Wireless Sensor Networks 25th Lecture 13.02.2007

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Christian Schindelhauer schindel@informatik.uni-freiburg.de

Final Meeting (before the exams)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

 Meeting Point: Waldkirch, main station
Date: Tuesday 27.02.2006 14:01 (Train departs Freiburg main station at 13:40)

≻ Plan

- Hike the Kastelburg
- Picknick

≻BYOF

- Order drinks on-line
- Don't forget
 - Food
 - Umbrella
 - Matches

13.02.2007 Lecture No. 26 - 2

Data-centric and content-based networking

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Interaction patterns and programming model

Data-centric routing

Data aggregation

≻Data storage

Data-centric storage

- Problem: Sometimes, data has to be stored for later retrieval difficult in absence of gateway nodes/servers
- > Question: Where/on which node to put a certain datum?
 - Avoid a complex directory service

Idea: Let name of data describe which node is in charge


- Data name is hashed to a geographic position
- Node closest to this position is in charge of holding data
- Akin to peer-to-peer networking/distributed hash tables
- Hence name of one approach: Geographic Hash Tables (GHT)
- Use geographic routing to store/retrieve data at this "location" (in fact, the node)

Geographic hash tables – Some details

- Good hash function design
- Nodes not available at the hashed location use "nearest" node as determined by a geographic routing protocol
 - E.g., the node where an initial packet started circulating the "hole"
 - Other nodes around hole are informed about node taking charge
- Handling failing and new nodes
 - Failure detected by timeout, apply similar procedure as for initially storing data
- Limited storage per node
 - Distribute data to other nodes on same face

Conclusion

Using data names or predicates over data to describe the destination of packets/data opens new options for networking

- Networking based on such "data-centric addresses" nicely supports an intuitive programming model – publish/subscribe
- Aggregation a key enabler for efficient networking
- Other options data storage, bradcasting aggregates also well supportable

> Non-standard options for denoting the senders/receivers of messages

- Traditional (fixed, wireless, ad hoc): Denote individual nodes by their identity
- WSN: Content-based addresses can be a good complement

When addresses are not given a priori, they have to be determined "in the field"

– Some algorithms are discussed

Name: Denote/refer to "things"

- Nodes, networks, data, transactions, ...
- Often, but not always, unique (globally, network-wide, locally)
- Ad hoc: nodes WSN: Data!

Addresses: Information needed to find these things

- Street address, IP address, MAC address
- Often, but not always, unique (globally, network-wide, locally)
- Addresses often hierarchical, because of their intended use in, e.g., routing protocols

Services to map between names and addresses

– E.g., DNS

Sometimes, same data serves as name and address

- IP addresses are prominent examples

Wireless Sensor Networks

Issues in address management

- Address allocation: Assign an entity an address from a given pool of possible addresses
 - Distributed address assignment (centralized like DHCP [Dynamic Host Configuration Protocol] does not scale)
- Address deallocation: Once address no longer used, put it back into the address pool
 - Because of limited pool size
 - Graceful or abrupt, depending on node actions
- Address representation
- Conflict detection & resolution (Duplicate Address Detection)
 - What to do when the same address is assigned multiple times?
 - Can happen e.g. when two networks merge
- > Binding
 - Map between addresses used by different protocol layers
 - E.g., IP addresses are bound to MAC address by ARP (Address Resolution Protocol)

