## Wireless Sensor Networks 16th Lecture 19.12.2006



University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Christian Schindelhauer schindel@informatik.uni-freiburg.de



Means for a node to determine its physical position (with respect to some coordinate system) or symbolic location

➤ Using the help of

- Anchor nodes that know their position
- Directly adjacent
- Over multiple hops

Using different means to determine distances/angles locally



### **Overview**

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- ➢ Basic approaches
- ➤ Trilateration
- Multihop schemes

## A Localization & positioning

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

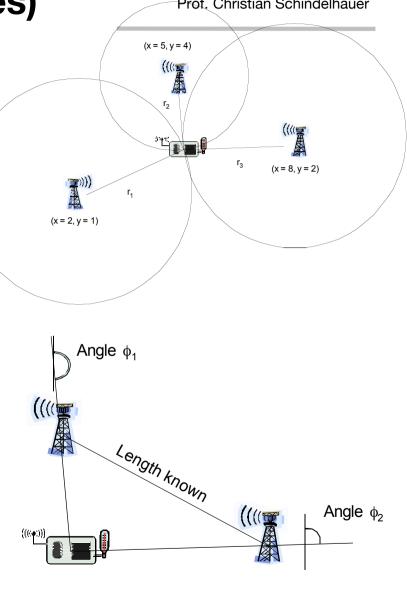
- Determine physical position or logical location
  - Coordinate system or symbolic reference
  - Absolute or relative coordinates

### ≻Options

- Centralized or distributed computation
- Scale (indoors, outdoors, global, ...)
- Sources of information

### > Metrics

- Accuracy (how close is an estimated position to the real position?)
- Precision (for repeated position determinations, how often is a given accuracy achieved?)
- Costs, energy consumption, ...


#### **Wireless Sensor Networks**

## Main approaches (information sources)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

#### > Proximity

- Exploit finite range of wireless communication
- E.g.: easy to determine location in a room with infrared room number announcements
- > (Tri-/Multi-)/ateration and angulation
  - Use distance or angle estimates, simple geometry to compute position estimates
- Scene analysis
  - Radio environment has characteristic "signatures"
  - Can be measured beforehand, stored, compared with current situation

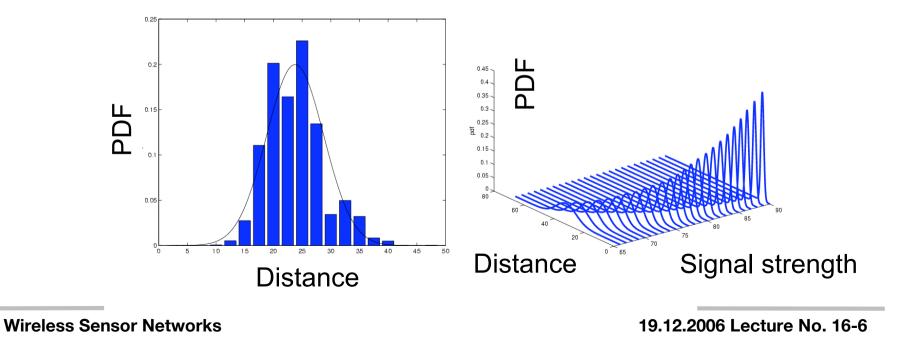


**Wireless Sensor Networks** 

19.12.2006 Lecture No. 16-5



## Estimating distances – RSSI


University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

### Received Signal Strength Indicator

 Send out signal of known strength, use received signal strength and path loss coefficient to estimate distance

$$P_{\mathsf{recv}} = c \frac{P_{\mathsf{tx}}}{d^{\alpha}} \Leftrightarrow d = \sqrt[\alpha]{\frac{cP_{\mathsf{tx}}}{P_{\mathsf{recv}}}}$$

– Problem: Highly error-prone process – Shown: PDF for a fixed RSSI





# Estimating distances – other means

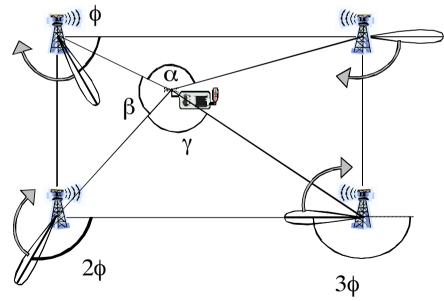
University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

