Wireless Sensor Networks 24th Lecture 06.02.2007

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Christian Schindelhauer schindel@informatik.uni-freiburg.de

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Unicast routing in MANETs

Energy efficiency & unicast routing

Geographical routing

Energy-efficient unicast: Goals

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Particularly interesting performance metric: Energy efficiency

Goals

- Minimize energy/bit
	- Example: A-B-E-H
- Maximize network lifetime
	- Time until first node failure, loss of coverage, partitioning

Seems trivial – use proper link/path metrics (not hop count) and standard routing

Example: Send data from node A to node H

Wireless Sensor Networks 06.02.2007 Lecture No. 24 - 3

Basic options for path metrics

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- **Maximum total available battery capacity**
	- Path metric: Sum of battery levels
	- Example: A-C-F-H
- **Minimum battery cost routing**
	- Path metric: Sum of reciprocal battery levels
	- Example: A-D-H
- **Conditional max-min battery capacity routing**
	- Only take battery level into account when below a given level
- **Minimize variance in power levels**
- **Minimum total transmission power**

A non-trivial path metric

Previous path metrics do not perform particularly well

- $w_{ij} = e_{ij}(\lambda^{\alpha_i}-1)$ **One non-trivial link weight:**
	- w_{ii} weight for link node i to node j
	- e_{ii} required energy, λ some constant, α_i fraction of battery of node i already used up

Path metric: Sum of link weights

– Use path with smallest metric

Properties: Many messages can be send, high network lifetime

– With admission control, even a competitive ratio logarithmic in network size can be shown

Instead of only a single path, it can be useful to compute multiple paths between a given source/destination pair

- Multiple paths can be *disjoint* or *braided*
- Used simultaneously, alternatively, randomly, …

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- **Unicast routing in MANETs**
- **Energy efficiency & unicast routing**
- *Geographical routing*
	- *Position-based routing*
	- Geocasting

Geographic routing

Routing tables contain information to which next hop a packet should be forwarded

- Explicitly constructed
- **Alternative: Implicitly** *infer* **this information from physical placement of nodes**
	- Position of current node, current neighbors, destination known send to a neighbor in the right direction as next hop
	- *Geographic routing*
- **Options**
	- Send to any node in a given area *geocasting*
	- Use position information to aid in routing *position-based routing*
		- Might need a *location service* to map node ID to node position

Basics of position-based routing

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

"Most forward within range r" strategy

- Send to that neighbor that realizes the most forward progress towards destination
- NOT: farthest away from sender!

Nearest node with (any) forward progress

– Idea: Minimize transmission power

Directional routing

- Choose next hop that is angularly closest to destination
- Choose next hop that is closest to the connecting line to destination
- Problem: Might result in loops!

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Simple strategies might send a packet into a dead end

Right hand rule to leave dead ends – GPSR

Basic idea to get out of a dead end: Put right hand to the wall, follow the wall

- Does not work if on some inner wall will walk in circles
- Need some additional rules to detect such circles
- *Geometric Perimeter State Routing* **(***GPSR***)**
	- Earlier versions: Compass Routing II, face-2 routing
	- Use greedy, "most forward" routing as long as possible
	- If no progress possible: Switch to "face" routing
		- Face: largest possible region of the plane that is not cut by any edge of the graph; can be exterior or interior
		- Send packet around the face using right-hand rule
		- Use position where face was entered and destination position to determine when face can be left again, switch back to greedy routing
	- Requires: planar graph! (topology control can ensure that)

Another Approach

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

is presented in my Inaugural Lecture on

Online Routing in Ad-Hoc-Netzwerken Christian Schindelhauer Donnerstag, 15. Februar 2007, 16 h ct Hörsaal 00-026, Geb. 101 Georges-Köhler-Allee

Geographic routing without positions – GEM

- **Apparent contradiction: geographic, but no position?**
- **Construct** *virtual coordinates*
	- that preserve enough neighborhood information to be useful in geographic routing but do not require actual position determination

Geographic Random Forwarding (GeRaF)

How to combine position knowledge with nodes turning on/off?

– Goal: Transmit message over multiple hops to destination node; deal with topology constantly changing because of on/off node

Idea: *Receiver-initiated* **forwarding**

- Forwarding node S simply broadcasts a packet, without specifying next hop node
- Some node T will pick it up (ideally, closest to the source) and forward it

Problem: How to deal with multiple forwarders?

