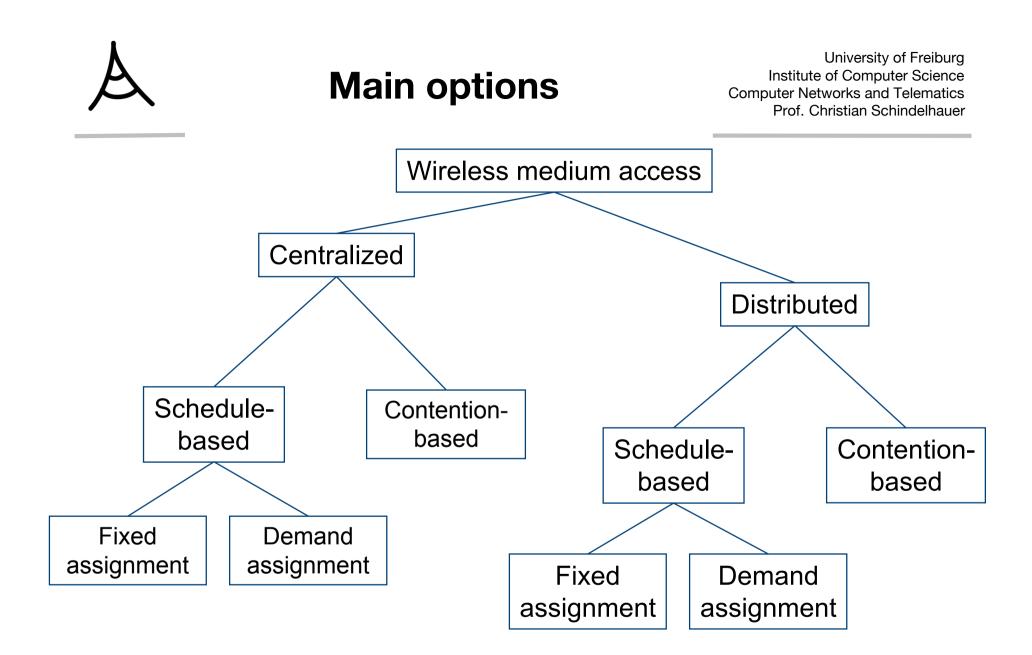
Wireless Sensor Networks 7th Lecture 15.11.2006

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Christian Schindelhauer schindel@informatik.uni-freiburg.de

Medium Access Control (MAC)

Controlling when to send a packet and when to listen for a packet are perhaps the two most important operations in a wireless network

- Especially, idly waiting wastes huge amounts of energy
- This chapter discusses schemes for this medium access control that are
 - Suitable to mobile and wireless networks
 - Emphasize energy-efficient operation



Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

➢ Principal options and difficulties

- Contention-based protocols
- Schedule-based protocols
- ►IEEE 802.15.4

Principal options and difficulties

Medium access in wireless networks is difficult mainly because of

- Impossible (or very difficult) to send and receive at the same time
- Interference situation at receiver is what counts for transmission success, but can be very different from what sender can observe
- High error rates (for signaling packets) compound the issues

≻Requirement

- As usual: high throughput, low overhead, low error rates, ...
- Additionally: energy-efficient, handle switched off devices!

Requirements for energyefficient MAC protocols

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Recall

- Transmissions are costly
- Receiving about as expensive as transmitting
- Idling can be cheaper but is still expensive

Energy problems

- Collisions wasted effort when two packets collide
- Overhearing waste effort in receiving a packet destined for another node
- *Idle listening* sitting idly and trying to receive when nobody is sending
- Protocol overhead
- Always nice: Low complexity solution

Centralized medium access

Idea: Have a central station control when a node may access the medium

- Example: Polling, centralized computation of TDMA schedules
- Advantage: Simple, quite efficient (e.g., no collisions), burdens the central station
- Not directly feasible for non-trivial wireless network sizes
- But: Can be quite useful when network is somehow divided into smaller groups
 - Clusters, in each cluster medium access can be controlled centrally compare Bluetooth piconets, for example
- \Rightarrow Usually, distributed medium access is considered

