Wireless Sensor Networks 2nd Lecture 25.10.2006

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Christian Schindelhauer schindel@informatik.uni-freiburg.de

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Participants in the previous examples were devices close to a human user, interacting with humans

> Alternative concept:

Instead of focusing interaction on humans, focus on interacting with environment

- Network is embedded in environment
- Nodes in the network are equipped with *sensing* and *actuation* to measure/influence environment
- Nodes process information and communicate it wirelessly
- ⇒ Wireless sensor networks (WSN)
 - Or: Wireless sensor & actuator networks (WSAN)

Roles of Participants in WSN

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Sources of data: Measure data, report them "somewhere"

- Typically equip with different kinds of actual sensors

- Sinks of data: Interested in receiving data from WSN
 - May be part of the WSN or external entity, PDA, gateway, ...

Actuators: Control some device based on data, usually also a sink

Structuring WSN Application Types

Interaction patterns between sources and sinks classify application types

- *Event detection*: Nodes locally detect events (maybe jointly with nearby neighbors), report these events to interested sinks
 - Event classification additional option
- Periodic measurement
- Function approximation: Use sensor network to approximate a function of space and/or time (e.g., temperature map)
- Edge detection: Find edges (or other structures) in such a function (e.g., where is the zero degree border line?)
- *Tracking*: Report (or at least, know) position of an observed intruder ("pink elephant")

Deployment Options for WSN

> How are sensor nodes deployed in their environment?

- Dropped from aircraft \Rightarrow **Random deployment**
 - Usually uniform random distribution for nodes over finite area is assumed
 - Is that a likely proposition?
- Well planned, fixed \Rightarrow **Regular deployment**
 - E.g., in preventive maintenance or similar
 - Not necessarily geometric structure, but that is often a convenient assumption
- *Mobile* sensor nodes
 - Can move to compensate for deployment shortcomings
 - Can be passively moved around by some external force (wind, water)
 - Can actively seek out "interesting" areas

Maintenance Options

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Feasible and/or practical to maintain sensor nodes?

- E.g., to replace batteries?
- Or: unattended operation?
- Impossible but not relevant? Mission lifetime might be very small

Energy supply?

- Limited from point of deployment?
- Some form of recharging, energy scavenging from environment?
 - E.g., solar cells

Characteristic Requirements for WSNs

> Type of service of WSN

- Not simply moving bits like another network
- Rather: provide *answers* (not just numbers)
- Issues like geographic scoping are natural requirements, absent from other networks

Quality of service

- Traditional QoS metrics do not apply
- Still, service of WSN must be "good": Right answers at the right time

Fault tolerance

– Be robust against node failure (running out of energy, physical destruction, ...)

> Lifetime

- The *network* should fulfill its task as long as possible definition depends on application
- Lifetime of individual nodes relatively unimportant
- But often treated equivalently

Characteristic Requirements for WSNs

≻Scalability

– Support large number of nodes

➤Wide range of densities

- Vast or small number of nodes per unit area, very application-dependent

Programmability

Re-programming of nodes in the field might be necessary, improve flexibility

Maintainability

- WSN has to adapt to changes, self-monitoring, adapt operation
- Incorporate possible additional resources, e.g., newly deployed nodes

Required Mechanisms to Meet Requirements

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Multi-hop wireless communication
- Energy-efficient operation
 - Both for communication and computation, sensing, actuating

≻Auto-configuration

- Manual configuration just not an option

Collaboration & in-network processing

- Nodes in the network collaborate towards a joint goal
- Pre-processing data in network (as opposed to at the edge) can greatly improve efficiency

Required Mechanisms to Meet Requirements

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Data centric networking

- Focusing network design on *data*, not on *node identities* (id-centric networking)
- To improve efficiency
- ≻Locality
 - Do things locally (on node or among nearby neighbors) as far as possible

Exploit tradeoffs

- E.g., between invested energy and accuracy

MANET vs. WSN

- Many commonalities: Self-organization, energy efficiency, (often) wireless multihop
- Many differences
 - Applications, equipment: MANETs more powerful (read: expensive) equipment assumed, often "human in the loop"-type applications, higher data rates, more resources
 - Application-specific: WSNs depend much stronger on application specifics; MANETs comparably uniform
 - Environment interaction: core of WSN, absent in MANET
 - **Scale**: WSN might be much larger (although contestable)
 - **Energy**: WSN tighter requirements, maintenance issues
 - Dependability/QoS: in WSN, individual node may be dispensable (network matters), QoS different because of different applications
 - Data centric vs. id-centric networking
 - Mobility: different mobility patterns like (in WSN, sinks might be mobile, usual nodes static)

Enabling Technologies for WSN

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Cost reduction

- For wireless communication, simple microcontroller, sensing, batteries

Miniaturization

- Some applications demand small size
- "Smart dust" as vision

Energy harvesting

- Recharge batteries from ambient energy (light, vibration, ...)

Conclusion

- >MANETs and WSNs are challenging and promising system concepts
- > Many similarities, many differences
- Both require new types of architectures & protocols compared to "traditional" wired/wireless networks
- >In particular, application-specificness is a new issue

Thank you

(and thanks go also to Holger Karl for providing slides)

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

2nd Lecture 25.10.2006