Eon: A Language and Runtime System
for Perpetual Systems

Thomas Mayer

Seminar:
Ad-Hoc Networks

Final Presentation: 05. 08.08

Overview

 [ntroduction
— Design concepts
 The Language

- Basics

- Syntax

- Runtime / Compiler
* Evaluation

— Deployment
- Usabillity / Performance study

Overview

* |ntroduction
— Design concepts

Motivation

» Sensors everywhere
» Sensors with long lifetime needed

- For long term experiments
- Less maintainance

e Solution:

- Larger battery ??
- Energy efficient programming for perpetual systems

Ad-Hoc Networks: Eon 02.08.08

4

Motivation (2)

* Perpetual system

- Harvests energy from environment
— Tries to survive without deadtimes

* Adaptive system

- Dynamic energy availability
- Varying energy costs
- Heterogeneous hardware platforms

Ad-Hoc Networks: Eon 02.08.08

5

Motivation (3)

» Basically 2 problems for the system

- Predicting weather (runtime)
- Reacting appropriately (program)

1000

800

600 |

Energy / Day (J)

nellandl

Ad-Hoc Networks: Eon 02.08.08
6

Design concepts

 Energy aware programming language
- Dynamic reactions

* Abstract energy states
- Abstraction from hardware

* Meta language
- Reuse of existing code

* Controll language

» Ease of use more important than complexity

Ad-Hoc Networks: Eon 02.08.08

7

Overview

 The Language
- Basics
- Syntax
- Runtime / Compiler

Basic idea

* Control language
* Flows

- Sequence of actions

- In response to external events (timers)
- Belong to certain energy state

- Have a defined input and output

« Separate logic and energy adaption

Ad-Hoc Networks: Eon 02.08.08

9

Example

» Turtle tracking application
- Track GPS movement of endangered species

Ad-Hoc Networks: Eon 02.08.08
10

Graph representation
 Abstraction as
dataflow graph ’
- Source Nodes
- Concrete Nodes ’
— Abstract Nodes
— Conditional Flows ’

LogGPSTimeout

Implicit Base State

e Ty
x

mplicit
Error

LogConnectionEvent

LogGPSData

Ad-Hoc Networks: Eon 02.08.08
11

Graph representation — source node

 Abstraction as

dataflow graph
e Source Nodes @

- Feed data into other ’ . - T

e e
LogConnectionEvent

// Source Node Declaration

StoreGPSData

Error
// SYNTAX: NODENAME () => (OUTPUTS);
LogGPSTimeout

ListenBeacon() => (msg_t msg);
GPSTimer () => ();

LogGPSData

Ad-Hoc Networks: Eon 02.08.08
12

Graph rep. — concrete node

R

 Abstraction as
dataflow graph

e Concrete Node

- Node that links to
C/nesC code

// Concrete Node Declaration
// SYNTAX: NODEAME (INPUTS) => (OUTPUTS);

HandleBeacon
: Implicit Base State
(] LogConnectionEvent

mplicit
Error

GetGPS

GetGPS () =>
(GpsData_t data, bool valid); StoreGPSData
LogGPSData(GpsData_t data bool valid)

=> ();

LogGPSTimeout |< LogGPSData :

Ad-Hoc Networks: Eon 02.08.08

13

Graph rep. — abstract node

 Abstraction as
dataflow graph

 Abstract Node

N Dataﬂ OW th ro u g h HiPower State Implicit Base State
concrete / abstract = 7 T
LogConnectionEvent Inpiics
nodes Error

// Abstract Nodes and Predicate Flows
// SYNTAX: ABSTRACT[[type,..][state]] =
// CONCRETE->...CONCRETE;

GPSFlow = GetGPS -> StoreGPSData;
StoreGPSData:[*,gotfix][*] = LogGPSData;
StoreGPSData:[*,*] [*] = LogGPSTimeout;

StoreGPSData

LogGPSTimeout LogGPSData

Ad-Hoc Networks: Eon 02.08.08

14

Graph rep. — conditional flow

e Abstraction as
dataflow graph D

» Conditional Flow @
LogConnectionEvent

- Use of predicate
types

// Abstract Nodes and Predicate Flows
// SYNTAX: ABSTRACT[[type,..][state]] =
// CONCRETE->...CONCRETE;

GPSFlow = GetGPS ->» StoreGPSData;
StoreGPSData:[#,gotfix] [#*] = LogGPSData;
StoreGPSData:[*,*][*] = LogGPSTimeout;

// Predicate Types
// SYNTAX: typedef PRED_TYPE PRED_TEST
typedef gotfix TestGotFix;

Implicit Base State

B i

mplicit
Error

StoreGPSData

"*...".-—'V

LogGPSTimeout

LogGPSData

Ad-Hoc Networks: Eon 02.08.08

15

Graph rep. — conditional flow (2)
» Abstraction as

dataflow graph .