Schedule- vs. contentionbased MACs

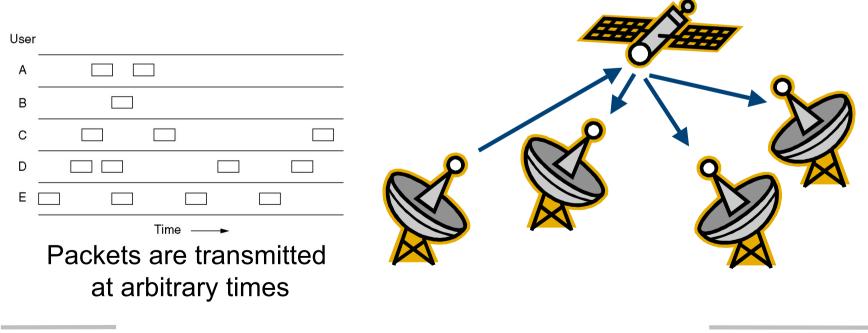
- Schedule-based MAC
 - A schedule exists, regulating which participant may use which resource at which time (TDMA component)
 - Typical resource: frequency band in a given physical space (with a given code, CDMA)
 - Schedule can be *fixed* or computed *on demand*
 - Usually: mixed difference fixed/on demand is one of time scales
 - Usually, collisions, overhearing, idle listening no issues
 - Needed: time synchronization!
- Contention-based protocols
 - Risk of colliding packets is deliberately taken
 - Hope: coordination overhead can be saved, resulting in overall improved efficiency
 - Mechanisms to handle/reduce probability/impact of collisions required
 - Usually, *randomization* used somehow

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Principal options and difficulties

- ➤ Contention-based protocols
 - MACA
 - S-MAC, T-MAC
 - Preamble sampling, B-MAC
 - PAMAS
- Schedule-based protocols
- ≻IEEE 802.15.4



ALOHA

> The simplest possible medium access protocol:

Just talk when you feel like it

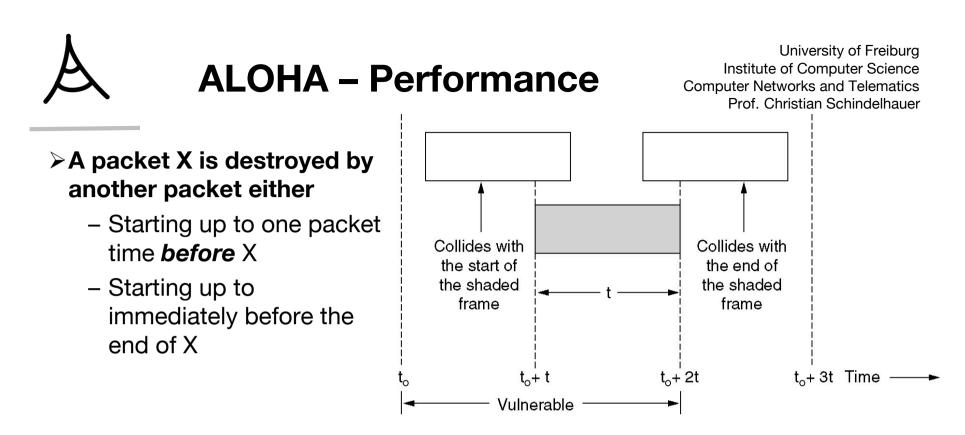
- Formally: Whenever a packet should be transmitted, it is transmitted immediately
- Introduced in 1985 by Abrahmson et al., University of Hawaii
- Goal: Use of satellite networks

ALOHA – Analysis

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

>ALOHA advantages

- Trivially simple
- No coordination between participants necessary


ALOHA disadvantages

- Collisions can and will occur sender does not check channel state
- Sender has no (immediate) means of learning about the success of its transmission – link layer mechanisms (ACKs) are needed
 - \bullet ACKs can collide as well \circledast

