Wireless Sensor Networks 15th Lecture 13.12.2006

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Christian Schindelhauer schindel@informatik.uni-freiburg.de

Clocks in WSN nodes

- **Often, a** *hardware clock* **is present:**
	- Oscillator generates pulses at a fixed nominal frequency
	- A counter register is incremented after a fixed number of pulses
		- Only register content is available to software
		- Register change rate gives achievable time resolution
	- $-$ Node i's register value at real time t is $H_i(t)$
		- Convention: small letters (like t, t') denote real physical times, capital letters denote timestamps or anything else visible to nodes

A (node-local) software clock is usually derived as follows:

$L_i(t) = \Theta_i H_i(t) + \phi_i$

- (not considering overruns of the counter-register)
- $θ$ _i is the (drift) rate, $φ$ _i the phase shift
- Time synchronization algorithms modify $θ$ _i and $φ$ _i, but not the counter register

Synchronization accuracy / agreement

External synchronization:

- synchronization with external real time scale like UTC
- Nodes i=1, ..., n are accurate at time t within bound δ when

 $|L_i(t) - t| < \delta$ for all i

• Hence, at least one node must have access to the external time scale

Internal synchronization

- No external timescale, nodes must agree on common time
- Nodes i=1, ..., n agree on time within bound δ when

 $|L_i(t) - L_j(t)| < \delta$ for all i,j

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- **The time synchronization problem**
- **Protocols based on sender/receiver synchronization**
- **Protocols based on receiver/receiver synchronization**

Summary

Protocols based on receiver/receiver synchronization

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Receivers of packets synchronize among each other

– not with the transmitter of the packet

RBS: Reference Broadcast Synchronization

- Elson, Girod, Estrin, [OSDI 2002]
- Synchronize receivers within a single broadcast domain
- A scheme for relating timestamps between nodes in different domains

≻RBS

- does not modify the local clocks of nodes
- but computes a table of conversion parameters for each peer in a broadcast domain
- allows for post-facto synchronization

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Wireless Sensor Networks 13.12.2006 Lecture No. 15-6

The goal is to synchronize i's and j's clocks to each other

Timeline:

- Reference node R broadcasts at time t_0 some synchronization packet carrying its identification R and a sequence number s
- Receiver i receives the last bit at time $t_{1,i}$, gets the packet interrupt at time $t_{2,i}$ and timestamps it at time $t_{3,i}$
- Receiver j is doing the same
- At some later time node i transmits its observation (L $_{\sf i}$ (t $_{\sf 3,i}$), R, s) to node j
- At some later time node j transmits its observation (L_j(t_{3,j}), R, s) to node i
- The whole procedure is repeated periodically, the reference node transmits its synchronization packets with increasing sequence numbers
	- R could also use ordinary data packets as long as they have sequence numbers ...

 \triangleright Under the assumption $t_{3,i} = t_{3,j}$ node j can figure out the offset $O_{i,j} = L_j(t_{3,j})$ **– Li (t3,i) after receiving node i's final packet – of course, node i can do the same**

The synchronization error in this scheme can have two causes:

- There is a difference between $t_{3,i}$ and $t_{3,i}$
- Drift between $t_{3,i}$ and the time where node i transmits its observations to j

But:

- In small broadcast domains and when received packets are timestamped as early as possible the difference between $t_{3,i}$ and $t_{3,i}$ is very small
	- As compared to sender-/receiver based schemes the MAC delay and operating system delays experienced by the reference node play no role!!
- Drift can be neglected when observations are exchanged quickly after reference packets
- Drift can be estimated jointly with Offset O when a number of periodic observations of O_{ij} have been collected
	- This amounts to a standard least-squares line regression problem

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Elson et al

- measured pairwise differences in timestamping times at a set of receivers
- when timestamping happens in the interrupt routine (Berkeley motes)
- **This is just the distribution of** ${\sf the}$ differences ${\sf t}_{3,{\sf i}}\text{-}{\sf t}_{3,{\sf j}}$

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Communication costs:

- Be n the number of nodes in the broadcast domain
- 1. scheme: reference node collects the observations of the nodes, computes the offsets and sends them back
	- \rightarrow 2 n packets
- 2. scheme: reference node collects the observations of the nodes, computes the offsets and keeps them, but has responsibility for timestamp conversions and forwarder selection

 \rightarrow n packets

3. scheme: each node transmits its observation individually to the other members of the broadcast domain

 \rightarrow n (n-1) packets

- 4. scheme: each node broadcasts its observation
	- \rightarrow n packets, but unreliable delivery
- **Collisions:**
	- The reference packets trigger all nodes simultaneously
- **Computational costs**
	- least-squares approximation is not cheap!

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

RBS – Network Synchronization

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Suppose that:

- node 1 has detected an event at time $L_1(t)$
- the sink is connected to a GPS receiver and has UTC timescale
- node 1 wants to inform the sink about the event such that the sink receives a timestamp in UTC timescale
- Broadcast domains are indicated by "circles"

Timestamp conversion approach:

- **Idea**: do not synchronize all nodes to UTC time, but convert timestamps as packet is forwarded from node 1 to the sink
	- $\bullet \rightarrow$ avoids global synch
- Node 1 picks node 3 as forwarder as they are both in the same broadcast domain, node 1 can convert the timestamp $L_1(t)$ into $L_3(t)$
- Node 3 picks node 5 in the same way
- Node 5 is member in two broadcast domains and knows also the conversion parameters for the next forwarder 9
- $-$ And so on \ldots
- Result: the sink receives a timestamp in UTC timescale!
- Nodes 5, 8 and 9 are gateway nodes!

RBS – Network Synchronization

Forwarding options:

- Let each node pick its forwarder directly and perform conversion, the reference nodes act as mere pulse senders
- Let each node transmit its packet with timestamp to reference node, which converts timestamp and picks forwarder
	- This way a broadcast domain is not required to be fully connected
- In either case the clock of the reference nodes is unimportant

How to create broadcast domains?

- In large domains (large m) more packets have to be exchanged
- In large domains fewer domain-changes have to be made end-to-end, which in turn reduces synchronization error
- This is essentially a clustering problem, forwarding paths and gateways have to be identified by routing mechanisms

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- **The time synchronization problem**
- **Protocols based on sender/receiver synchronization**
- **Protocols based on receiver/receiver synchronization**

Summary

Summary

Time synchronization

- important for both WSN applications and protocols
- Using hardware like GPS receivers is typically not an option, so extra protocols are needed

Post-facto synchronization

- allows time-synchronization on demand
- otherwise clock drifts would require frequent re-synchronization
	- constant energy drain

Some of the presented protocols take significant advantage of WSN peculiarities like:

- small propagation delays
- the ability to influence the node firmware to timestamp outgoing packets late, incoming packets early

More schemes exist....

Thank you

(and thanks go also to Andreas Willig for providing slides)

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

15th Lecture 13.12.2006