Lab course: Programming Sensor

Networks

Lecture-2

30.4.2009

Introduction to JVM and TakaTuka

Fasial Aslam

Java Pros & Cons

e Pros
= User friendly object oriented language
« Many users and tools

e Cons
= Slow
Bad for battery lifetime
= Large binary file and virtual machine code
Cannot fit programs on mote flash
= Large RAM requirements

30.4.2009 Fasial Aslam

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

TakaTuka JVM

e Objectives

30.4.2009

To mitigate Java Cons
For tiny devices with very small resources
Support dozen of devices currently using TinyOS

Fasial Aslam

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

University of Freiburg
. - - Institute of Computer Science
Ta kaTu ka O pt I m Izat I O n Computer Networks and Telematics

Prof . Christian Schindelhauer

e Flash optimization
e To reduce the size:
Java binary
virtual machine
e Current status:
Nearly finished

e RAM optimization
e Should finished by June/July 2009
New garbage collection strategy
New operand stack management algorithm

30.4.2009 Fasial Aslam

A\ TakaTuka Optimization

e Performance optimization
e Not yet started
o Will start work after RAM optimization

30.4.2009 Fasial Aslam

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

Institute of Computer Science

O pt i m i Zat i O N Computer Networks and Telematics

Prof . Christian Schindelhauer

é S u m m a ry Of F I as h University of Freiburg

e Class-file has three parts
e Bytecode

Each method has a array of instructions that are executed by a JVM
interpreter (or Just-in-Time compiler)

e Constant pool
A set constant values used by the bytecode
e Structural informations and flags

30.4.2009 Fasial Aslam

000
Consta nt POOI (C P) University of Freiburg 000
. . . Institute of Computer Science o0
O pt imi Zat | O N Computer Networks and Telematics|] @
Prof . Christian Schindelhauer

e Typical CP has unique information per classfile
TakaTuka CP has unique information per project

e Typical CP has information required for debugging, extending
a program, loading, running etc.
TakaTuka CP has only information required for running a program

30.4.2009 Fasial Aslam 7

A\ Bytecode Optimization

e Each bytecode instruction consist of:

e opcode i.e. operation code
e zero or more operand.
parameters for an operation

e Example:
e ISTORES5
ISTORE is mnemonic assigned to an opcode
5 is operand

30.4.2009 Fasial Aslam

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

University of Freiburg
. - - Institute of Computer Science
B ytec O d e O pt I m I Zat I O n Computer Networks and Telematics

Prof . Christian Schindelhauer

e Three kind of optimization
Reduce the size of operand when possible
Example
IFNE 0x0005 -> IFNE 0x05
Make operand explicit
IFNE 0x0005 - IFNE_0x05
Create a new instruction composed of many instructions
IFNE_GOTO 0x05 0x03 (two instruction combines)

e The optimized bytecode is still interpretable by a special
interpreter

30.4.2009 Fasial Aslam 9

A

Structural Information
Optimization

e Instead of typical classfile format

30.4.2009

TakaTuka Java binary is stored in a TUK file
TUK file has all the class files of a project

Fasial Aslam

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

10

A\ Lab-2

e Blink LEDs using TinyOS code

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

e Application source /opt/tinyos-2.1.0/apps/Blink

e Application code has three files
A module — BlinkC.ns
A configuration — BlinkAppC.ns
A makefile -- Makefile

30.4.2009 Fasial Aslam

11

Lab-2: Module

#include "Timer.h"

module BlinkC
{

uses interface Timer<TMilli> as TimerO; //see the interfaces at /opt/tinyos-2.1.0/tos/interfaces
uses interface Timer<TMilli> as Timer1;

uses interface Timer<TMilli> as Timer2;

uses interface Leds;

uses interface Boot;

}
implementation
{
event void Boot.booted()
{
call Timer0.startPeriodic(250);
call Timer1.startPeriodic(500);
call Timer2.startPeriodic(1000);
}
event void TimerO.fired()
{
dbg("BlinkC", "Timer 0 fired @ %s.\n", sim_time_string());
call Leds.led0Toggle();
}
event void Timer1.fired()
{
dbg("BlinkC", "Timer 1 fired @ %s \n", sim_time_string());
call Leds.led1Toggle();
}
event void Timer2.fired()
{
dbg("BlinkC", "Timer 2 fired @ %s.\n", sim_time_string());
call Leds.led2Toggle();
}
}
30.4.2009 Fasial Aslam

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

12

Lab-2: Configuration

configuration BlinkAppC

{
}

implementation

{

components MainC, BlinkC, LedsC;

components new TimerMilliC() as TimerO;
components new TimerMilliC() as Timer1;
components new TimerMilliC() as Timer2;

BlinkC -> MainC.Boot;
BlinkC.Timer0 -> TimerO;
BlinkC.Timer1 -> Timer1;

BlinkC.Timer2 -> Timer2;
BlinkC.Leds -> LedsC;

30.4.2009 Fasial Aslam

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

13

Institute of Computer Science

Ta kaTu ka Computer Networks and Telematics

Prof . Christian Schindelhauer

é Lab-2: Blink LEDs USing University of Freiburg

e Use login “guest’ and password “tiguest9”
e Get the TakaTuka from release

e Follow the tutorial given at page
e http.//cone.informatik.uni-freiburg.de/people/aslam/takatuka/HelloWorld Tutorial.html

30.4.2009 Fasial Aslam 14

The End

e Thank you for listening

30.4.2009

Fasial Aslam

University of Freiburg
Institute of Computer Science
Computer Networks and Telematics
Prof . Christian Schindelhauer

15

