
Final Presentation
By Aldarwich Yaser

Multithreading optimization techniques
for sensor network operating systems

Overview
Programming model
Advantages & disadvantages of models
Thread optimization for sensor network

Memory optimization
➢ Singel kernel stack
➢ Stack size analysis

Energy consumption
➢ Variable timer

Scheduling policy
➢ Retos scheduling
➢ Event-boosting thread scheduling

 Tinyos vs. Retos
 Conclusion

Programming models

Multithread model
 - Retos
 - Mantis

Event-driven model
 - TinyOS
 - SOS

Model advantages

 Multithread Model
 - Supports High concurrency with preemption
 - Automatic state management
 - Blocking I/O interface

Event-driven Model
 - Lower memory requirements
 - Less energy consumption

Model disadvantages

 Multithread model
 - Large data memory
 - Large energy consumption

 Event-driven model
 - Low simulation performance
 - Manual configuration
 - Splits a long-running task into several phases

Optimization techniques for implementing thread
on sensor network

(1) Memory optimization
 Single kernel stack
 Stack size analysis

(2) Energy reduction
 Timer variable

(3) Scheduling policy
 Event-boosting thread scheduler

Memory optimization (1)

(1) Single kernel stack

– Reduces the size of thread stack requirement :
 - Separates the thread stack into kernel and user stacks
 - Maintain a unitary kernel stack for system calls & interrupt
 handlers

– Size of kernel stack :
 - SUM{MAX(system call)+MAX(ISR)+h/w context}
 - MAX(system call)+MAX(ISR)+ SUM(h/w context).

Effect of Stack Optimization

Test requirements
 - Seven sensor applications:
 MPT_mobile,MPT_backbone,R_send,R_recv,Sensing,Pingpong,
 Surge)
 - Two versions of RETOS

 1676Multiple Kernel stack System

 1876Singel Kernel stack System

Increase of TCP+H/W
 context

 (byte)

Kernel stack
size(byte)

Effect of Stack Optimization

Single Multiple

76
76
76
76
76
76
76

Kernel stack (byte)Data section
(byte)

User Stack
(byte)

N of threadsApplications

380336984Surge
15210681Pingpong
328157182Sensing
304214503R_recv
304217783R_send
228416782MPT_mobile
152131681MPT_backbone

Memory optimization (2)

 (2) Stack-size analysis :
 Kernel assigns exact stack size automatically to every thread
 - Determine optimal stack requirement
 - Generate a control flow graph of an application
 - Calculates the maximum thread stack size using DFS

 Instruction Stack usages Description
 push var + 2 Push a value
 pop var - 2 Pop a value
 call #label + 2 Push return address
 add/sub SP, N +-N Directly adjust stack pointer

 TI MSP430 stack instructions

Energy reduction (1)

Variable timer (1)
 - Technique to reduce energy consumption

 - Reasons of overhead multithreaded system:
 - Context switching
 - Scheduling
 - Time management

Energy reduction (2)

A B
10ms 20ms 30ms 40ms

Timer interrupt

delay

B wanted to awake at 3ms Useless timer intr

BA

Timer interrupt

3ms

Periodic-timer

variable-timer

Variable timer (2)

Energy reduction (3)

MPT_backbone MPT_mobiel R_send R_rec Sensing Pingpong Surge
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

MPT_backbone
MPT_mobile

 Effect of variable timer

Scheduling policy

RETOS scheduling
 - Priority-based and preemptive scheduling
 - POSIX.4 Compatibility

 Event-boosting thread scheduling
 - Typical sensor applications on multithreaded systems
 - Priority adjustment for event-boosting

Retos scheduling

● Priority-based and preemptive scheduling
- When time quantum expires, timer interrupts
- Support both static and dynamic priority
- Threads are preemptive

● Posix.4 compatibility
- SCHED_FIFO
- SCHED_RR
- SCHED_OTHER

Event-boosting thread scheduling

 Typical sensor application on multithreading system
 - Thread classified into I/O bound & CPU bound
 - I/O bound is preferable

sensor_read(light,&buf);

process();

seep(period);

Timer expired

 radio_rec(light,&buf);

process();

radio_send(ADDR,PORT,&buf);

Packet forwarding Sensing

Event-boosting Thread Scheduling

 Priority adjustment for event-boosting
 - Boosts the priority of the thread requesting to handle a sensor
 application specific event
 - Event in Sensor network application defined as:

 - Expiration of the timer request
 - Receiving a packet
 - Sensing

 Dynamic priority Description

 Init 4 Thread created
sleep() +3 Timer request
radio_recv() +2 Radio event request
sensor_read() +1 Sensor event request

Consuming CPU time -1 per 8ms Decreasing

TinyOS and RETOS

 TinyOS :
 - Provides an event driven operating environment
 - Componet-based operating system
 - Dosn't have difference between the kernel and the Application
 - Support multiple streams of data.

 RETOS:
 - Provides a multithreaded programming interface
 -Support functionality

TinyOS vs. RETOS

Experament‘s requiremnts:

 - RetOS v0.96,TinyOS v1.1.13
 - Applications : MPT and packet transmission
 Mobile node
 MPT
 Backbone node

RETOS vs. TinyOS

• MPT(Mobile object tracking)
 – Based on ultrasound localization technique
 – Consist of mobile node and backbone node
 – Mobile nodes: computes their location
 by Trilateration every 300ms
 – Trilateration takes around 16ms to define location

18806 891

25162 1182

 492 143

3 25162

18314 748

18314 748

12614 467

17222 701

MPT BB

MPT Mobile

RETOS Total
(byte)

ROM RAM

RETOS LIb.
+App(byte)

ROM RAM

RETOS Kernel
(byte)

ROM RAM

TinyOS(byte)

ROM RAM

RETOS vs. TinyOS

App code check-
ing

42.7%(1.16%)

App code checking
42.7%(1.16%)

Scheduler
34.2%(0.93%)

Context switching
13.6%(0.37%)

User thread
54.86%

Kernel
42.42%

Etc
2.72%

 Retos overhead analysis

Mode switching
9.5(0.26%)

Conclusion

 Optimized multithreading techniques for sensor
 network operating systems

● Memory optimization : Single kernel stack, Stack-size analysis
● Energy reduction : Variable timer
● Scheduling policy : Event-boosting thread scheduler

 Tests
 - Overhead of multithreading system can be reduced to minimal
 - Response delay to sensor application can be reduced as well
 - System provide quick response time of threads without manual setup.

The End

 Thank you for your attention

Questions

	Title
	Slide 2
	Long-term Goal
	Slide 4
	Slide 5
	Slide 6
	Fulfilling Customer Needs
	Strengths and Advantages
	Next Steps of Action
	Cost Analysis
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

