

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 293 – 308, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Multithreading Optimization Techniques
for Sensor Network Operating Systems

Hyoseung Kim and Hojung Cha

Department of Computer Science, Yonsei University
Seodaemun-gu, Shinchon-dong 134, Seoul 120-749, Korea

{hskim, hjcha}@cs.yonsei.ac.kr

Abstract. While a multithreading approach provides a convenient sensor
application developing environment with automatic control flow and stack
managment, it is considered to have a larger data memory requirement and
energy consumption than an event-driven model. Current threaded sensor
operating systems unfortunately do not provide appropriate solutions. This
paper presents multithreading optimization techniques for sensor network
operating systems. Our work focuses on the three major problems of
implementing threads on resource-constraint sensor nodes—memory resources,
energy consumption, and scheduling policy. Single kernel stack and the thread
stack-size analysis techniques reduce the RAM requirement of thread model.
The variable timer saves energy consumption and the event-boosting thread
scheduling reflects the characteristics of sensor applications and provides fast
response time to threads. The experimental results on a common sensor node
show that the multithreaded system could be effectively implemented with
reasonable overhead.

Keywords: sensor network operating system, multithreading optimization
technique.

1 Introduction

Wireless sensor networks have been well-studied in terms of the increasing variety of
hardware and the development of diverse applications which now require
sophisticated system software. Sensor nodes are normally battery-operated, memory-
limited and have low computational power. Sensor network operating systems,
therefore, should support high concurrency with minimal memory usage and low
energy consumption. Unlike general purpose operating systems, popular sensor
operating systems such as TinyOS [1] and SOS [2] adopt an event-driven model to
meet these tight constraints. They execute applications with reactive event handlers
and cooperatively-operated run-to-completion tasks. Li et al. [3] reported that the
event-driven TinyOS achieves about a 30-fold improvement in data memory
requirement and a 12-fold reduction in power consumption over general purpose
multithreaded embedded operating systems.

Although the event-driven sensor operating systems are implemented efficiently in
a resource-constraint environment, they do not provide all the functions of general

294 H. Kim and H. Cha

purpose operating systems. Developers typically suffer from the manual configuration
when programming applications. With TinyOS and SOS, for example, developers
have to split a long-running task, which can unnecessarily delay other tasks, into
several phases. Programmers also take responsibility for managing event handlers’
states. As tasks are inter-dependent in the execution context, the repeated analysis of
system concurrency and system restructuring is inevitable in order to meet the
changes in application requirements [4].

In contrast to the event-driven approach, multithreading inherently provides high
concurrency with preemption and automatic state management. It also allows
programmers to specify control flow. Sensor applications frequently request sensing
and radio communication. With an event-driven model, the programmers may split
one conceptual function into multiple functions for I/O operations, but multithread
systems easily handle it by blocking the I/O interface. Synchronization and deadlock
problems experienced with thread [5] can be managed by compiler support and
development tools [6]. As most existing development tools are based on threads,
multithread systems could provide a general and more efficient development
environment. However, threads tend to incur more time and space overhead than
events. Stack reservation for each stack is indispensable for multithreading systems.
Context switching overhead is caused by preemption and blocking. Kernel services,
such as a scheduler and system timer management, are also required. Data memory
and energy requirement of multithreading is an obvious obstacle to the resource-
constraint sensor nodes. In addition, a scheduling policy optimized for sensor
applications should be developed. Although the multithreading approach is attractive
in sensor application developments, current thread-based sensor operating systems [7,
8] do not provide appropriate solutions for overhead problems or a scheduling issue.
This has motivated us to develop multithreading techniques specifically designed for
sensor nodes.

This paper presents optimized techniques for the implementation of multithreaded
sensor network operating systems. The thread model for sensor nodes should consider
memory resource, energy consumption, and scheduling policy. The proposed
techniques contribute to each issue by providing multithreading functions while
consuming reasonable overhead compared to existing event-driven sensor operating
systems. Our techniques are implemented in the RETOS operating system [9, 10, 11],
although they are applicable to other thread-based sensor operating systems. The
effectiveness of the proposed techniques is validated by experiments conducted on a
commercial mote running the RETOS operating system.

The rest of this paper is organized as follows: Section 2 describes the proposed
multithreading optimization techniques; Section 3 validates the effectiveness of the
mechanism through real experiments; Section 4 discusses related work; and Section 5
concludes the paper.

