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Amplitude Representation

Amplitude representation of a sinus curve
– s(t)   =   A sin(2π f t +  ϕ)

– A: amplitude ϕ: phase shift
– f : frequency = 1/T T: period

At

ϕ

T
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Fourier Transformation

Fourier transformation of a periodic
function:

– Decomposition into sinus curves

 Dirichlet‘s conditions for a periodic function:

– f(x) = f(x+2π)
– f(x) is continuous and monotone in finitely many intervals of (-π,π)

– If is non-coninuous in x0, then  f(x0)=(f(x0-0)+f(x0+0))/2
 Theorem of Dirichlet:

– f(x) satisfies Dirichlet‘s conditions . Then the Fourier coefficients a0,a1,a2,…,b1,b2,…
exist such that:
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Computation of Fourier
coefficients

Fourier coeffizients ai, bi can be computed as follows
–  For k = 0,1,2,…

–  For k = 1,2,3,…

Example:  saw tooth curve
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Fourier-Analysis

Thoerem of Fourier for period T=1/f:
– The coefficients c, an, bn can be computed as follows

The square of the sum of the k-th terms is proportional to the energy in
this frequency
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Frequency Bands

LF Low Frequency MF Medium Freq. HF High Freq.
VHF Very High Freq. UHF Ultra High F. SHF Super High Fr.
EHF Extra High Frequency UV Ultra Violet
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Radio Propagation

Propagation on straight line
Signal strength is proportional to 1/d² in free space

– In practice can be modeled by 1/dc, for c up to 4 or 5
Energy consumption

– for transmitting a radio signal over distance d in empty space is d²
Basic properties

– Reflection
– Refraction (between media with slower speed of propagation)
– Interference
– Diffraction
– Attenuation in air (especially HV, VHF)
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Radio Propagation

VLF, LF, MF
– follow the curvature of the globe (up zu 1000 kms in VLF)
– pass through buildings

HF, VHF
– absorbed by earth
– reflected by ionosphere in  a height of 100-500 km

>100 MHz
– No passing through walls
– Good focus

> 8 GHz absorption  by rain
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Radio Propagation

Multiple Path Fading
– Because of reflection, diffraction and diffusion the signal arrives on

multiple paths
– Phase shifts because of different path length causes interferences

Problems with mobile nodes
– Fast Fading

• Different transmission paths
• Different phase shifts

– Slow Fading
• Increasing or decreasing the distance between sender and receiver
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Signal Interference Noise
Ratio

Receiving-power = Transmission-power ⋅ path-loss

– path loss ~ 1/rβ

–  β ∈ [2,5]

Signal to Interference + Noise Ratio = SINR
– S = receiving power from desired sender
– I   = receiving power from interfering senders
– N =  other interfering signals (e.g. noise)

Necessary for recognizing the signal:

    

! 

SINR =
S

I + N
" Threshold
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Frequency allocation

Some frequencies are allocated to
specific uses

–Cellular phones, analog
television/radio broadcasting, DVB-T,
radar, emergency services, radio
astronomy, …

Particularly interesting: ISM bands
(“Industrial, scientific, medicine”) –
license-free operation

Some typical ISM bands

24 – 24.25 GHz

WLAN5.725 – 5.875 GHz

WLAN/WPAN2.4 – 2.5 GHz

Americas900 – 928 MHz

Europe433 – 464 MHz

40.66 – 40.70 MHz

26.957 – 27.283 MHz

13.553-13.567 MHz

CommentFrequency
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Example: US frequency
allocation

http://www.ntia.doc.gov/osmhome/allochrt.pdf
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Transceivers and the
Physical Layer

Frequency bands
Modulation
Signal distortion – wireless channels
From waves to bits
Channel models
Transceiver design
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Modulation and keying

How to manipulate a given signal parameter?
– Set the parameter to an arbitrary value: analog modulation
– Choose parameter values from a finite set of legal values: digital keying
– Simplification: When the context is clear, modulation is used in either

case
Modulation?