ALOHA – Performance

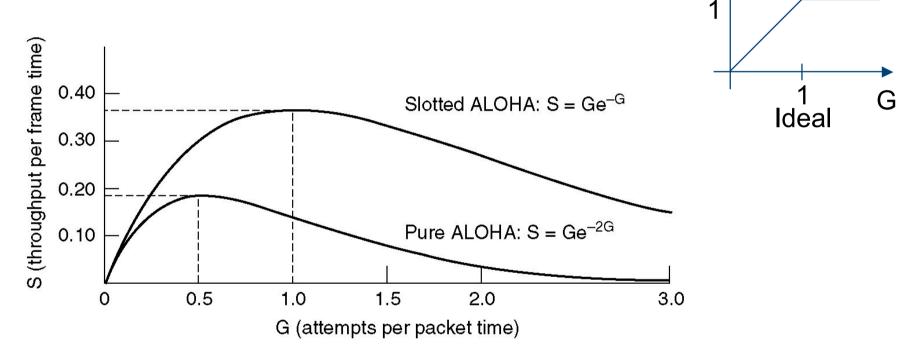
> Assume a Poisson arrival process to describe packet transmissions

- Infinite number of stations, all behave identically, independently
- Time between two attempts is exponentially distributed
- Let G be the mean number of transmission attempts per packet length
- All packets are of unit time length
- Then: $P(k \text{ attempts in time } t) = \frac{(Gt)^k}{k!}e^{-Gt}$
- For a packet transmission to be successful, it must not collide with any other packet
- How likely is such a collision?
 - Question: How long is a packet "vulnerable" by other transmissions?

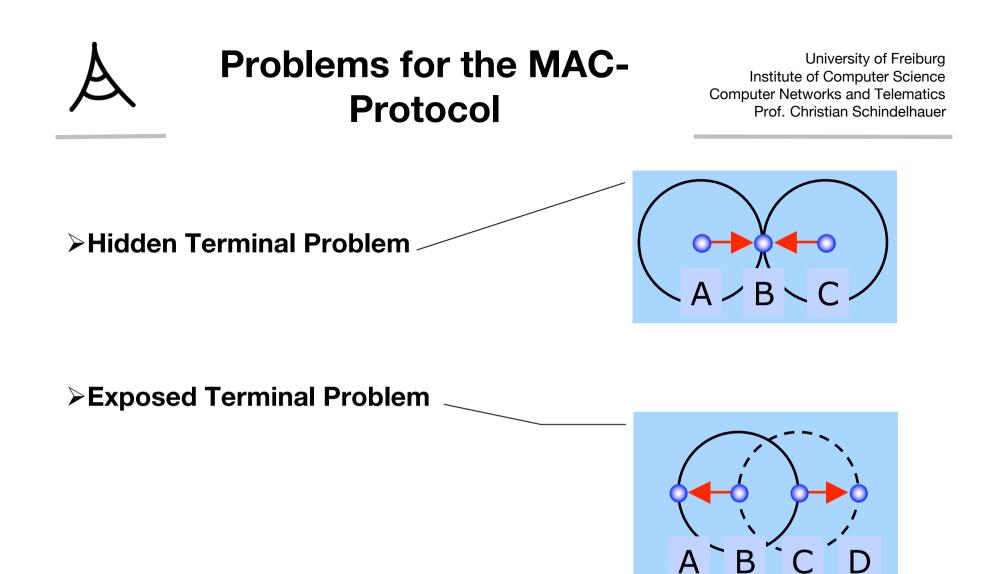
Hence: Packet is successful if there is no additional transmission in two packet times

- Probability: $P_0 = P$ (1 transmission in two packet times) = 2Ge^{-2G}
- Throughput S (G) = 1 Packet / 2 time units * Probability = Ge^{-2G}
- Optimal for G = 0.5 \rightarrow S = 1/(2e) \approx 0.184

Wireless Sensor Networks


A slight improvement: Slotted ALOHA

- >ALOHA's problem: Long vulnerability period of a packet
- Reduce it by introducing time slots transmissions may only start at the start of a slot
 - Slot synchronization is assumed to be "somehow" available
- Result: Vulnerability period is halved, throughput is doubled
 - $S(G) = Ge^{-G}$
 - Optimal at G=1, S=1/e



University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

For (slotted) ALOHA, closed form analysis of throughput S as function of G is simple

→ Anything but a high-performance protocol
> In particular: throughput collapses as load increases!

15.11.2006 Lecture No. 07-16

Thank you

(and thanks go also to Holger Karl for providing slides)

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

7th Lecture 15.11.2006