2 Thread Optimization for Sensor Applications

This section explains optimization techniques for implementing threads on sensor
nodes. Considering the resource constraints of conventional sensor hardware, we
propose various techniques in our work: Single kernel stack reduces the size of thread

 Multithreading Optimization Techniques for Sensor Network Operating Systems 295

stack requirement, and Stack-size analysis automatically assigns an appropriate stack
size to each thread. Variable timer reduces the overhead of system timer, hence
reducing energy consumption. Event-boosting thread scheduler satisfies the response
time requirement for sensor applications.

2.1 Single Kernel Stack

Multithread systems require stack reservation for each thread. The amount of the
required stack of a thread is the sum of the resource required by thread functions,
system calls, interrupt handlers and hardware context saving. In general, sensor
applications are implemented with system API such as radio packet transmission, and
system calls and interrupt handlers use a large portion of the thread stack. Considering
these characteristics, we propose single kernel stack management for data memory
efficiency. Single kernel stack management separates the thread stack into kernel and
user stacks, and maintains a unitary kernel stack for system calls and interrupt
handlers to reduce the thread stack bound. Equation 1 explains the total stack size for
the multiple kernel stack system. The size for the single kernel stack system is
obtained by Equation 2. The sum is computed for the number of application threads.
Without any threads, multiple kernel stack systems and single kernel stack systems
have the same data memory usage for stack. However, the effect of the single kernel
stack becomes more significant when the number of threads increases.

∑ ++ } /)max() {max(contextwhISRcallsystem (1)

∑++) /()max() max(contextwhISRcallsystem
(2)

In the single kernel stack system, the kernel stack is shared among every thread. A
controlled access to the kernel stack is implemented in such a way that the system
does not arbitrarily interleave execution flow, including thread preemption, while in
the kernel mode. Thread switching could be performed immediately prior to returning
to user mode and executing an idle function, such as at the time when all work pushed
on the kernel stack is completed. With thread preemption, hardware contexts are
saved in each thread’s thread control block (TCB) due to kernel stack sharing.

Although the single kernel stack is unable to preempt threads in the kernel mode, it
does not inhibit real-time operation of the kernel. With this technique, the execution
context and the development environment of the kernel and the user are isolated.
Because the kernel is interrupt-driven, the kernel developer, based on underlying
system analysis, gives high concurrency to system components such as device drivers
or the network stack.

2.2 Stack-Size Analysis

With MMU-less hardware, application developers must estimate accurate thread stack
size to optimize the memory usage. A given stack size that is less than the size
required by the thread causes stack overflow and easily crashes a system. Assigning a

296 H. Kim and H. Cha

large stack would cause data memory overhead. The proposed stack-size analysis
provides minimal and system-safe stack requirements for each thread, so the kernel
automatically allocates an appropriate stack size for threads.

Table 1. MSP430 instructions concerned with stack usage

Instruction Stack usages Description
push var + 2 Push a value
pop var - 2 Pop a value
call #label + 2 Push return address

sub SP, N + N Directly adjust stack pointer (function prologue)
add SP, N - N Directly adjust stack pointer (function epilogue)

The proposed stack analysis produces a control flow graph of an application.
Function label, start address and internal stack usage are used as nodes in the graph,
and branch instructions are used as edges. The technique then calculates the
maximum possible thread stack size with a straightforward depth-first search. The
operations are conducted with a binary image, which results from linking the
application programmer’s code with libraries and compiler-generated codes. Table 1
shows the TI MSP430 instructions, which are related to detecting a function’s stack
usage. Unlike previous stack bounding techniques [12, 13], which focus on the
behavior of the interrupt handler, the proposed technique is based on a system where
interrupts are handled by the kernel stack. Thus, this technique determines exact stack
usages of functions using the instructions listed in Table 1 only.

The set of start nodes for traversing the flow graph consists of every thread
function in an application. Finding out the start nodes depends on the programming
language and thread library. On the RETOS operating system, where a user programs
a sensor application with standard C and pthread library, we can detect the start node
for the main thread with the label “main” and each child thread with the parameter of
pthread_create(). The thread start address and stack requirement are stored in the
header field of application files, and the kernel looks up the information to create a
new thread with optimal stack size.