- Position-informed randomization: The closer to the destination a forwarding node is, the shorter does it hesitate to forward packet
- Use several rings to make problem easier, group nodes according to distance (collisions can still occur)

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- **Unicast routing in MANETs**
- **Energy efficiency & unicast routing**
- **Multi-/broadcast routing**
- *Geographical routing*
	- Position-based routing
	- *Geocasting*

Location-based Multicast (LBM)

- **Geocasting by geographically restricted flooding**
- **Define a "forwarding" zone – nodes in this zone will forward the packet to make it reach the destination zone**
	- Forwarding zone specified in packet or recomputed along the way
	- Static zone smallest rectangle containing *original source* and destination zone
	- Adaptive zone smallest rectangle containing *forwarding node* and destination zone
		- Possible dead ends again
	- Adaptive distances packet is forwarded by node u if node u is closer to destination zone's center than predecessor node v (packet has made progress)

Packet is always forwarded by nodes within the destination zone itself

Determining next hops based on Voronoi diagrams

- **Goal: Use that neighbor to forward packet that is closest to destination among all the neighbors**
- **Use Voronoi diagram computed for the set of neighbors of the node currently holding the packet**

Trajectory-based forwarding (TBF)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Think in terms of an "agent": Should travel around the network, e.g., collecting measurements

– Random forwarding may take a long time

Idea: Provide the agent with a certain trajectory along which to travel

- Described, e.g., by a simple curve
- Forward to node closest to this trajectory

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Wireless Sensor Networks 06.02.2007 Lecture No. 24 - 21

Conclusion

Routing exploit various sources of information to find destination of a packet

- Explicitly constructed routing tables
- Implicit topology/neighborhood information via positions

Routing can make some difference for network lifetime

- However, in some scenarios (streaming data to a single sink), there is only so much that can be done
- Energy efficiency does not equal lifetime, holds for routing as well
- **Non-standard routing tasks (multicasting, geocasting) require adapted protocols**

- **Apart from routing protocols that use a direct identifier of nodes (either unique id or position of a node), networking can talk place based directly on** *content*
- **Content can be collected from network, processed in the network, and stored in the network**
- **This chapter looks at such** *content-based networking* **and** *data aggregation* **mechanisms**

Data-centric and content-based networking

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Interaction patterns and programming model

- **Data-centric routing**
- **Data aggregation**
- **Data storage**

Desirable interaction paradigm properties

- **Standard networking interaction paradigms: Client/server, peer-to-peer**
	- Explicit or implicit partners, explicit cause for communication
- **Desirable properties for WSN (and other applications)**
	- *Decoupling in space* neither sender nor receiver need to know their partner
	- *Decoupling in time* "answer" not necessarily directly triggered by "question" , asynchronous communication

Interaction paradigm: Publish/subscribe

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- **Achieved by** *publish/subscribe* **paradigm**
	- Idea: Entities can publish data under certain names
	- Entities can subscribe to updates of such *named data*

Conceptually: Implemented by a software bus

– Software bus stores subscriptions, published data; names used as filters; subscribers notified when values of named data changes

Variations

- *Topic-based* P/S inflexible
- *Content-based* P/S use general predicates over named data

Wireless Sensor Networks 06.02.2007 Lecture No. 24 - 26

Publish/subscribe implementation options

- **Central server – mostly not applicable**
- **Topic-based P/S: group communication protocols**
- **Content-based networking does not directly map to multicast groups**
	- Needs content-based routing/forwarding for efficient networking

Data-centric and content-based networking

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Interaction patterns and programming model

Data-centric routing

Data aggregation

Data storage

One-shot interactions with big data sets

Scenario

- Large amount of data are to be communicated e.g., video picture
- Can be succinctly summarized/described
- **Idea: Only exchange characterization with neighbor, ask whether it is interested in data**
	- Only transmit data when explicitly requested
	- Nodes should know about interests of further away nodes
- ! *Sensor Protocol for Information via Negotiation* **(SPIN)**

SPIN example

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

More interesting: Subscribe once, events happen multiple times

- Exploring the network topology might actually pay off
- But: unknown which node can provide data, multiple nodes might ask for data
- \rightarrow How to map this onto a "routing" problem?
- **Idea: Put enough information into the network so that publications and subscriptions can be mapped onto each other**
	- But try to avoid using unique identifiers: might not be available, might require too big a state size in intermediate nodes
- ! *Directed diffusion* **as one option for implementation**
	- Try to rely only on *local interactions* for implementation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- **Interaction patterns and programming model**
- **Data-centric routing**
- *Data aggregation*
- **Data storage**

Data aggregation

- **Any packet not transmitted does not need energy**
- **To still transmit data, packets need to combine their data into fewer packets** ! *aggregation* **is needed**
- **Depending on network, aggregation can be useful or pointless**

Metrics for data aggregation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

*Accuracy***: Difference between value(s) the sink obtains from aggregated packets and from the actual value (obtained in case no aggregation/no faults occur)**

*Completeness***: Percentage of all readings included in computing the final aggregate at the sink**

Latency

Message overhead

Partial state records

Partial state records to represent intermediate results

- E.g., to compute average, sum and number of previously aggregated values is required – expressed as <sum, count>
- Update rule: $\langle s, c \rangle = \langle s_1 + s_2, c_1 + c_2 \rangle$
- Final result is simply s/c

Thank you

and thanks to Holger Karl for the slides

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

24th Lecture 06.02.2007