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Motivation

» Sensors everywhere
» Sensors with long lifetime needed

- For long term experiments
- Less maintainance

e Solution:

- Larger battery ??
- Energy efficient programming for perpetual systems
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Motivation (2)

* Perpetual system

- Harvests energy from environment
— Tries to survive without deadtimes

* Adaptive system

- Dynamic energy availability
- Varying energy costs
- Heterogeneous hardware platforms
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Motivation (3)

» Basically 2 problems for the system

- Predicting weather (runtime)
- Reacting appropriately (program)
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Design concepts

 Energy aware programming language
- Dynamic reactions

* Abstract energy states
- Abstraction from hardware

* Meta language
- Reuse of existing code

* Controll language

» Ease of use more important than complexity
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Overview

 The Language
- Basics
- Syntax
- Runtime / Compiler



Basic idea

* Control language
* Flows

- Sequence of actions

- In response to external events (timers)
- Belong to certain energy state

- Have a defined input and output

« Separate logic and energy adaption
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Example

» Turtle tracking application
- Track GPS movement of endangered species
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Graph representation
 Abstraction as
dataflow graph ’
- Source Nodes
- Concrete Nodes ’
— Abstract Nodes
— Conditional Flows ’

LogGPSTimeout

Implicit Base State

e Ty
x

mplicit
Error

LogConnectionEvent

LogGPSData
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Graph representation — source node

 Abstraction as

dataflow graph
e Source Nodes @

- Feed data into other ’ . - T

e e
LogConnectionEvent

// Source Node Declaration

StoreGPSData

Error
// SYNTAX: NODENAME () => (OUTPUTS);
LogGPSTimeout

ListenBeacon() => (msg_t msg);
GPSTimer () => ();

LogGPSData
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Graph rep. — concrete node

R

 Abstraction as
dataflow graph

e Concrete Node

- Node that links to
C/nesC code

// Concrete Node Declaration
// SYNTAX: NODEAME (INPUTS) => (OUTPUTS);

HandleBeacon
: Implicit Base State
(] LogConnectionEvent

mplicit
Error

GetGPS

GetGPS () =>
(GpsData_t data, bool valid); StoreGPSData
LogGPSData(GpsData_t data bool valid)

=> ();

LogGPSTimeout |< LogGPSData :
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Graph rep. — abstract node

 Abstraction as
dataflow graph

 Abstract Node

N Dataﬂ OW th ro u g h HiPower State Implicit Base State
concrete / abstract = 7 T
LogConnectionEvent Inpiics
nodes Error

// Abstract Nodes and Predicate Flows
// SYNTAX: ABSTRACT[[type,..][state]] =
// CONCRETE->...CONCRETE;

GPSFlow = GetGPS -> StoreGPSData;
StoreGPSData:[*,gotfix][*] = LogGPSData;
StoreGPSData:[*,*] [*] = LogGPSTimeout;

StoreGPSData

LogGPSTimeout LogGPSData
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Graph rep. — conditional flow

e Abstraction as
dataflow graph D

» Conditional Flow @
LogConnectionEvent

- Use of predicate
types

// Abstract Nodes and Predicate Flows
// SYNTAX: ABSTRACT[[type,..][state]] =
// CONCRETE->...CONCRETE;

GPSFlow = GetGPS ->» StoreGPSData;
StoreGPSData:[#,gotfix] [#*] = LogGPSData;
StoreGPSData:[*,*][*] = LogGPSTimeout;

// Predicate Types
// SYNTAX: typedef PRED_TYPE PRED_TEST
typedef gotfix TestGotFix;

Implicit Base State

B i

mplicit
Error

StoreGPSData

"*...".-—'V

LogGPSTimeout

LogGPSData
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Graph rep. — conditional flow (2)
» Abstraction as

dataflow graph .

» Conditional Flow ’ -

HandleBeacon

i Can be gsed |.n implicit Base State

conjunction with | W

energy levels . Error /2

// Abstract Node using Emergy Predicates

HandleBeacon:[*,*] [HiPower]

= LogConnectionEvent,

LogGPSData
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Power levels

» Discreet levels representing battery state
— No utilities

* Implicit BASE state

* Higher ordered states are more desirable
- And more energy intensive

e Used in

- Conditional flows
- State based parameters

Ad-Hoc Networks: Eon 02.08.08

17



Power levels (2)

 Timer intervals can be
adjusted

- Handled by the
Runtime

 Features can be
disabled

— Hardware

HiPower State

Beacon
Loggmg

- Software
BASE State

- Data quality

* Energy state based
paths
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Criticism ?