The proposed technique, however, cannot analyze stack size if the application
uses recursive calls or indirectly addressed function calls. Recursive calls create
cycles in the flow graph and indirect calls cause a disconnect in the flow graph. In
these cases, there is no proper way to know the accurate thread stack size. We have
implemented the proposed technique as a tool that notifies users if the analysis fails.
In addition, we allow users to determine the default thread size on the RETOS
operating system, which is equipped with the application safety mechanism [9]. The
mechanism inserts dynamic checking code for stack safety to the application, when
the stack-size analysis fails. With the safety mechanism, users do not need to be
aware of any restrictions such as explicit prohibition of recursive calls, and the
system is safe.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 297

2.3 Variable Timer

The multithreading model of computation generally incurs energy overhead due to
context switching, scheduler execution, and system timer management. Context
switching and scheduling are known to be the source of major overhead in threaded
systems. However, the frequency of scheduling in the threaded system is much lower
than that of passing messages between handlers in the event-driven system [6], and
the context saving and restoring overhead is only a moderate issue in common sensor
nodes [8]. In our work, we propose a variable timer technique to minimize energy
consumption of the multithreading system.

The system timer manages timer requests from threads and updates the remaining
time quantum of currently running threads. In general-purpose threaded systems, the
timer management relies on a periodic timer interrupt. This continuously triggers the
interrupt handler whether timer handling requests are present or not, and so increases
energy consumption of the sensor node, which stays idle most of the time. Moreover,
the periodic timer interrupt restricts the time accuracy within the timer interval. If the
interrupt interval is reduced, a significant amount of system power is wasted in order
to handle the interrupt. Instead of the periodic timer, the system may use a variable-
time tick rate by way of reprogramming the tick rate with an upcoming timeout
request. The variable timer can solve these problems. General purpose systems do not
use the variable timer because the cost of reprogramming timer requests from
hundreds of threads is much higher than for the periodic timer interrupt. Alternately,
sensor network applications are typically programmed with a relatively small number
of threads and timer requests. Thus, it is reasonable to adopt the variable timer tick
rate for threaded sensor systems.

Fig. 1. Variable- and periodic-timer based systems

The variable timer reprograms the timer interrupt interval to the earliest upcoming
timeout among the time quantum of currently running thread and the timer requests,
such as the sleep() system-call. Figure 1 compares the periodic timer and variable
timer systems. General-purpose systems handle the time quantum expiration through

298 H. Kim and H. Cha

the periodic timer interrupt. In Figure 1(a), thread B wants to wake up after 3ms, but
with the 10ms interval it is difficult to meet this request in the system. Unnecessary
timer interrupts are generated per 10ms. Figure 1(b) shows the case of the variable
timer system; thread B can preempt other threads at 3ms, which is the time when
thread B is originally requested, and no more timer interrupts are invoked. The effect
of the variable timer system depends on the cost and frequency of timer
reprogramming. Section 3 evaluates the correlation of the cost for reprogramming a
timer and the frequency on a real sensor node device.

2.4 Event-Boosting Thread Scheduling

The RETOS operating system supports the POSIX 1003.1b real-time scheduling
interface [19] to enable both programmers’ explicit priority assignment and kernel’s
dynamic priority management. Threads are scheduled by three policies, SCHED_RR,
SCHED_FIFO, and SCHED_OTHER, and the system-calls are provided for
programmers to adjust their policy and priority. SCHED_OTHER is the default policy
and always has less priority than SCHED_RR or SCHED_FIFO.

Fig. 2. Typical sensor applications on the multithreading system

We now describe the SCHED_OTHER policy proposed in our work. Although
users do not manually give priority assignment to application threads, the operating
system should satisfy threads with fast response time. Figure 2 shows typical sensor
application codes. The key objectives of common sensor applications are packet
forwarding and sensing. Threads usually receive a packet, process data, and forward
the result. Threads also collect sensor data, process it, and sleep for a regular period.
General operating systems typically classify threads into I/O bound and CPU bound,
and they prefer I/O bound threads for high interactivity. From the aspect of sensor
node operation, almost every sensor thread is treated as I/O bound, or else the thread
property is infinitely switched between I/O bound and CPU bound due to the iteration
of I/O and computation in the sensor thread. Therefore, a scheduling policy which
specifically concerns sensor network applications should be developed to provide fast
response time.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 299

Table 2. Priority adjustment for event-boosting

 Dynamic priority Description
Init. 4 Thread created
sleep() +3 Timer request
radio_recv() +2 Radio event request
sensor_read() +1 Sensor event request
Consuming CPU time - 1 per 8ms Decrease dynamic priority

