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Java Pros & Cons

e Pros
= User friendly object oriented language
« Many users and tools

e Cons
= Slow
Bad for battery lifetime
= Large binary file and virtual machine code
Cannot fit programs on mote flash
= Large RAM requirements
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TakaTuka JVM

e Objectives
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To mitigate Java Cons
For tiny devices with very small resources
Support dozen of devices currently using TinyOS
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e Flash optimization
e To reduce the size:
Java binary
virtual machine
e Current status:
Nearly finished

e RAM optimization
e Should finished by June/July 2009
New garbage collection strategy
New operand stack management algorithm
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A\ TakaTuka Optimization

e Performance optimization
e Not yet started
o Will start work after RAM optimization
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é S u m m a ry Of F I as h University of Freiburg

e Class-file has three parts
e Bytecode

Each method has a array of instructions that are executed by a JVM
interpreter (or Just-in-Time compiler)

e Constant pool
A set constant values used by the bytecode
e Structural informations and flags
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e Typical CP has unique information per classfile
TakaTuka CP has unique information per project

e Typical CP has information required for debugging, extending
a program, loading, running etc.
TakaTuka CP has only information required for running a program
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A\ Bytecode Optimization

e Each bytecode instruction consist of:

e opcode i.e. operation code
e zero or more operand.
parameters for an operation

e Example:
e ISTORES5
ISTORE is mnemonic assigned to an opcode
5 is operand
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e Three kind of optimization
Reduce the size of operand when possible
Example
IFNE 0x0005 -> IFNE 0x05
Make operand explicit
IFNE 0x0005 - IFNE_0x05
Create a new instruction composed of many instructions
IFNE_GOTO 0x05 0x03 (two instruction combines)

e The optimized bytecode is still interpretable by a special
interpreter
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A

Structural Information
Optimization

e Instead of typical classfile format
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TakaTuka Java binary is stored in a TUK file
TUK file has all the class files of a project
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A\ Lab-2

e Blink LEDs using TinyOS code
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e Application source /opt/tinyos-2.1.0/apps/Blink

e Application code has three files
A module — BlinkC.ns
A configuration — BlinkAppC.ns
A makefile -- Makefile
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Lab-2: Module

#include "Timer.h"

module BlinkC
{

uses interface Timer<TMilli> as TimerO; //see the interfaces at /opt/tinyos-2.1.0/tos/interfaces
uses interface Timer<TMilli> as Timer1;

uses interface Timer<TMilli> as Timer2;

uses interface Leds;

uses interface Boot;

}
implementation
{
event void Boot.booted()
{
call Timer0.startPeriodic( 250 );
call Timer1.startPeriodic( 500 );
call Timer2.startPeriodic( 1000 );
}
event void TimerO.fired()
{
dbg("BlinkC", "Timer 0 fired @ %s.\n", sim_time_string());
call Leds.led0Toggle();
}
event void Timer1.fired()
{
dbg("BlinkC", "Timer 1 fired @ %s \n", sim_time_string());
call Leds.led1Toggle();
}
event void Timer2.fired()
{
dbg("BlinkC", "Timer 2 fired @ %s.\n", sim_time_string());
call Leds.led2Toggle();
}
}
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Lab-2: Configuration

configuration BlinkAppC

{
}

implementation

{

components MainC, BlinkC, LedsC;

components new TimerMilliC() as TimerO;
components new TimerMilliC() as Timer1;
components new TimerMilliC() as Timer2;

BlinkC -> MainC.Boot;
BlinkC.Timer0 -> TimerO;
BlinkC.Timer1 -> Timer1;

BlinkC.Timer2 -> Timer2;
BlinkC.Leds -> LedsC;
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é Lab-2: Blink LEDs USing University of Freiburg

e Use login “guest’ and password “tiguest9”
e Get the TakaTuka from release

e Follow the tutorial given at page
e  http.//cone.informatik.uni-freiburg.de/people/aslam/takatuka/HelloWorld Tutorial.html
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The End

e Thank you for listening
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