» Conditional Flow ’ -

HandleBeacon

i Can be gsed |.n implicit Base State

conjunction with | W

energy levels . Error /2

// Abstract Node using Emergy Predicates

HandleBeacon:[*,*] [HiPower]

= LogConnectionEvent,

LogGPSData

Ad-Hoc Networks: Eon 02.08.08
16

Power levels

» Discreet levels representing battery state
— No utilities

* Implicit BASE state

* Higher ordered states are more desirable
- And more energy intensive

e Used in

- Conditional flows
- State based parameters

Ad-Hoc Networks: Eon 02.08.08

17

Power levels (2)

 Timer intervals can be
adjusted

- Handled by the
Runtime

 Features can be
disabled

— Hardware

HiPower State

Beacon
Loggmg

- Software
BASE State

- Data quality

* Energy state based
paths

Ad-Hoc Networks: Eon 02.08.08

18

Criticism ?

* No fine grain adjustments

- Only timer frequency
- State ordering instead of utilities

- Discreet states

* Adjustment of data quality can only be done in discreet
steps

e Code has to be wrapped or structured
differently

Ad-Hoc Networks: Eon 02.08.08

19

Runtime

e Goals

- Broad array of low-power hardware
- Online measurements
- No training
- Low overhead
* Ensure that the right paths are chosen

- Predict state
- Own consumption
- Weather forecast

Ad-Hoc Networks: Eon 02.08.08

20

Energy adaption algorithm

» Highest fidelity while avoiding two states

- Full battery

» Higher level of fidelity could be provided
* Energy is wasted

- Empty battery
e Sudden deadtimes could occur
« Execution of high priority flows is prevented

* Anything in between is equivalent good

Ad-Hoc Networks: Eon 02.08.08

21

Energy adaption algorithm (2)

 Performs a search on possible states

- Initial: Highest state with lowest timer-freq.
- Lower state until stable (on short interval 7,)
- Future prediction: 2"-7. »n={1...N}

- Binary search on timers

Ad-Hoc Networks: Eon 02.08.08

22

Energy attribution

 Measure consumption for the path
- Hardware support
 Downside, Eon requires
- Fuel gauge
- Fine-grained current measurement
* Energy consumption can be allocated

- Energy production/loss

Ad-Hoc Networks: Eon 02.08.08

23

Energy source model

* Energy production in following days == energy
production in recent days

E(t+1)=aE(H)+(1—a) E(t—1)

Ad-Hoc Networks: Eon 02.08.08

24

Compiler

S e i S

 Compilation in 3 steps
— Nodes are built

- Edges are attributed
- User supplied code is linked

// Predicate Types

|

2 |// SYNTAX: typedef PRED_TYPE PRED_TEST

1t def tfix TestGotFix; :

' ypacal gottix festhottix @ ListenBeacon

5 |// Source Node Declaration

6 |// SYNTAX: NODENAME () => (GQUTPUTS);

7 |ListenBeacon() => (msg_t msg);

§ |GPSTiner() => (); HandleBeacon

9

10 |// Concrete Node Declaration HiPower State Implicit Base State
Il |// SYNTAX: NODEAME (INPUTS) => (OUTPUTS); \P‘;ID“GI?
12 | GetGPS() => LogConnectionEvent Error
13 (GpsData_t data, bool valid);

14 | LogGPSData (GpsData_t data bool valid)

15 = 0;

StoreGPSData

LogGPSTimeout

16 |LogGPSTimecut (GpsData_t data bool valid)
17 = ()
18 [LogConnectionEvent (msg_t msg) => ()

20 | // Regular Sources
21 | // SYNTAX: source NODENAME => NODENAME;