In our work, we propose an event-boosting thread scheduler to increase the event
response time of threads. The scheduler directly boosts the priority of the thread
requesting to handle a specific event. Events in the sensor network applications are
defined as the expiration of the timer request, the reception of a packet, and the
completion of sensing. A thread issues a blocking system-call to handle one of these
events, and the kernel enhances the thread’s priority according to the type of system-
call. When an event occurs, the priority-boosted thread will be able to rapidly preempt
other threads. The priority of the thread reduces with the CPU-consumed time. Hence,
other threads have chances to be re-scheduled. Table 2 shows the priority adjustment
for event-boosting scheduling policy. Threads are created with the initial priority, and
obtain higher priority if they call sleep(), radio_recv(), and sensor_read() system-calls.
Thread priority is decreased by 1 per 8ms of consumed CPU time. Concerning the
priority adjustment, we have not conducted any formal evaluation on the value of
adjustment, but rather used a subjective user study on the RETOS operating system.
We considered that the explicit timer request is the most critical job and the radio
event is more important than the sensor event.

In the real implementation, it is also important to avoid starvation and to provide
fairness. Therefore, we compare the remaining thread time quantum if there are
equally prioritized SCHED_OTHER threads. When all threads in the run-queue have
exhausted their time quanta, the scheduler re-computes the time quantum duration of
all threads in the system. The idea for assigning a new quantum is adopted from
Linux, which gives half the previously remaining quantum plus a default time
quantum to threads.

3 Evaluation

This section presents the experimental results of the proposed multithreading
techniques. The experiment evaluates the efficiency of single kernel stack and stack-
size analysis, the timer handling overhead of variable timer management, and the
concurrency supports of an event-boosting scheduler. Furthermore, the overall effect
of optimization techniques are validated by running a real sensor application both on
RETOS and TinyOS, the former being a dual mode based multithreaded system and
the latter being a single mode and event-driven operating system. RETOS have been
implemented for the TI MSP430 F1611 (8Mhz, 10Kb RAM, 48Kb Flash) and
CC2420 (IEEE 802.15.4) based Tmote Sky hardware platform [14]. The execution
results are based on the average results over 10 sets of 30 runs.

300 H. Kim and H. Cha

3.1 Effect of Stack Optimization

The single kernel stack and stack-size analyses are to optimize stack usage of the
multithreaded system. To adequately evaluate the efficiency of these techniques, we
considered entire stack usage on the system. Seven sensor network applications were
used for the test. MPT_mobile and MPT_backbone are decentralized multiple-object
tracking programs [15]. When the MPT_mobile node moves around, it sends both an
ultrasound signal and beacon messages every 300ms to nearby MPT_backbone nodes.
MPT_backbone nodes then report their distance to the mobile node, and MPT_mobile
computes its location using trilateration. R_send and R_recv are programs to send and
receive radio packets with reliability. Sensing samples the data and forwards it to the
neighbor node. Pingpong makes two nodes blink in turns by means of a counter-
exchange. Surge is a multihop data collecting application which manages a neighbor
table and routes the packet.

Table 3. Kernel stack and thread context block requirements

 Kernel stack size
(byte)

Increase of TCB+
H/W context (byte)

Single kernel stack system 76 18
Multiple kernel stack system 76 16

Table 4. Efficiency of a single kernel stack based system

Applications Num. of User stack Data section Kernel stack (byte)
 Threads (byte) (byte) Multiple Single

MPT_backbone 1 68 131 152 76
MPT_mobile 2 78 416 228 76

R_send 3 78 217 304 76
R_recv 3 50 214 304 76
Sensing 2 18 157 228 76

Pingpong 1 8 106 152 76
Surge 4 98 336 380 76

In order to evaluate the single kernel stack, we have implemented two versions of
RETOS to measure the effectiveness of stack usage reduction. For the easy stack size
comparison, the multiple kernel stack system also stores the hardware context in the
TCB. Table 3 shows the size of the required kernel stack and the increase of TCB plus
the hardware context for each kernel. The kernel stack requirement is detected by
executing all system-calls and interrupt handlers in each system. As the two systems
have the same kernel control flow except the kernel stack management scheme, the
kernel stack size on the single kernel stack system is identical with the size on the
multiple kernel stack system. The increase of TCB plus the amount of saving the
hardware context on the single kernel stack system, however, differs from the
multiple kernel stack system, since the single kernel stack system requires two more
bytes to store the thread return address.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 301

Table 4 shows the results of running sensor applications on two systems. With the
multiple kernel stack system, the kernel stack is required for the idle thread and each
application thread. Meanwhile, the single kernel stack system uses only 76 bytes of
RAM for the kernel stack independent of the number of application threads. The more
threads that are created, the more significant the expected stack efficiency on the this
system. Our results also show that the stack reservation overhead on the threaded
system is trivial. Most of sensor application threads require a little stack size. Sensing
and Pingpong applications, for instance, can be implemented with 18 and 8 bytes of
user stack, respectively.

