

Termite

Swarm Intelligence Routing

Authors

Martin Roth

Phd thesis at cornell/ny

Now with Deutsche Telekom Research Lab in Berlin

Emergent systems

Stephen Wicker

Professor at cornell/ny

Phd supervisor

Motivation

- Swarm Intelligence
- Successful in complex environments
- E.g. factory scheduling
- UAVs
- Networks!

Classification

Distance Vector Visualisation

	а	b
red	2	-
green	-	5
yellow	-	-

	a	b
red	2	-
green	4	5
yellow	7	-

	а	b
red	2	7
green	4	5
yellow	7 (6)	7

. . .

Termites

Perfect properties for MANETs:

- Decentralised planning
- Very simple agents
- Very robust community, recoverable after almost any setback

Termite Algorithm

 biologically inspired algorithm, resembling the beaviour of Termites

- Pheromone Trails
- Probabilistic Walk
- No Control Traffic
- Piggybacking information

Pheromone Trails (1/3)

Figure 2. A. Ants in a pheromone trail between nest and food; B. an obstacle interrupts the trail; C. ants find two paths to go around the obstacle; D. a new pheromone trail is formed along the shorter path.

http://www.funpecrp.com.br/gmr/year2005/vol3-4/wob09_full_text.htm

Pheromone Trails (2/3)

node-specific pheromone

Travelling packets drop source pheromone

• Pheromone decays over time

Pheromone Trails (3/3)

Pull towards destination pheromone

Push away from source pheromone

Probabilistic Walk

Continouus network exploration

Load balancing

Piggybacked Information

 Routing information piggybacked on data packets

(almost) no special control traffic

Eavesdropping

Nodes eavesdrop on all in-range communications

 Performance increase (traffic is there anyway)

Termite Visualisation

3 problems

1. Pheromone decay on the agents

2. Pheromone decay on the links

3. Routing decision on the nodes

Pheromone decay on the agents

- y is the agent's pheromone
- c is the cost from the previous to the current node

$$\frac{\gamma}{\leftarrow (\gamma^{-1} + c_{r,n})^{-1}}$$

$$\frac{\gamma}{1 + \gamma c_{r,n}}$$

Pheromone decay on the links

 P is the pheromone on current node n from neighbor node r from source node s

y is the agent's pheromone

 Listen to all traffic (update and drop)

$$P_{r,s}^{n}$$

$$\leftarrow P_{r,s}^{n} e^{-(t-t_{r,s}^{n})\tau} + \gamma$$

$$\leftarrow \frac{P_{r,s}^{n}}{e^{-(t-t_{r,s}^{n})\tau}} + \gamma$$

$$\frac{old.pher.}{age}$$
 + new.pher.

Routing decisions (1/3)

Destination pheromone distribution

 Time-based pheromoneaging

$$p_{i,d}^{n} = \frac{\left[P_{i,d}^{n} e^{-(t-t_{i,d}^{n})\tau} + K\right]^{F}}{\sum_{j \in \mathbb{N}} \left[P_{j,d}^{n} e^{-(t-t_{j,d}^{n})\tau} + K\right]^{F}}$$

normalization

$$\frac{dest.pher.}{dest.distr. = \frac{age}{\sum}}$$

Routing decisions (2/3)

Source pheromone distribution

Pheromone decay rate:
 tau (=2.0, 1.0?h)

Pheromone threshold:K (=1/32)

Pheromone sensivity:F (=10.0)

$$p_{i,s}^{n} = \frac{\left[P_{i,s}^{n} e^{-(t-t_{i,s}^{n})\tau} + K\right]^{F}}{\sum_{j \in N} \left[P_{j,s}^{n} e^{-(t-t_{j,s}^{n})\tau} + K\right]^{F}}$$

$$src.pher. = \frac{src.pher.}{\sum}$$

Routing decisions (3/3)

Total probability

• Source aversion sensivity:

A
$$(=0.5)$$

 Periodic updates vs. live calculation

$$\hat{p}_{i,d}^{n} = \frac{p_{i,d}^{n}(p_{i,s}^{n})^{-A}}{\sum_{j \in N} p_{j,d}^{n}(p_{j,s}^{n})^{-A}}$$

$$tot.distr. = \frac{\underbrace{dest.distr.}_{src.distr.}}{\sum}$$

Route Requests

- No destination pheromone on node
- -> RREQ broadcasts

- Node has required pheromone
- -> RREP

Data Goodput

- Delivered data packets / total data packets
- Termite wins by 2% 5%
- Big advantage with fast moving nodes

Control Overhead

 Control packets / total packets

 Termite uses virtually no control traffic

Medium Load

- Transmissions / successful data packet
- 4/1 for Termite
- 8/1 for AODV

End to End Delay

 Huge advantage here by aodv

 Dropping slowest 5%, results are coming close again

Pheromone Decay Heuristic

- node speed 1m/s
- Decay rate vs metric

Best at tau=0.1

Pheromone Decay Heuristic

- node speed 10m/s
- Decay rate vs metric

Best at tau=1.0

Summary

 Efficient and adaptable routing based on swarm intelligence

Piggybacked routing information

Pheromone pull and push

Probabilistic routing decisions

Criticism

Complexity vs. Efficiency

Network behaviour on low traffic

Simulation environment

Outlook

 Ajust algorithm parameters (tau,K,F,A) on a real-time, per node, per link basis

 This could result in a superior algorithm and detailed understanding of network internals

Comparison

AntColonyOptimization (ACO) (1992):
 first ant-algorithm and base for all others

 Ants and Reinforcement Learning (1997): backward dest. to src. exploration

Ant-AODV (2002):
 n random walking route-ants drop pheromone

AntBasedRouting (2002) & AntHocNet (2004):
 FANTs & BANTs connect graph. Proactive updates

$$p_{n,d}^{i} = \frac{\left[\tau_{n,d}^{i}\right]^{\beta}}{\sum_{j \in N} \left[\tau_{j,d}^{i}\right]^{\beta}}$$

Thank you for your attention

Any questions?