Wireless Sensor Networks 19th Lecture 16.01.2007

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Christian Schindelhauer schindel@informatik.uni-freiburg.de

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- 1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
- 2. Spanners versus Weak Spanners
- 3. Spanners versus Power Spanners
- 4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if
 - Weak Spanners are Power Spanners if
 - Weak Spanners are not always Power Spanners if
 - Fractal Dimensions
- 5. Applications in Wireless Networks
- 6. Conclusions

Exponent > Dimension

Exponent = Dimension

Exponent < Dimension

Geometric Spanner Graphs

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

A Graph G = (V, E) with $V \subseteq \mathbf{R}$ where for all $u, v \in V$ there exists a path $P = (u = u_1, u_2, \dots, u_\ell = v)$ with

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- 1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work

2. Spanners versus Weak Spanners

- 3. Spanners versus Power Spanners
- 4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if
 - Weak Spanners are not always Power Spanners if
 - Weak Spanners are Power Spanners if
- 5. Applications in Wireless Networks
- 6. Conclusions

Exponent > Dimension

Exponent < Dimension

Exponent = Dimension

Spanners versus Weak Spanners

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻ Fact

- Every c-Spanner is also a c-Weak Spanner

Theorem

- There are Weak Spanner which are no Spanners

Proof Idea [Eppstein]: use fractal construction

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- 1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
- 2. Spanners versus Weak Spanners

3. Spanners versus Power Spanners

- 4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if
 - Weak Spanners are not always Power Spanners if
 - Weak Spanners are Power Spanners if
- 5. Applications in Wireless Networks
- 6. Conclusions

Exponent > Dimension

Exponent < Dimension

Exponent = Dimension

Wireless Sensor Networks

16.01.2007 Lecture No. 19-7

Spanners versus Power Spanners

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Theorem

- For $\delta > 1$, every c-Spanner is also a (c^{δ} , δ)-Power Spanner
- Proof:
 - Consider a path P in the c-spanner with stretch factor c
 - This path is already a $\delta\text{-Power}$ Spanner graph with stretch factor $c^\delta\text{:}$

$$egin{aligned} ||P||^{\delta} &= \sum_{i=1}^{\ell-1} ||P_i||^{\delta} \leq \sum_{i=1}^{\ell-1} (c \cdot |u_i - u_{i+1}|)^{\delta} \ &= c^{\delta} \cdot \sum_{i=1}^{\ell-1} (|u_i - u_{i+1}|)^{\delta} = c^{\delta} \cdot ||P_{ ext{OPT}}||^{\delta} \end{aligned}$$

(Weak) Spanners versus Power Spanners

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

➤ Theorem

– For δ >1 there is a graph family of (c, δ)-Power Spanners which are no weak C-Spanners for any constant C.

Proof:

- ...

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- 1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
- 2. Spanners versus Weak Spanners
- 3. Spanners versus Power Spanners
- 4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if
 - Weak Spanners are not always Power Spanners if
 - Weak Spanners are Power Spanners if
- 5. Applications in Wireless Networks
- 6. Conclusions

Exponent > Dimension

Exponent < Dimension

Exponent = Dimension

Weak Spanners are Power Spanners if Exponent > Dimension (I)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Lemma

- Let G be a weak c-spanner. Then, there is a path from nodes u to v in this graph G which as a subgraph of G is a weak 2c-spanner.
- Proof sketch
 - Wlog. let |u-v| = 1
 - Start with a weak c-spanner path from u to v
 - If two nodes x,y in this path are closer than 1/2
 - and the interior points of the sub-path (x,..,y) are outside the disk with center x and radius c/2
 - then construct the weak c-spanner path P' from x to y
 - and substitute the sub-path (x,..,y) with this sub-path P'
 - Repeat this process for nodes with distance 1/4, 1/8,...
 - The new path is then within a circle of radius 2c with center u

Weak Spanners are Power Spanners if Exponent > Dimension (II)

≻ Lemma

Let $P = (u_1, \ldots, u_\ell)$ be a weak 2c-spanner, $u_i \in \mathbf{IR}^D$, $|u_1 - u_\ell| = 1$. Then P contains at most $(8c+1)^D$ edges of length greater than c; more generally, P contains at most $(8c+1)^D(2^D)^k$ edges of length greater than $c/2^k$.