 As described in Section 2.2, we have developed a stack-size analysis technique.
For the seven sensor applications, the estimated maximum stack size was compared
with the worst stack depth via simulation. The sensor application does not use an
indirectly addressed function call, so the technique successfully analyzes each
program’s stack size. The results of the proposed technique were equal to 1 or 2
words more than the results of simulation, and the technique gave the same call graph
with the program’s control flow, which was determined manually. We also tested this
technique on a program which uses indirect function calls. For this program, the
technique could not produce a call graph. However, the stack overflow of an
application with an immediate stack size was detected in run-time, indicating that the
system safety was maintained.

3.2 Effect of Variable Timer

We have implemented two versions of the system using the variable and periodic
timer techniques. Since the major difference in the energy consumption between the
two systems is the amount of CPU usage, we measured the active CPU time to
estimate the energy consumption. Figure 3(a) shows the performance efficiency of the
variable timer compared to the periodic timer. One tick in the variable timer is 1ms,
and 10ms on the periodic timer. The experimental results include the execution time
of a timer interrupt handler and a timer reprogramming routine. The effectiveness of
variable timer differs from the execution cycle of applications. MPT_mobile, R_send,
Sensing, Pingpong, and Surge are periodic programs and are executed every 300ms,
100ms, 1000ms, 1500ms, and 2048ms, respectively. R_send is the most energy
consuming program among the seven benchmark applications. Because R_send
transmits a radio packet every 100ms and performs ACK and the timeout-based
packet retransmission, it creates more frequent timer requests than other applications.
MPT_backbone and R_recv are reactive applications, which are only executed with
radio packet reception. Pingpong and Surge have a relatively slow execution period.
Therefore, these applications get significant energy reduction on the variable timer
based system.

In order to clearly compare the performance of variable timer and the periodic
timer by the timer request interval, we measured the overhead of the timer
management routine. The blink application was used for the evaluation by adjusting
the period from 20ms to 1000ms. Figure 3(b) shows the results of this evaluation.
When the timer request interval is long, variable timer system spends definitively less
overhead than the periodic timer system. However, as the timer interval increases, the
overhead on the variable timer becomes larger. At the 20ms of interval, two systems

302 H. Kim and H. Cha

(a) benchmark applications

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

MPT_backbone

MPT_mobile

R_send
R_recv

Sensin
g

Pingpong
Surge

cy
cl

es
/s

ec

variable timer

periodic timer

(b) varying interval of b link

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1000ms 500ms 250ms 125ms 64ms 32ms 20ms

cy
cl

es
/s

ec

variable timer

periodic timer

Fig. 3. Timer management overhead

have almost the same overhead because the variable timer takes a longer time per
each timer request than the periodic timer, due to the time required to determine the
next upcoming timeout event and reprogram the system timer. In this experiment, the
periodic timer system has a 10ms tick. If the periodic timer system is implemented to
use a 1ms tick as with the variable timer, more overhead would be required to handle
timer interrupts.

3.3 Effect of Event-Boosting Scheduling Policy

This section shows that the event-boosting scheduler can effectively satisfy sensor
applications’ event requests. The test application is a packet round-trip program which
continuously sends and receives a packet between two nodes. The first node sends a
packet out while the second node receives and returns it to the first node. The first node
waits for a reply from the second node and then repeats this process. The round-trip
application runs with only two nodes, so that the influence of radio channel and back-
off time of the MAC is minimized. The response time for the thread to handle a packet
depends on the number of other threads in the system and the scheduling policy.
Hence, we can evaluate the functionality of a thread scheduler with radio throughput of
the application. The other threads in our experiment are designed to add loads to the
scheduler, and perform 10ms of computation each at 100ms intervals.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 303