– Data to be transmitted is used select transmission parameters as a
function of time

– These parameters modify a basic sine wave, which serves as a starting
point for modulating the signal onto it

– This basic sine wave has a center frequency fc

– The resulting signal requires a certain bandwidth to be transmitted
(centered around center frequency)
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Modulation (keying!)
examples

 Use data to modify the
amplitude of a carrier
frequency ! Amplitude Shift
Keying

 Use data to modify the
frequency of a carrier frequency
! Frequency Shift Keying

 Use data to modify the phase of
a carrier frequency ! Phase
Shift Keying

© Tanenbaum, Computer Networks
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Amplitude Shift Keying
(ASK)

Let Ei(t) be the symbol energy at time t

The first term is a convention such that Ei denotes the energy
Example: E0(t) = 1, E1(t)=2 for all t
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Phase Shift Keying (PSK)

For phase signals φi(t)

Example:
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Frequency Shift Keying
(FSK)

For frequency signals ωi(t)

Example:
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Receiver: Demodulation

The receiver looks at the received wave form and matches it with the
data bit that caused the transmitter to generate this wave form

– Necessary: one-to-one mapping between data and wave form
– Because of channel imperfections, this is at best possible for digital

signals, but not for analog signals
Problems caused by

– Carrier synchronization: frequency can vary between sender and receiver
(drift, temperature changes, aging, …)

– Bit synchronization (actually: symbol synchronization): When does symbol
representing a certain bit start/end?

– Frame synchronization: When does a packet start/end?
– Biggest problem: Received signal is not the transmitted signal!
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Overview

Frequency bands
Modulation
Signal distortion – wireless channels
From waves to bits
Channel models
Transceiver design
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Transmitted signal ≠
received signal!

 Wireless transmission distorts any transmitted signal
– Received <> transmitted signal; results in uncertainty at receiver about which

bit sequence originally caused the transmitted signal
– Abstraction: Wireless channel describes these distortion effects

 Sources of distortion
– Attenuation – energy is distributed to larger areas with increasing distance
– Reflection/refraction – bounce of a surface; enter material
– Diffraction – start “new wave” from a sharp edge
– Scattering – multiple reflections at rough surfaces
– Doppler fading – shift in frequencies (loss of center)
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Attenuation results in path
loss

Effect of attenuation: received signal strength is a function of the
distance d between sender and transmitter

Captured by Friis free-space equation
– Distance: R
– Wavelength: λ

– Pr: power at receive antenna

– Pt: power at  transmit antenna

– Gt: transmit antenna gain

– Gr: receive antenna gain
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Suitability of different
frequencies – Attenuation

 Attenuation depends on the used
frequency

 Can result in a frequency-selective
channel

– If bandwidth spans frequency
ranges with different
attenuation properties

http://www.geographie.uni-muenchen.de/iggf/Multimedia/Klimatologie/physik_arbeit.htm
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Distortion effects: Non-
line-of-sight paths

 Because of reflection, scattering, …, radio communication is not limited
to direct line of sight communication

– Effects depend strongly on frequency, thus different behavior at higher
frequencies

 Different paths have different lengths =
propagation time

– Results in delay spread of the wireless channel
– Closely related to frequency-selective fading

properties of the channel
– With movement: fast fading

Line-of-
sight path

Non-line-of-sight path

signal at receiver

LOS pulses
multipath
pulses

© Jochen Schiller, FU Berlin
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Wireless signal strength in
a multi-path environment

Brighter color = stronger signal
Obviously, simple (quadratic) free space

attenuation formula is not sufficient to
capture these effects

© Jochen Schiller, FU Berlin
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To take into account stronger attenuation than only caused by distance
(e.g., walls, …), use a larger exponent γ > 2

–  γ is the path-loss exponent

– Rewrite in logarithmic form (in dB):