### ≻Time of arrival (ToA)

- Use time of transmission, propagation speed, time of arrival to compute distance
- Problem: Exact time synchronization

### > Time Difference of Arrival (TDoA)

- Use two different signals with different propagation speeds
- Example: ultrasound and radio signal
  - Propagation time of radio negligible compared to ultrasound
- Compute difference between arrival times to compute distance
- Problem: Calibration, expensive/energy-intensive hardware

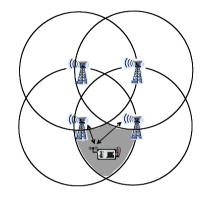


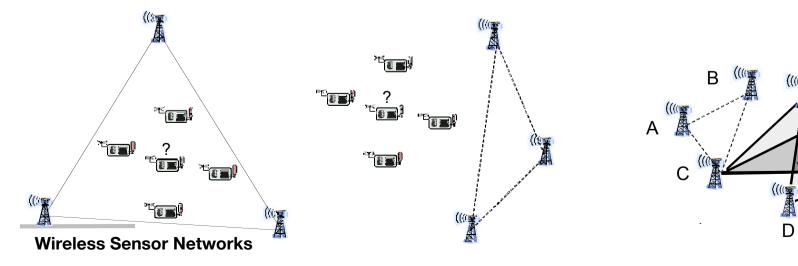

## **Determining angles**

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

### Directional antennas

- On the node
- Mechanically rotating or electrically "steerable"
- On several access points
  - Rotating at different offsets
  - Time between beacons allows to compute angles




### Some range-free, single-hop localization techniques

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Overlapping connectivity: Position is estimated in the center of area where circles from which signal is heard/not heard overlap
- ➤ Approximate point in triangle
  - Determine triangles of anchor nodes where node is inside, overlap them
  - Check whether inside a given triangle move node or simulate movement by asking neighbors
  - Only approximately correct





<u>}-9</u>



### **Overview**

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

### ➢ Basic approaches

➤ Trilateration

Multihop schemes



## **Trilateration**

Assuming distances to three points with known location are exactly given
Solve system of equations (Pythagoras!)

- $-(x_i,y_i)$ : coordinates of **anchor point** i,  $r_i$  distance to anchor i
- $-(x_u, y_u)$  : unknown coordinates of node

$$(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2$$
 for  $i = 1, ..., 3$ 

- Subtracting eq. 3 from 1 & 2:

$$(x_1 - x_u)^2 - (x_3 - x_u)^2 + (y_1 - y_u)^2 - (y_3 - y_u)^2 = r_1^2 - r_3^2$$
  
$$(x_2 - x_u)^2 - (x_2 - x_u)^2 + (y_2 - y_u)^2 - (y_2 - y_u)^2 = r_2^2 - r_3^2.$$

– Rearranging terms gives a linear equation in  $(x_u, y_u)!$ 

$$2(x_3 - x_1)x_u + 2(y_3 - y_1)y_u = (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)$$
  
$$2(x_3 - x_2)x_u + 2(y_3 - y_2)y_u = (r_2^2 - r_2^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)$$

**Wireless Sensor Networks** 



## Trilateration as matrix equation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Rewriting as a matrix equation:

$$2\begin{bmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_2 & y_3 - y_2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2) \\ (r_2^2 - r_2^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) \end{bmatrix}$$

**Example:** 

 $(x_1, y_1) = (2,1), (x_2, y_2) = (5,4), (x_3, y_3) = (8,2), r_1 = 10^{0.5}, r_2 = 2, r_3 = 3$ 

$$2\begin{bmatrix} 6 & 1\\ 3 & -2 \end{bmatrix} \begin{bmatrix} x_u\\ y_u \end{bmatrix} = \begin{bmatrix} 64\\ 22 \end{bmatrix}$$

 $\rightarrow$  (x<sub>u</sub>,y<sub>u</sub>) = (5,2)

Thank you

(and thanks go also to Holger Karl for providing slides)



University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

16th Lecture 19.12.2006