50

60

70

80

90

100

110

0 1 2 3 4 5

Num. of other thread

R
ou

nd
 tr

ip
s

/ s
ec

SCHED_RR(fixed priority)
SCHED_OTHER(round robin)
SCHED_OTHER(event-boost)

Fig. 4. Scheduling policy comparison

Figure 4 represents the number of round-trips per minute according to the
scheduling policy. If users are not concerned with adjusting scheduling policy,
SCHED_OTHER is the default policy for threads. In the case of implementing
SCHED_OTHER as a simple round-robin, the number of round-trips decreases
according to the increment of the other threads. Because preemption is not performed
when other threads do not finish their execution or exhaust their time quantum, the
radio packet handling is delayed. In the case of explicitly configuration of the round-
trip thread as SCHED_RR, the application, which has always higher priority than
others, maintains a fixed round-trip performance independent of the number of other
threads. The performance of the system, which uses the proposed event-boosting
technique for SCHED_OTHER threads, is nearly the same as the case of
SCHED_RR. Although users do not manually configure the priority of threads, the
dynamic priority adjustment of the event-boosting scheduler minimizes the event
handling delay of sensor application threads.

 3.4 RETOS vs. TinyOS

This section compares the multithreaded operating system RETOS with the event-
driven TinyOS by developing a sensor application. TinyOS is a component-based
operating system, and has no distinction between the kernel and the application.
Components are programmed with event-driven model and compiled to a single
binary image. RETOS provides a rich development environment with preemptive
threads. The proposed thread optimization reduces the overhead of traditional
multithreading and increases thread response time. We used RETOS v0.96 and
TinyOS v1.1.13 for this experiment, and the applications used in the experiment are
MPT and a simple packet transmission. MPT is a mobile object tracking program [15]
based on ultrasound localization technique. MPT consists of mobile node and
backbone node, and the mobile node computes its location using trilateration every
300ms. The trilateration takes approximately 16ms to determine the location. We
have considered inserting a simple code which periodically sends and receives a radio

304 H. Kim and H. Cha

Fig. 5. Packet handling delay

packet to the above application. The sink node transfers a packet every 100ms, and
the mobile node receives and counts it. We measured the time from the FIFOP
interrupt handling at the CC2420 radio driver to the packet at the thread.

Figure 5 shows the packet-handling latency on RETOS and TinyOS. The purpose
of this experiment was to understand the dependency of MPT execution time and
packet handling. The results were measured after the two applications’ start time was
synchronized. With the RETOS system, the packet-handling latency was almost the
same whether or not MPT was run, because application threads are preemptive and a
packet was received by the radio device driver located in the kernel. In the case of the
TinyOS system, the packet-handling latency without MPT was slightly shorter than
RETOS. With MPT, the latency was considerably longer than in the other three cases.
The extended latency was caused by long computation time of trilateration in the
MPT application, which can delay the packet-handler task’s execution on the TinyOS.

Fig. 6. Execution time of MPT Trilateration observed by oscilloscope

Figure 6 shows the execution pattern of trilateration as observed by oscilloscope.
Trilateration was performed every 300ms and took approximately 16ms. We tried to
reduce the delay by splitting the trilateration into several phases, but this made the

 Multithreading Optimization Techniques for Sensor Network Operating Systems 305

Table 5. Code size for MPT application

TinyOS
(bytes)

RETOS Kernel
(bytes)

RETOS Lib.
+ App. (bytes)

RETOS Total
(bytes)

 ROM RAM ROM RAM ROM RAM ROM RAM
MPT

Backbone
12614 467 18314 748 492 143 18806 891

MPT
Mobile

17222 701 18314 748 6848 434 25162 1182

program control flow complex and rendered it difficult to manage the increased
number of states. Moreover, measurement of the execution time of each code fragment
was necessary to determine whether the split provided reasonable performance.

As RETOS is a multithreaded operating system, it is considered to have more time
and space overhead than the event-driven TinyOS. Table 5 shows the code size of
MPT on RETOS and TinyOS. The RETOS system uses less than 30Kbytes of flash
memory and 2Kbytes of RAM. Although the code size of RETOS is bigger than that
of TinyOS, RETOS supports functionality such as application safety mechanism [9],
dynamic loadable module [10] and the network stack [11], which are barely supported
by the native TinyOS system.