LogGPSData

22 | source ListenBeacon => HandleBeacon;

Ad-Hoc Networks: Eon 02.08.08
25

Compiler - Simulation

 Trace-based
- Feed with weather data

» Test different adaption policies without
deployment

* Profile energy behavior

- Locate bottlenecks

Ad-Hoc Networks: Eon 02.08.08

26

Overview

 Evaluation

— Deployment
- Usabillity / Performance study

Deployment

* Deployment driven approach on developing
Eon

 Different environments/applications

— Turtle tracking
 Car tracking
- Remote camera application

Ad-Hoc Networks: Eon 02.08.08

28

Turtle tracking

e Solar powered node fixed on turtle shell
 Report GPS data to scientists

— Until now: had to be done manually

 Result: Failed

— Turtles spent 98% of time underwater
- Early hibernation

» Car tracking had to be done to get evaluation
data

Ad-Hoc Networks: Eon 02.08.08

29

Adaption study

* Loop acquired data in simulator
- 3 months of data from 2 weeks
 GPS sampling rate can be changed

- Conservative, static
- Greedy, static

- Best sustainable

- Eon (Predictor)

- Eon (Oracle)

e 5 different devices

Ad-Hoc Networks: Eon 02.08.08

30

Adaption study - results

 Sampling rates of the devices

20
I conserva tive
18 [] Greedy
[1 Best Static
16 N E
{ |:| Eon (Oracle)
14

-y
"]

Avg. Sampling Rate (Readings/day)
o

N Jhl Li

Ad-Hoc Networks: Eon

02.08.08
31

Adaption study — results (2)

* Energy consumption by board parts / strategy

| | | | |
B Wasied [|Unused BB GPS [|idle |l Board

(C) Conservative (G) Greedy (B) Best Static (E) Eon (O) Eon(Oracle)

15 0%

5%
"

'y
(=]
I

30%
III 45%

CGBEO CGBEO CGBEO CGBEO CGBEO

Energy (kJ)

65%

Ad-Hoc Networks: Eon 02.08.08
32

Remote camera

* Image streaming
- High power state
* Image storage
- Low power

» Building whole application
In < 3 hours

Ad-Hoc Networks: Eon 02.08.08

33

Energy consumption

» Collect solar traces

- Map solar intensity to power output of cells

- Use climate tables to produce long term data
* Policies

- 2.4 Fph, static

- 7 Fph, static

- Eon (stream / query)

Ad-Hoc Networks: Eon 02.08.08

34

Energy consumption - results

» Graph including deadtimes / query mode

25 .
Eon
= = =7 Fph (Streaming)

20} 2.4 Fph (95% uptime, Streaming)
=
@ 15|
£
o
L
— 10 -
2
5 I g -
Q 5 | l F
£
©
'

0

Eon (No Streaming) = = = - . e — -
2.4 th Dead = L - — -
7 th Dead memm=s = == - ™~ = - - m m m

Jan Mar May July Sept Nov Jan Mar May

Ad-Hoc Networks: Eon 02.08.08
35

User study

 Programming sensor applications
- Setup

« Group of experiences C programmers
- Provided with the same solar energy predictor Eon uses
« Group of first time Eon users

1% Application samples data and saves it

« 2" Get the most samples without running out of
battery

Ad-Hoc Networks: Eon 02.08.08

36

User study - results

 Task 1 has been finished

100

80+ C Group

60-

401

Eon Group

Percent Complete (Group)

20~

0 20 40 60 80
Time (minutes)

100 120 140

Ad-Hoc Networks: Eon

02.08.08
37

User study — results (2)

 Task 2 has been finished

Sensor Coverage (%)

100

o
=)

»
(=}

=
(=]

N
=)

. — 00— -9

«~—Eon Group p- I o

.-..-.'L.—.-.- - 0 -om» - —o¢

C Group\

50 100 150
Time (minutes)

Ad-Hoc Networks: Eon

02.08.08
38

Conclusion

 Benefits

— Ease of use

- Only approach that targets energy adaption at
programming level

- Proven efficiency
 Downsides

- Existent code has to be rewritten

Ad-Hoc Networks: Eon 02.08.08

39

Fin

Thank you for your attention !

Ad-Hoc Networks: Eon 02.08.08

40

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

