aslam 8

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Bytecode Optimization

� Each bytecode instruction consist of:

� opcode i.e. operation code

� zero or more operand.

� parameters for an operation

� Example:

� ISTORE 5

� ISTORE is mnemonic assigned to an opcode

� 5 is operand

30.4.2009 Fasial Aslam 9

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Bytecode Optimization

� Three kind of optimization

� Reduce the size of operand when possible

� Example

� IFNE 0x0005 � IFNE 0x05

� Make operand explicit

� IFNE 0x0005 � IFNE_0x05

� Create a new instruction composed of many instructions

� IFNE_GOTO 0x05 0x03 (two instruction combines)

� The optimized bytecode is still interpretable by a special

interpreter

30.4.2009 Fasial Aslam 10

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

Structural Information

Optimization

� Instead of typical classfile format

� TakaTuka Java binary is stored in a TUK file

� TUK file has all the class files of a project

30.4.2009 Fasial Aslam 11

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Lab-2

� Blink LEDs using TinyOS code

� Application source /opt/tinyos-2.1.0/apps/Blink

� Application code has three files

� A module – BlinkC.ns

� A configuration – BlinkAppC.ns

� A makefile -- Makefile

30.4.2009 Fasial Aslam 12

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Lab-2: Module

#include "Timer.h"

module BlinkC

{
uses interface Timer<TMilli> as Timer0; //see the interfaces at /opt/tinyos-2.1.0/tos/interfaces

uses interface Timer<TMilli> as Timer1;

uses interface Timer<TMilli> as Timer2;

uses interface Leds;

uses interface Boot;

}

implementation

{
event void Boot.booted()

{

call Timer0.startPeriodic(250);

call Timer1.startPeriodic(500);

call Timer2.startPeriodic(1000);

}

event void Timer0.fired()

{

dbg("BlinkC", "Timer 0 fired @ %s.\n", sim_time_string());

call Leds.led0Toggle();

}

event void Timer1.fired()

{

dbg("BlinkC", "Timer 1 fired @ %s \n", sim_time_string());

call Leds.led1Toggle();

}

event void Timer2.fired()

{

dbg("BlinkC", "Timer 2 fired @ %s.\n", sim_time_string());

call Leds.led2Toggle();

}

}

30.4.2009 Fasial Aslam 13

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Lab-2: Configuration

configuration BlinkAppC

{

}

implementation

{
components MainC, BlinkC, LedsC;

components new TimerMilliC() as Timer0;

components new TimerMilliC() as Timer1;

components new TimerMilliC() as Timer2;

BlinkC -> MainC.Boot;

BlinkC.Timer0 -> Timer0;

BlinkC.Timer1 -> Timer1;

BlinkC.Timer2 -> Timer2;

BlinkC.Leds -> LedsC;

}

30.4.2009 Fasial Aslam 14

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

Lab-2: Blink LEDs using

TakaTuka

� Use login “guest” and password “ttguest9”

� Get the TakaTuka from release

� Follow the tutorial given at page
� http://cone.informatik.uni-freiburg.de/people/aslam/takatuka/HelloWorldTutorial.html

30.4.2009 Fasial Aslam 15

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
The End

� Thank you for listening

