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Abstract. While a multithreading approach provides a convenient sensor 
application developing environment with automatic control flow and stack 
managment, it is considered to have a larger data memory requirement and 
energy consumption than an event-driven model. Current threaded sensor 
operating systems unfortunately do not provide appropriate solutions. This 
paper presents multithreading optimization techniques for sensor network 
operating systems. Our work focuses on the three major problems of 
implementing threads on resource-constraint sensor nodes—memory resources, 
energy consumption, and scheduling policy. Single kernel stack and the thread 
stack-size analysis techniques reduce the RAM requirement of thread model. 
The variable timer saves energy consumption and the event-boosting thread 
scheduling reflects the characteristics of sensor applications and provides fast 
response time to threads. The experimental results on a common sensor node 
show that the multithreaded system could be effectively implemented with 
reasonable overhead. 

Keywords: sensor network operating system, multithreading optimization 
technique. 

1   Introduction 

Wireless sensor networks have been well-studied in terms of the increasing variety of 
hardware and the development of diverse applications which now require 
sophisticated system software. Sensor nodes are normally battery-operated, memory-
limited and have low computational power. Sensor network operating systems, 
therefore, should support high concurrency with minimal memory usage and low 
energy consumption. Unlike general purpose operating systems, popular sensor 
operating systems such as TinyOS [1] and SOS [2] adopt an event-driven model to 
meet these tight constraints. They execute applications with reactive event handlers 
and cooperatively-operated run-to-completion tasks. Li et al. [3] reported that the 
event-driven TinyOS achieves about a 30-fold improvement in data memory 
requirement and a 12-fold reduction in power consumption over general purpose 
multithreaded embedded operating systems. 

Although the event-driven sensor operating systems are implemented efficiently in 
a resource-constraint environment, they do not provide all the functions of general 
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purpose operating systems. Developers typically suffer from the manual configuration 
when programming applications. With TinyOS and SOS, for example, developers 
have to split a long-running task, which can unnecessarily delay other tasks, into 
several phases. Programmers also take responsibility for managing event handlers’ 
states. As tasks are inter-dependent in the execution context, the repeated analysis of 
system concurrency and system restructuring is inevitable in order to meet the 
changes in application requirements [4]. 

In contrast to the event-driven approach, multithreading inherently provides high 
concurrency with preemption and automatic state management. It also allows 
programmers to specify control flow. Sensor applications frequently request sensing 
and radio communication. With an event-driven model, the programmers may split 
one conceptual function into multiple functions for I/O operations, but multithread 
systems easily handle it by blocking the I/O interface. Synchronization and deadlock 
problems experienced with thread [5] can be managed by compiler support and 
development tools [6]. As most existing development tools are based on threads, 
multithread systems could provide a general and more efficient development 
environment. However, threads tend to incur more time and space overhead than 
events. Stack reservation for each stack is indispensable for multithreading systems. 
Context switching overhead is caused by preemption and blocking. Kernel services, 
such as a scheduler and system timer management, are also required. Data memory 
and energy requirement of multithreading is an obvious obstacle to the resource-
constraint sensor nodes. In addition, a scheduling policy optimized for sensor 
applications should be developed. Although the multithreading approach is attractive 
in sensor application developments, current thread-based sensor operating systems [7, 
8] do not provide appropriate solutions for overhead problems or a scheduling issue. 
This has motivated us to develop multithreading techniques specifically designed for 
sensor nodes. 

This paper presents optimized techniques for the implementation of multithreaded 
sensor network operating systems. The thread model for sensor nodes should consider 
memory resource, energy consumption, and scheduling policy. The proposed 
techniques contribute to each issue by providing multithreading functions while 
consuming reasonable overhead compared to existing event-driven sensor operating 
systems. Our techniques are implemented in the RETOS operating system [9, 10, 11], 
although they are applicable to other thread-based sensor operating systems. The 
effectiveness of the proposed techniques is validated by experiments conducted on a 
commercial mote running the RETOS operating system. 

The rest of this paper is organized as follows: Section 2 describes the proposed 
multithreading optimization techniques; Section 3 validates the effectiveness of the 
mechanism through real experiments; Section 4 discusses related work; and Section 5 
concludes the paper. 

2   Thread Optimization for Sensor Applications 

This section explains optimization techniques for implementing threads on sensor 
nodes. Considering the resource constraints of conventional sensor hardware, we 
propose various techniques in our work: Single kernel stack reduces the size of thread 
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stack requirement, and Stack-size analysis automatically assigns an appropriate stack 
size to each thread. Variable timer reduces the overhead of system timer, hence 
reducing energy consumption. Event-boosting thread scheduler satisfies the response 
time requirement for sensor applications. 