Distributed address assignment

Option 1: Let every node randomly pick an address

- For given size of address space
- risk of duplicate addresses

Option 2: Avoid addresses used in local neighborhood

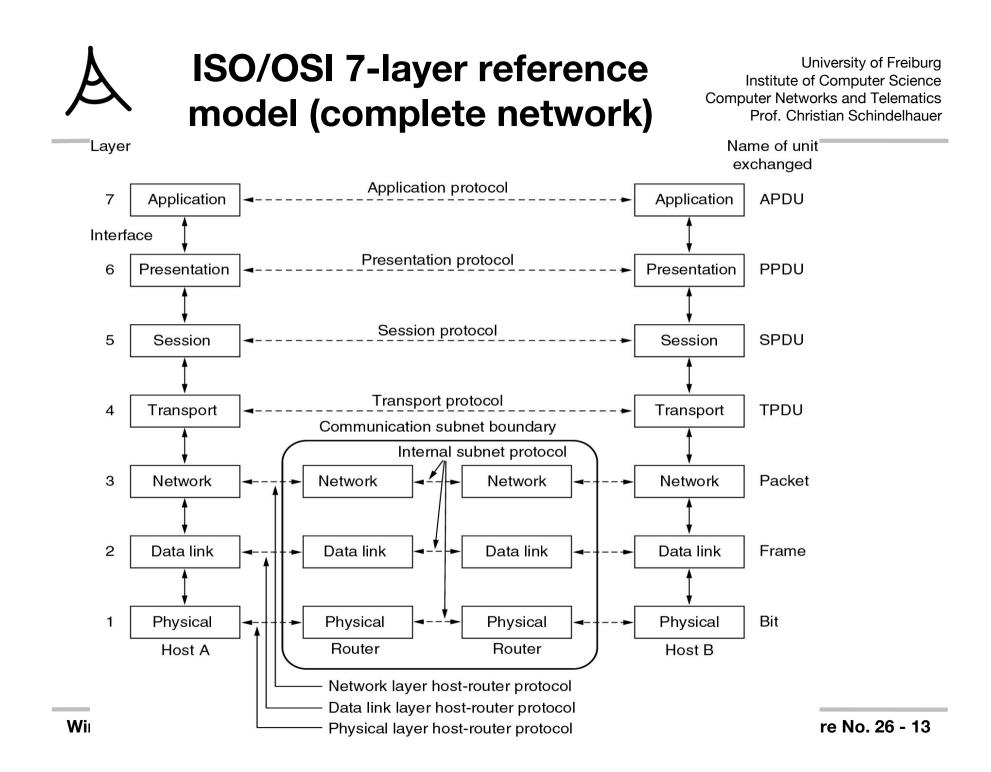
➢ Option 3: Repair any observed conflicts

- Temporarily pick a random address from a dedicated pool and a proposed fixed address
- Send an *address request* to the proposed address, using temporary address
- If *address reply* arrives, proposed address already exists
- Collisions in temporary address unlikely, as only used briefly

Option 4: Similar to 3, but use a neighbor that already has a fixed address to perform requests

- Recall: Paradigm change from id-centric to data-centric networking in WSN
- Supported by content-based names/addresses
 - Do not described involved nodes (not known anyway), but the *content* itself the interaction is about
- Classical option: Put a naming scheme on top of IP addresses
 - Done by some middleware systems

Geographic addressing


Express addresses by denoting physical position of nodes

- Can be regarded as a special case of content-based addresses
- Attributes for x and y coordinates (and maybe z)

≻Options

- Single point
- Circle or sphere centered around given point
- Rectangle by two corner points
- Polygon/polytope by list of points

- ...

Protocols for dependable data transport

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Dependability requirements

- Delivering single packets
- Delivering blocks of packets
- Delivering streams of packets

Dependability aspects

- ≻Coverage & deployment
 - Is there a sufficient number of nodes such that an event can be detected at all? Such that data can accurately measured?
 - How do they have to be deployed?
- ➢ Information accuracy
 - Which of the measured data have to be transported where such that a desired accuracy is achieved?
 - How to deal with inaccurate measurements in the first place?
- ➤Dependable data transport
 - Once it is clear which data should arrive where, how to make sure that it actually arrives?
 - How to deal with *transmission errors* and *omission errors/congestion*?

