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Programming models

Multithread model
     - Retos
     - Mantis

Event-driven model
     - TinyOS
       - SOS

     
      



Model advantages 

 Multithread Model
        - Supports High concurrency with preemption
          - Automatic state management
         - Blocking I/O interface 

Event-driven Model
        - Lower memory requirements
        - Less energy consumption



Model disadvantages 

  Multithread model
           - Large data memory 
           - Large energy consumption

 Event-driven model
        - Low simulation performance
        - Manual configuration
        - Splits a long-running task into several phases
  



Optimization techniques for implementing thread
on sensor network

(1) Memory optimization
 Single kernel stack
 Stack size analysis

(2) Energy reduction
 Timer variable

(3) Scheduling policy
 Event-boosting thread scheduler



Memory optimization (1)

(1) Single kernel stack
 

–  Reduces the size of thread stack requirement :
            - Separates the thread stack into kernel and user stacks 
            - Maintain a unitary kernel stack for system calls & interrupt
              handlers

– Size of  kernel stack :
           -  SUM{MAX(system call)+MAX(ISR)+h/w context}          
           -  MAX(system call)+MAX(ISR)+ SUM(h/w context).



Effect of Stack Optimization

Test requirements
      -  Seven sensor applications: 
         MPT_mobile,MPT_backbone,R_send,R_recv,Sensing,Pingpong,
         Surge)
      - Two versions of RETOS

        1676Multiple Kernel stack System

       1876Singel Kernel         stack System                       
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Effect of Stack Optimization
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304214503R_recv
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228416782MPT_mobile
152131681MPT_backbone



Memory optimization (2)

 (2) Stack-size analysis : 
  Kernel assigns exact stack size automatically to every thread                 
      - Determine optimal stack requirement 
      - Generate a control flow graph of an application
      - Calculates the maximum thread stack size using DFS

        Instruction             Stack usages                 Description
           push var                   + 2                                  Push a value
            pop var                     - 2                                   Pop a value
            call #label                 + 2                                  Push return address
            add/sub SP, N          +-N                                 Directly adjust stack pointer

                                                   TI MSP430 stack instructions



Energy reduction (1)

Variable timer (1) 
       - Technique to reduce energy consumption

  -  Reasons of overhead multithreaded system:
          - Context switching
             -  Scheduling
             - Time management



Energy reduction (2)
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Energy reduction (3)
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  Effect of variable timer



Scheduling policy

RETOS scheduling
  - Priority-based and preemptive scheduling
  - POSIX.4 Compatibility

 Event-boosting thread scheduling
   - Typical sensor applications on multithreaded systems
   - Priority adjustment for event-boosting



Retos scheduling

● Priority-based and preemptive scheduling
- When time quantum expires, timer interrupts
- Support both static and dynamic priority
- Threads are preemptive

● Posix.4 compatibility
- SCHED_FIFO
- SCHED_RR
- SCHED_OTHER



Event-boosting thread scheduling

 Typical sensor application on multithreading system
   -   Thread classified into I/O bound & CPU bound  
   -    I/O bound is preferable 

sensor_read(light,&buf);

process();

seep(period);

Timer expired

 radio_rec(light,&buf);

process();

radio_send(ADDR,PORT,&buf);

Packet forwarding Sensing



Event-boosting Thread Scheduling

 Priority adjustment for event-boosting
   - Boosts the priority of the thread requesting to handle a sensor
     application specific event
   - Event in Sensor network application defined as:

  - Expiration of the timer request
  - Receiving a packet
  - Sensing

 
                                       Dynamic priority                 Description

 Init                                                      4                                  Thread created
sleep()                                               +3                                 Timer request 
radio_recv()                                       +2                                 Radio event request
sensor_read()                                    +1                                 Sensor event request

Consuming CPU time                        -1 per 8ms                        Decreasing



TinyOS and RETOS

 TinyOS : 
       - Provides an event driven operating environment
       - Componet-based operating system 
       - Dosn't have difference between the kernel and the Application
       - Support multiple streams of data.

 RETOS:
       - Provides a multithreaded programming interface
       -Support functionality



TinyOS vs. RETOS

Experament‘s requiremnts:

   - RetOS v0.96,TinyOS v1.1.13 
   - Applications : MPT and packet transmission
                   Mobile node
     MPT
                  Backbone node



RETOS vs. TinyOS

• MPT(Mobile object tracking) 
      – Based on ultrasound localization technique
     – Consist of mobile node and backbone node
     – Mobile nodes: computes their location
        by Trilateration every 300ms
     – Trilateration takes around 16ms to define location
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RETOS vs. TinyOS

App code check-
ing

42.7%(1.16%)

App code checking
42.7%(1.16%)

Scheduler
34.2%(0.93%)

Context switching
13.6%(0.37%)

User thread 
54.86%

Kernel
42.42%

Etc
2.72%

  Retos overhead analysis

Mode switching
9.5(0.26%)



Conclusion

 Optimized multithreading techniques for sensor
 network operating systems

●  Memory optimization : Single kernel stack, Stack-size analysis
●  Energy reduction       : Variable timer
●  Scheduling policy     : Event-boosting thread scheduler

  
 Tests
     - Overhead of multithreading system  can be reduced to minimal
     - Response delay to sensor application can be reduced as well
     - System provide quick response time of threads without manual setup.



The End

 Thank you for your attention



Questions
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