* No fine grain adjustments

- Only timer frequency
- State ordering instead of utilities

- Discreet states

* Adjustment of data quality can only be done in discreet
steps

e Code has to be wrapped or structured
differently
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Runtime

e Goals

- Broad array of low-power hardware
- Online measurements
- No training
- Low overhead
* Ensure that the right paths are chosen

- Predict state
- Own consumption
- Weather forecast
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Energy adaption algorithm

» Highest fidelity while avoiding two states

- Full battery

» Higher level of fidelity could be provided
* Energy is wasted

- Empty battery
e Sudden deadtimes could occur
« Execution of high priority flows is prevented

* Anything in between is equivalent good
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Energy adaption algorithm (2)

 Performs a search on possible states

- Initial: Highest state with lowest timer-freq.
- Lower state until stable (on short interval 7, )
- Future prediction: 2"-7. »n={1...N}

- Binary search on timers
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Energy attribution

 Measure consumption for the path
- Hardware support
 Downside, Eon requires
- Fuel gauge
- Fine-grained current measurement
* Energy consumption can be allocated

- Energy production/loss
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Energy source model

* Energy production in following days == energy
production in recent days

E(t+1)=aE(H)+(1—a) E(t—1)
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Compiler

S e i S

 Compilation in 3 steps
— Nodes are built

- Edges are attributed
- User supplied code is linked

// Predicate Types

|

2 |// SYNTAX: typedef PRED_TYPE PRED_TEST

1t def tfix TestGotFix; :

' ypacal gottix festhottix @ ListenBeacon

5 |// Source Node Declaration

6 |// SYNTAX: NODENAME () => (GQUTPUTS);

7 |ListenBeacon() => (msg_t msg);

§ |GPSTiner() => (); HandleBeacon

9

10 |// Concrete Node Declaration HiPower State Implicit Base State
Il |// SYNTAX: NODEAME (INPUTS) => (OUTPUTS); \P‘;ID“GI?
12 | GetGPS() => LogConnectionEvent Error
13 (GpsData_t data, bool valid);

14 | LogGPSData (GpsData_t data bool valid)

15 = 0;

StoreGPSData

LogGPSTimeout

16 |LogGPSTimecut (GpsData_t data bool valid)
17 = ()
18 [LogConnectionEvent (msg_t msg) => ()

20 | // Regular Sources
21 | // SYNTAX: source NODENAME => NODENAME;

LogGPSData

22 | source ListenBeacon => HandleBeacon;
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Compiler - Simulation

 Trace-based
- Feed with weather data

» Test different adaption policies without
deployment

* Profile energy behavior

- Locate bottlenecks
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Overview

 Evaluation

— Deployment
- Usabillity / Performance study



Deployment

* Deployment driven approach on developing
Eon

 Different environments/applications

— Turtle tracking
 Car tracking
- Remote camera application
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Turtle tracking

e Solar powered node fixed on turtle shell
 Report GPS data to scientists

— Until now: had to be done manually

 Result: Failed

— Turtles spent 98% of time underwater
- Early hibernation

» Car tracking had to be done to get evaluation
data
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Adaption study

* Loop acquired data in simulator
- 3 months of data from 2 weeks
 GPS sampling rate can be changed

- Conservative, static
- Greedy, static

- Best sustainable

- Eon (Predictor)

- Eon (Oracle)

e 5 different devices

Ad-Hoc Networks: Eon 02.08.08

30



Adaption study - results

 Sampling rates of the devices
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Adaption study — results (2)

* Energy consumption by board parts / strategy

| | | | |
B Wasied [ |Unused BB GPS [ |idle |l Board
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Remote camera

* Image streaming
- High power state
* Image storage
- Low power

» Building whole application
In < 3 hours
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Energy consumption

» Collect solar traces

- Map solar intensity to power output of cells

- Use climate tables to produce long term data
* Policies

- 2.4 Fph, static

- 7 Fph, static

- Eon (stream / query)
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Energy consumption - results

» Graph including deadtimes / query mode
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User study

 Programming sensor applications
- Setup

« Group of experiences C programmers
- Provided with the same solar energy predictor Eon uses
« Group of first time Eon users

1% Application samples data and saves it

« 2" Get the most samples without running out of
battery
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User study - results

 Task 1 has been finished
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User study — results (2)

 Task 2 has been finished

Sensor Coverage (%)
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Conclusion

 Benefits

— Ease of use

- Only approach that targets energy adaption at
programming level

- Proven efficiency
 Downsides

- Existent code has to be rewritten
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Fin

Thank you for your attention !
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