Dependability: Terminology

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- ➤ "Dependable" is an umbrella term
- ➤ Main numerical metrics
 - (Steady state) availability probability that a system is operational at any given point in time
 - Assumption: System can fail and will repair itself
 - Reliability at time t Probability that system works correctly during the entire interval [0,t)
 - Assumption: It worked correctly at system start t=0
 - Responsiveness Probability of meeting a deadline
 - Even in presence of some to be defined faults
 - Packet success probability Probability that a packet (correctly) reaches its destination
 - Related: packet error rate, packet loss rate
 - Bit error rate Probability of an incorrect bit
 - Channel model determines precise error patterns

Wireless sensor networks (WSN) have unique constraints for dependable data delivery

- Transmission errors over a wireless channel
- Limited computational resources in a WSN node
- Limited memory
- Limited time (deadlines)
- Limited dependability of individual nodes

Standard mechanisms: Redundancy

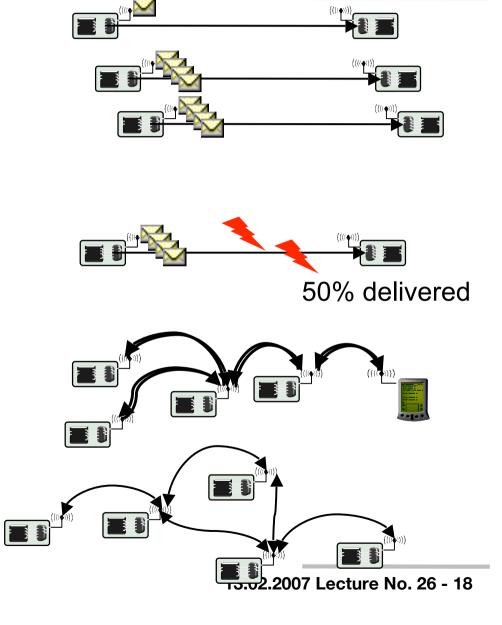
- Redundancy in nodes, transmission
- Forward and backward error recovery
- Combinations are necessary!

Wireless Sensor Networks

Dependable data transport – context

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

>Items to be delivered


- Single packet
- Block of packets
- Stream of packets

Level of guarantee

- Guaranteed delivery
- Stochastic delivery

Involved entities

- Sensor(s) to sink
- Sink to sensors
- Sensors to sensors

Constraints

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Energy

- Send as few packets as possible
- Send with low power \rightarrow high error rates
- Avoid retransmissions
- Short packets \rightarrow weak FEC
- Balance energy consumption in network

Processing power

- Only simple FEC schemes
- No complicated algorithms (coding)

≻ Memory

- Store as little data as briefly as possible

Overview

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Dependability requirements

Delivering single packets

- Single path
- Multiple paths
- Gossiping-based approaches
- Multiple receivers
- Delivering blocks of packets
- Delivering streams of packets

Wireless Sensor Networks

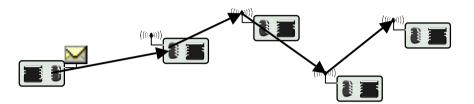
Delivering single packets – main options

> What are the intended receivers?

- A single receiver?
- Multiple receivers?
 - In close vicinity? Spread out?
- Mobile?

> Which routing structures are available?

- Unicast routing along a *single path*?
- Routing with *multiple paths* between source/destination pairs?
- No routing structure at all rely on *flooding/gossiping*?


University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Single packet to single receiver over single path

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Single, multi-hop path is giving by some routing protocol

➢ Issues: Which node

- Detects losses (using which indicators)?
- Requests retransmissions?
- Carries out retransmissions?

Wireless Sensor Networks

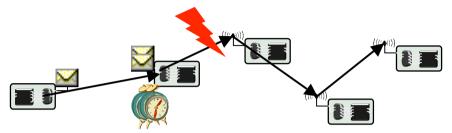
Detecting & signaling losses in single packet delivery

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

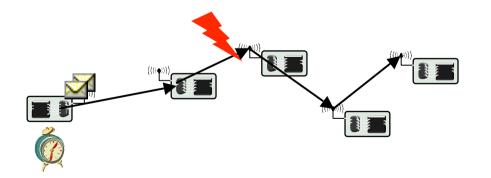
Detecting loss of a single packet: Only positive acknowledgements (ACK) feasible

 Negative acks (NACK) not an option – receiver usually does not know a packet should have arrived, has no incentive to send a NACK

> Which node sends ACKs (avoiding retransmissions)?


