Wireless Sensor Networks 17th Lecture 09.01.2007

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Christian Schindelhauer schindel@informatik.uni-freiburg.de

Means for a node to determine its physical position (with respect to some coordinate system) or symbolic location

Using the help of

- Anchor nodes that know their position
- Directly adjacent
- Over multiple hops

Using different means to determine distances/angles locally

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Basic approaches

- *Trilateration*
- **Multihop schemes**

Trilateration

Assuming distances to three points with known location are exactly given Solve system of equations (Pythagoras!)

- (x_i,y_i) : coordinates of *anchor point* i, r_i distance to anchor i
- $-(x_{u}, y_{u})$: unknown coordinates of node

$$
(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2
$$
 for $i = 1, ..., 3$

– Subtracting eq. 3 from 1 & 2:

$$
(x_1 - x_u)^2 - (x_3 - x_u)^2 + (y_1 - y_u)^2 - (y_3 - y_u)^2 = r_1^2 - r_3^2
$$

$$
(x_2 - x_u)^2 - (x_2 - x_u)^2 + (y_2 - y_u)^2 - (y_2 - y_u)^2 = r_2^2 - r_3^2.
$$

– Rearranging terms gives a linear equation in $(x_{u}, y_{u})!$

$$
2(x_3 - x_1)x_u + 2(y_3 - y_1)y_u = (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)
$$

$$
2(x_3 - x_2)x_u + 2(y_3 - y_2)y_u = (r_2^2 - r_2^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)
$$

Trilateration as matrix equation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Rewriting as a matrix equation:

$$
2\begin{bmatrix}x_3 - x_1 & y_3 - y_1\\x_3 - x_2 & y_3 - y_2\end{bmatrix}\begin{bmatrix}x_u\\y_u\end{bmatrix} = \begin{bmatrix}(r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)\\(r_2^2 - r_2^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)\end{bmatrix}
$$

 \triangleright **Example:** $(x_1, y_1) = (2, 1), (x_2, y_2) = (5, 4), (x_3, y_3) = (8, 2),$ $r_1 = 10^{0.5}$, $r_2 = 2$, $r_3 = 3$

$$
2\begin{bmatrix} 6 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} 64 \\ 22 \end{bmatrix}
$$

 \rightarrow (x_u,y_u) = (5,2)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

EWhat if only distance estimation $r_i' = r_i + \varepsilon_i$ available?

Use multiple anchors, overdetermined system of equations

$$
2\begin{bmatrix} x_n - x_1 & y_n - y_1 \\ \vdots & \vdots \\ x_n - x_{n-1} & y_n - y_{n-1} \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} (x_1 - x_1) - (x_1^2 - x_n^2) - (y_1^2 - y_n^2) \\ \vdots \\ (x_{n-1}^2 - x_n^2) - (x_{n-1}^2 - x_n^2) - (y_{n-1}^2 - y_n^2) \end{bmatrix}
$$

 \angle Use (x_u, y_u) that minimize mean square error, i.e, $||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$

Look at square of the of Euclidean norm expression (note that for all vectors v) $||v||_2^2 = v^T v$

 $||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{x}^T \mathbf{A}^T \mathbf{b} + \mathbf{b}^T \mathbf{b}$

Look at derivative (gradient) with respect to x, set it equal to 0:

$$
2\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\mathrm{T}}\mathbf{b} = 0 \Leftrightarrow \mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}
$$

– *Normal equation*

 $-$ Has unique solution (if A^TA has full rank), which gives desired minimal mean square error

Essentially similar for angulation as well

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- **Basic approaches**
- **Trilateration**
- *Multihop schemes*

How to estimate range to a node to which no direct radio communication exists?

- No RSSI, TDoA, …
- But: Multihop communication is possible

Example 1: Count number of hops

- assume length of one hop is known (*DV-Hop, Niculescu et al.*)
- Start by counting hops between anchors, divide known distance

Example 2: If range estimates between neighbors exist

– use them to improve total length of route estimation in previous method (*DV-Distance*)

Iterative multilateration

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

 Assume some nodes can hear at least three anchors (to perform triangulation), but not all

Idea:

– let more and more nodes compute position estimates, spread position knowledge in the network

Problem:

– Errors accumulate

Wireless Sensor Networks 09.01.2007 Lecture No. 17-10

Probabilistic position description

- **Similar idea to previous one, but accept problem that position of nodes is only probabilistically known**
	- Represent this probability explicitly, use it to compute probabilities for further nodes

(a) Probability density func- (b) Probability (c) Probability tion of a node positions after density functions density function receiving a distance estimate of two distance of a node after from one anchor intersecting measurements two from two indepen-anchor's distance dent anchors measurements

Mobile Beacon

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Localization of Wireless Sensor Networks with a Mobile Beacon

Mihail L. Sichitiu and Vaidyanathan Ramadurai

- A mobile beacon is equipped with a positioning system
- The constraints imposed by the node being in the sensing distance of the mobile beacon.
- Use Bayesian probability distribution analysis
- based on RSSI (Received Signal Strength Indication)

One Measurement

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Bayes Theorem

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Discretization

Bayes Theorem:

$$
\Pr(A|B) = \frac{\Pr(B|A) \Pr(A)}{\Pr(B)}
$$

Proof

– By definition

$$
\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}
$$

$$
\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}
$$

– Combine equations

Interpretation

- **A: Node is in square x**
- **B: RSSI is s**
- **Pr[A|B]: Node is in square under the condition of RSSI is s**
- **Pr[B|A]: RSSI is s if node is in square x**

$$
\Pr(A|B) = \frac{\Pr(B|A)\ \Pr(A)}{\Pr(B)}
$$

- **Pr[A] is chosen according to prior measurement (or uniform)**
	- Iterate estimation using multiple measurements

Pr[B] is unknown but a constant

– Sum over all squares to compute Pr[B]

Wireless Sensor Networks 09.01.2007 Lecture No. 17-15

Combining Mobile Beacons with Bayes Theorem

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Thank you

(and thanks go also to Holger Karl for providing some slides)

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

17th Lecture 09.01.2007