Figure 7(a) compares the computational overhead of MPT with RETOS and TinyOS.
MPT_mobile spends 2% more overhead with RETOS; it performs thread preemption
and scheduling, and also dynamic code checking for system safety. Figure 7(b) shows

(a) System overhead

679200

691491

0 100000 200000 300000 400000 500000 600000 700000 800000

TinyOS

RETOS

cycles/sec

(b) RETOS Overhead analysis

Kernel
42.42%

Scheduler
34.2% (0.93%)

Mode switching
9.5% (0.26%)

Context witching
13.6% (0.37%)

App code checking
42.7% (1.16%)User thread

54.86%

Etc
2.72%

Fig. 7. Computational overhead

306 H. Kim and H. Cha

the CPU usage distribution of the RETOS system. The user thread occupies 55% of
total processing time. The kernel portion is approximately 42% due to the frequent
use of radio communication. On the other hand, the amount of calculation time caused
by mode switching, scheduler execution and context switching is trivial, compared
with the entire processing time. The portion of context switching, mode switching and
scheduler execution overhead may be bigger when an application requires little radio
communication or computations. Nevertheless, the experiment results show that
multithreading could be implemented with reasonable overhead on current sensor
node hardware.

4 Related Work

TinyOS [1], the industry defacto sensor network operating system, is based on an
event-driven model and provides nesC [16] programming language. TinyOS is
considered to provide high concurrency without thread stack reservation, which is
essential to multithreading. SOS [2] provides dynamically loadable modules and
adopts an event-driven model to avoid context switching overhead for multithreading.
However, event-driven models can be inconvenient when developing applications. As
event handlers are run to completion, programmers must split long-lived tasks into
several phases of codes for concurrency. The tasks of the event-model cannot be
blocked, hence a single conceptual function with an I/O operation should be divided
into two separate sub functions, one for before and the other for after the I/O
operation. The stack frame in the split function is manually maintained by
programmers, and it increases the use of global variables. These issues of event-
driven model induce poor software structure and render it difficult to debug and
develop applications [6, 17].

MANTIS [8] provides a multithreaded programming model, which implement
traditional multithreading in sensor nodes. The system shows that programming long-
running tasks is much easier than in an event-driven model. With the MANTIS
system, programmers heuristically assign a stack size to each thread. If the stack size
is too big, the system will suffer from memory insufficiency. If the stack is too small,
stack may overflow and system will fail. In MANTIS, fixed priority scheduling based
on round-robin is not able to fully utilize the advantage of preemption without the
programmer making a manual priority adjustment. As the MANTIS scheduler is
executed every 10ms, the overhead for context switching and timer interrupt handling
is not trivial. Contiki [7] provides a thread library that works on the event-driven
system. With Contiki, programmers empirically choose an appropriate programming
model among event-driven, protothread [18], and multithread libraries to develop an
application. Hybrid approaches have been studied to integrate the merits of an event
model and thread-based model. Adya et al. [17] suggest the combined usage of event
and thread model in the same program, but this requires programmers to thoroughly
understand the differences between the two models and to appropriately choose the
alternatives. Protothread [18] does not require stack reservation; however it cannot
maintain local variables and can block only in an explicitly declared area.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 307

5 Conclusion

In this paper, we described multithreading optimization techniques for sensor
applications development. Our techniques contribute to possible solutions toward
three major problems involved in the implementation of threaded operating systems
on resource-constraint sensor nodes—memory resource, energy consumption, and
scheduling policy. Single kernel stack and stack-size analysis techniques reduce the
memory requirement of a thread model. Variable timer achieves power reduction by
improving the timer management scheme. Event-boosting scheduling policy reflects
the characteristics of sensor applications and provides fast response time of threads
without explicit priority configuration. With the proposed techniques, the overhead of
multithreading is reported to be approximately 2% of the total execution time on the
TI MSP430 processor, and the system guarantees minimal response delay to sensor
applications.

Application libraries or system calls are being implemented, and extensive testing
is also conducted on the RETOS sensor operating system. We are presently improving
the performance and the energy efficiency of the network stack for radio
communication on RETOS, as well as implementing device drivers for diverse
sensors and porting them to other processors.

Acknowledgements

This work was supported by the National Research Laboratory (NRL) program of the
Korea Science and Engineering Foundation (2005-01352), and the MIC(Ministry of
Information and Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of Information
Technology Advancement) (IITA-2006-C1090-0603-0015).

References

1. Hill, J., Szewczyk, R., Woo, A, Hollar, S., Culler, D., and Pister, K.: System architecture
directions for network sensors. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
Cambridge, MA, 2000.