- At each intermediate node, at MAC/link level
 - Usually accompanied by link layer retransmissions
 - Usually, only a bounded number of attempts
- At the destination node
 - Transport layer retransmissions
 - Problem: Timer selection

Wireless Sensor Networks



University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> For link layer acknowledgements: Neighboring node

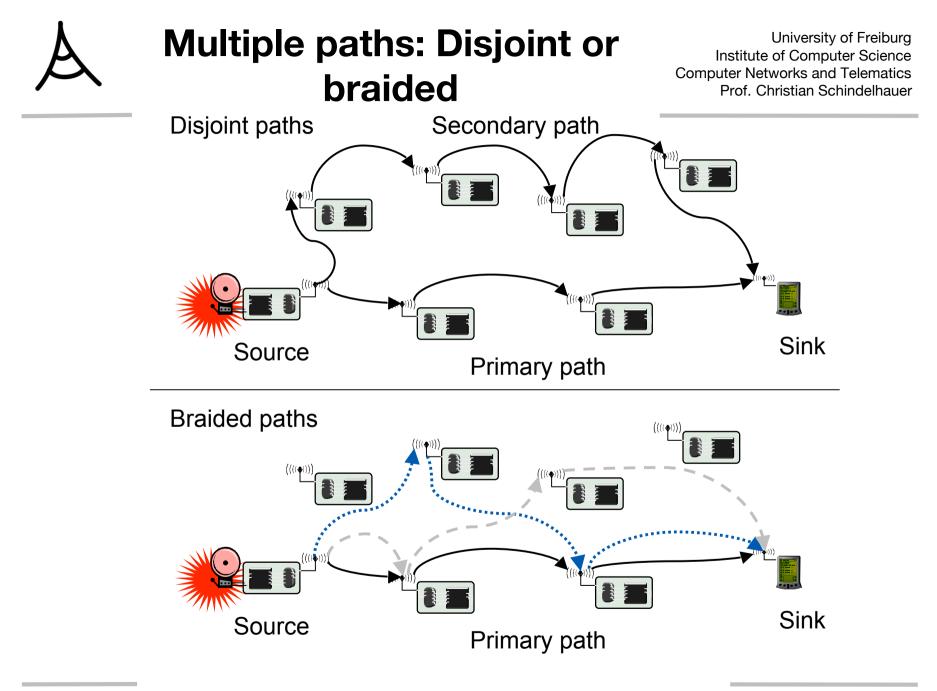
- For transport layer acknowledgements:
 - Source node \rightarrow end-to-end retransmissions

Example schemes: HHR and HHRA

➤Hop-by-hop reliability (HHR)

- Idea: Locally improve probability of packet transmission, but do not use packet retransmission
- Instead, simply repeat packet a few times a repetition code
- Choose number of repetitions per node such that resulting end-to-end delivery probability matches requirements
- ➤Hop-by-hop reliability with Acknowledgements (HHRA)
 - Node sends a number of packets, but pauses after each packet to wait for acknowledgement
 - If received, abort further packet transmissions

Multiple paths


University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- >Types of : disjoint or braided
- Usage: default and alternative routes

Usage: simultaneous

- Send same packet
- Send redundant fragments

Example: ReInForM

Using multiple paths

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Alternating use

- Send packet over the currently "selected" path
- If path breaks, select alternative path
- Or/and: repair original path locally

Simultaneous use

- Send the complete packet over some or all of the multiple paths simultaneously
- Send packet fragments over several paths
 - But endow fragments with redundancy
 - Only some fragments suffice to reconstruct original packet

Conclusion

- Transport protocols have considerable impact on the service rendered by a wireless sensor networks
- Various facets no "one size fits all" solution in sight
- Still a relatively unexplored areas

Items not covered

- Relation to coverage issues
- TCP in WSN? Gateways?
- Aggregation? In-network processing?

Thank you

and thanks to Holger Karl for the slides

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

26th Lecture 13.02.2007