Take obstacles into account by a random variation
– Add a Gaussian random variable Xσ with 0 mean, variance σ2 to dB

representation
– Equivalent to multiplying with a lognormal distributed r.v. in metric units !

lognormal fading

Generalizing the
attenuation formula
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Transceivers and the
Physical Layer

Frequency bands
Modulation
Signal distortion – wireless channels
From waves to bits
Channel models
Transceiver design
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Noise and interference

 So far: only a single transmitter assumed
– Only disturbance: self-interference of a signal with multi-path “copies” of

itself
 In reality, two further disturbances

– Noise – due to effects in receiver electronics, depends on temperature
• Typical model: an additive Gaussian variable, mean 0, no correlation

in time
– Interference from third parties

• Co-channel interference: another sender uses the same spectrum
• Adjacent-channel interference: another sender uses some other part

of the radio spectrum, but receiver filters are not good enough to
fully suppress it

 Effect: Received signal is distorted by channel, corrupted by noise and
interference

– What is the result on the received bits?
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Symbols and bit errors

Extracting symbols out of a distorted/corrupted wave form is fraught
with errors

– Depends essentially on strength of the received signal compared to the
corruption

– Captured by signal to noise and interference ratio (SINR) given in
decibel:

SINR allows to compute
bit error rate (BER) for a given modulation

– Also depends on data rate
 (# bits/symbol) of modulation



University of Freiburg
Institute of Computer Science

Computer Networks and Telematics
Prof. Christian Schindelhauer

Wireless Sensor Networks 07.11.2006 Lecture No. 04-30

Overview

Frequency bands
Modulation
Signal distortion – wireless channels
From waves to bits
Channel models
Transceiver design
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Channel models –
analog signal

How to stochastically capture the behavior of a wireless channel
– Main options: model the SNR or directly the bit errors

Signal models
– Simplest model: assume transmission power and attenuation are constant,

noise an uncorrelated Gaussian variable
• Additive White Gaussian Noise model, results in constant SNR
• For expectation µ and standard deviation σ the density function is

defined as:

– Situation with no line-of-sight path, but many indirect paths: Amplitude of
resulting signal has a Rayleigh distribution (Rayleigh fading)

• Ω = E(R2). Then the density function is

• One dominant line-of-sight plus many indirect paths: Signal has a Rice
distribution (Rice fading)



University of Freiburg
Institute of Computer Science

Computer Networks and Telematics
Prof. Christian Schindelhauer

Wireless Sensor Networks 07.11.2006 Lecture No. 04-32

Channel models – digital

Directly model the resulting bit error behavior
– Each bit is erroneous with constant probability, independent of the other

bits ! binary symmetric channel (BSC)
– Capture fading models’ property that channel be in different states !

Markov models – states with different BERs
• Example: Gilbert-Elliot model with “bad” and “good” channel states

and high/low bit error rates

– Fractal channel models describe number of (in-)correct bits in a row by a
heavy-tailed distribution

good bad
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WSN-specific channel
models

Typical WSN properties
– Small transmission range
– Implies small delay spread (nanoseconds, compared to micro/milliseconds

for symbol duration)
 ! Frequency-non-selective fading, low to negligible inter-symbol

interference
• Coherence bandwidth

 often > 50 MHz
Some example

measurements
–  γ path loss exponent
– Shadowing variance σ2

– Reference path
loss at 1 m
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Sharing the Medium

Space-Multiplexing
– Spatial distance
– Directed antennae

Frequency-Multiplexing
– Assign different frequencies

to the senders
Time-Multiplexing

– Use time slots for each
sender

Spread-spectrum
communication

– Direct Sequence Spread
Spectrum (DSSS)

– Frequency Hopping Spread
Spectrum (FHSS)

Code Division Multiplex
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Frequency Hopping
Spread Spectrum

Change the frequency while transfering the signal
– Invented by Hedy Lamarr, George Antheil

Slow hopping
– Change the frequency slower than the signals

come
Fast hopping

– Change the frequency faster
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