Proof sketch

- Consider the D-dimensional spheres of radius c
- If the path is a weak spanner then for all pairs u,v of the path nodes the weak spanner property is valid, hence |u,v|>1/2
- How many nodes can be gathered in the sphere of radius 1/2?
- Consider spheres of radius 1/4. These spheres do not intersect.
- For an upper bound divide the volume of the radius c-sphere by the volumes of the small spheres

Analogous for shorter edges

Weak Spanners are Power Spanners if Exponent > Dimension (III)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

➤ Theorem

- For δ >D let G = (V, E) be a weak c-spanner with V $\subset \mathbf{R}^{D}$. Then G is a (C, δ)-power spanner for

$$C := (8c+1)^{\mathcal{D}} \cdot \frac{(2c)^{\circ}}{1-2^{\mathcal{D}-\delta}}$$

Proof sketch:

- Choose edge lengths from $[2^i, 2^{i+1}]$
- Sum over the edge lengths up to length c |u,v| and use:

more generally, P contains at most $(8c+1)^D(2^D)^k$ edges of length greater than $c/2^k$.

– This leads to a converging sum for $\delta{<}D$

Weak Spanners are not Power Spanners if Exponent < Dimension

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Theorem

- To any δ < D, there exists a family of geometric graphs G = (V , E) with V $\subset {I\!\!R}^D$ which
 - •are weak c-spanners for a constant c
 - •but not (C, δ)-power spanners for any fixed C .

(c)	After '	7 steps
-----	---------	---------

Wireless Sensor Networks

16.01.2007 Lecture No. 19-14

Weak Spanners are Power Spanners if Exponent = Dimension

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Theorem

- Let G = (V, E) be a weak c-spanner with V $\subset \mathbf{R}^{D}$. Then G is a (C, D)-power spanner for C := O(c^{4D}).
- Proof strategy:
 - 1. For a two nodes (u,v) with |u,v|=1
 - Consider a bounding square of side length 4c
 - 2. For k = 0,1,2,..
 - Consider edges of lengths [c β^{-k-1} , c β^{-k} [for some constant β >1
 - 3. In each iteration use "clean-up" to produce empty space
 - 4. If long edges exist, then at least one empty square of volume $\Omega(\beta^{-Dk})$ exist.

$$\sum_{\text{edges in round } k} \begin{pmatrix} \text{edge lengths} \\ \text{in round } k \end{pmatrix}^{D} = \mathcal{O} \begin{pmatrix} \text{Volume of} \\ \text{empty space} \\ \text{added in} \\ \text{round } k \end{pmatrix}$$

16.01.2007 Lecture No. 19-15

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- 1. Introduction
 - Definition of Geometric Spanners
 - Motivation
 - Related Work
- 2. Spanners versus Weak Spanners
- 3. Spanners versus Power Spanners
- 4. Weak Spanners versus Power Spanners
 - Weak Spanners are Power Spanners if
 - Weak Spanners are not always Power Spanners if
 - Weak Spanners are Power Spanners if

5. Applications in Wireless Networks

6. Conclusions

Exponent > Dimension

Exponent < Dimension

Exponent = Dimension

Conclusions

Complete characterization of the relationships of Spanners, Weak Spanners and Power Spanners

c-spanner	с	С	(c^{δ},δ)
			$\Big(\mathcal{O}(c^{2\mathcal{D}+\epsilon}/(1-2^{-\epsilon})),\mathcal{D}+\epsilon\Big)$
weak c-spanner	(unbounded)	С	$\left(\mathcal{O}(c^{4\mathcal{D}}),\mathcal{D} ight)$
			$ig(unbounded, \mathcal{D} - \epsilon ig)$
(c, δ) -power spanner	(unbounded)	(unbounded)	for $\Delta > \delta$: $(c^{\Delta/\delta}, \Delta)$
			for $\Delta < \delta$: (unbounded, Δ)
is a	-spanner	-weak spanner	-power spanner

Delaunay Graph

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Definition

 Triangularization of a point set p such that no point is inside the circumcircle of any triangle

≻Facts

- Dual graph of the Voronoi-diagram
- In 2-D
 - edge flipping leads to the Delaunaygraph
 - Flip edge if circumcircle condition is not fulfilled
 - planar graphs
 - 5.08-spanner graph
- Problem: Might produce very long links

Yao-Graph

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Choose nearest neighbor in each sector
- ≻c-spanner,
 - with stretch factor

 $1/(1 - 2\sin(\theta/2))$

- Simple distributed construction
- High (in-) degree

Thank you

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

19th Lecture 17.01.2007