2. Han, C. C., Rengaswamy, R. K., Shea, R., Kohler, E., and Srivastava, M.: SOS: A
dynamic operating system for sensor networks. In Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services (Mobisys), Seattle, WA, 2005.

3. Li, S.-F., Sutton, R., and Rabaey, J.: Low Power Operating System for Heterogeneous
Wireless Communication Systems. In Proceedings of the Workshop on Compilers and
Operating Systems for Low Power, Barcelona, Spain, 2001.

4. Regehr, J., Reid, A., Webb, K., Parker, M., and Lepreau, J.: Evolving real-time systems
using hierarchical scheduling and concurrency analysis. In Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS), Cancun, Mexico, 2003.

5. Ousterhout, J. K.: Why threads are a bad idea (for most purposes). Invited Talk at the 1996
USENIX Technical Conference, 1996.

308 H. Kim and H. Cha

6. Behren, R., Condit, J., and Brewer, E.: Why events are a bad idea (for high-concurrency
servers). In Proceedings of the 9th Workshop on Hot Topics in Operating Systems
(HotOS), Lihue, Hawaii, 2003.

7. Dunkels, A., Grönvall, B., and Voigt, T.: Contiki - a Lightweight and Flexible Operating
System for Tiny Networked Sensors. In Proceedings of the 1st IEEE Workshop on
Embedded Networked Sensors (EmNetS), Tampa, Florida, 2004.

8. Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruenwald, C.,
Torgerson, A., and Han, R.: MANTIS OS: An Embedded Multithreaded Operating System
for Wireless Micro Sensor Platforms. ACM/Kluwer Mobile Networks & Applications,
Special Issue on Wireless Sensor Networks, vol.10, no.4, 2005.

9. Kim, H., and Cha, H.: Towards a Resilient Operating System for Wireless Sensor
Networks. In Proceedings of the 2006 USENIX Annual Technical Conference, Boston,
MA, 2006.

10. Shin, H., and Cha, H.: Supporting Application-Oriented Kernel Functionality for Resource
Constrained Wireless Sensor Nodes. In Proceedings of the 2nd International Conference
on Mobile Ad-hoc and Sensor Networks, Hong Kong, China, 2006.

11. Choi, S., and Cha, H.: Application-Centric Networking Framework for Wireless Sensor
Nodes. In Proceedings of the 3rd Annual International Conference on Mobile and
Ubiquitous Systems: Networks and Services, San Jose, CA, 2006.

12. Regehr, J., Reid, A., and Webb, K.: Eliminating stack overflow by abstract interpretation.
In Proceedings of the 3rd International Conference on Embedded Software, Philadelphia,
PA, 2003.

13. Brylow, D., Damgaard, N., and Palsberg, J.: Static checking of interrupt-driven software.
In Proceedings of the 23rd International Conference on Software Engineering, Toronto,
Canada, 2001.

14. Tmote Sky. http://www.moteiv.com.
15. Yi, S., and Cha, H.: Active Tracking System using IEEE 802.15.4-based Ultrasonic Sensor

Devices. In Proceedings of the 2nd International Workshop on RFID and Ubiquitous
Sensor Networks, Seoul, Korea, 2006.

16. Gay, D., Levis, P., Behren, R., Welsh, M., Brewer, E., and Culler, D.: The nesC Language:
A Holistic Approach to Network Embedded Systems. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation
(PLDI), San Diego, CA, 2003.

17. Adya, A., Howell, J., Theimer, M., Bolosky, W. J., and Douceur, J. R.: Cooperative Task
Management Without Manual Stack Management. In Proceedings of the 2002 USENIX
Annual Technical Conference, Monterey, CA, 2002.

18. Dunkels, A., Schmidt, O., and Voigt, T.: Protothreads: Simplifying Event-Driven
Programming of Memory-Constrained Embedded Systems. In Proceedings of the 4th
ACM Conference on Embedded Networked Sensor Systems (Sensys), Boulder, Colorado,
2006.

19. POSIX 1003.1B. http://www.unix.org/version3

	Introduction
	Thread Optimization for Sensor Applications
	Single Kernel Stack
	Stack-Size Analysis
	Variable Timer
	Event-Boosting Thread Scheduling

	Evaluation
	Effect of Stack Optimization
	Effect of Variable Timer
	Effect of Event-Boosting Scheduling Policy
	RETOS vs. TinyOS

	Related Work
	Conclusion
	References