2.1   Single Kernel Stack 

Multithread systems require stack reservation for each thread. The amount of the 
required stack of a thread is the sum of the resource required by thread functions, 
system calls, interrupt handlers and hardware context saving. In general, sensor 
applications are implemented with system API such as radio packet transmission, and 
system calls and interrupt handlers use a large portion of the thread stack. Considering 
these characteristics, we propose single kernel stack management for data memory 
efficiency. Single kernel stack management separates the thread stack into kernel and 
user stacks, and maintains a unitary kernel stack for system calls and interrupt 
handlers to reduce the thread stack bound. Equation 1 explains the total stack size for 
the multiple kernel stack system. The size for the single kernel stack system is 
obtained by Equation 2. The sum is computed for the number of application threads. 
Without any threads, multiple kernel stack systems and single kernel stack systems 
have the same data memory usage for stack. However, the effect of the single kernel 
stack becomes more significant when the number of threads increases. 

∑ ++ } /)max() {max( contextwhISRcallsystem  (1) 

∑++ ) /()max() max( contextwhISRcallsystem  
(2) 

In the single kernel stack system, the kernel stack is shared among every thread. A 
controlled access to the kernel stack is implemented in such a way that the system 
does not arbitrarily interleave execution flow, including thread preemption, while in 
the kernel mode. Thread switching could be performed immediately prior to returning 
to user mode and executing an idle function, such as at the time when all work pushed 
on the kernel stack is completed. With thread preemption, hardware contexts are 
saved in each thread’s thread control block (TCB) due to kernel stack sharing. 

Although the single kernel stack is unable to preempt threads in the kernel mode, it 
does not inhibit real-time operation of the kernel. With this technique, the execution 
context and the development environment of the kernel and the user are isolated. 
Because the kernel is interrupt-driven, the kernel developer, based on underlying 
system analysis, gives high concurrency to system components such as device drivers 
or the network stack. 

2.2   Stack-Size Analysis 

With MMU-less hardware, application developers must estimate accurate thread stack 
size to optimize the memory usage. A given stack size that is less than the size 
required by the thread causes stack overflow and easily crashes a system. Assigning a 
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large stack would cause data memory overhead. The proposed stack-size analysis 
provides minimal and system-safe stack requirements for each thread, so the kernel 
automatically allocates an appropriate stack size for threads. 

Table 1. MSP430 instructions concerned with stack usage 

Instruction Stack usages Description 
push  var + 2 Push a value 
pop  var - 2 Pop a value 
call  #label + 2 Push return address 

sub  SP, N + N Directly adjust stack pointer (function prologue) 
add  SP, N - N Directly adjust stack pointer (function epilogue) 

The proposed stack analysis produces a control flow graph of an application. 
Function label, start address and internal stack usage are used as nodes in the graph, 
and branch instructions are used as edges. The technique then calculates the 
maximum possible thread stack size with a straightforward depth-first search. The 
operations are conducted with a binary image, which results from linking the 
application programmer’s code with libraries and compiler-generated codes. Table 1 
shows the TI MSP430 instructions, which are related to detecting a function’s stack 
usage. Unlike previous stack bounding techniques [12, 13], which focus on the 
behavior of the interrupt handler, the proposed technique is based on a system where 
interrupts are handled by the kernel stack. Thus, this technique determines exact stack 
usages of functions using the instructions listed in Table 1 only.  

The set of start nodes for traversing the flow graph consists of every thread 
function in an application. Finding out the start nodes depends on the programming 
language and thread library. On the RETOS operating system, where a user programs 
a sensor application with standard C and pthread library, we can detect the start node 
for the main thread with the label “main” and each child thread with the parameter of 
pthread_create(). The thread start address and stack requirement are stored in the 
header field of application files, and the kernel looks up the information to create a 
new thread with optimal stack size. 

The proposed technique, however, cannot analyze stack size if the application 
uses recursive calls or indirectly addressed function calls. Recursive calls create 
cycles in the flow graph and indirect calls cause a disconnect in the flow graph. In 
these cases, there is no proper way to know the accurate thread stack size. We have 
implemented the proposed technique as a tool that notifies users if the analysis fails. 
In addition, we allow users to determine the default thread size on the RETOS 
operating system, which is equipped with the application safety mechanism [9]. The 
mechanism inserts dynamic checking code for stack safety to the application, when 
the stack-size analysis fails. With the safety mechanism, users do not need to be 
aware of any restrictions such as explicit prohibition of recursive calls, and the 
system is safe. 
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2.3   Variable Timer 

The multithreading model of computation generally incurs energy overhead due to 
context switching, scheduler execution, and system timer management. Context 
switching and scheduling are known to be the source of major overhead in threaded 
systems. However, the frequency of scheduling in the threaded system is much lower 
than that of passing messages between handlers in the event-driven system [6], and 
the context saving and restoring overhead is only a moderate issue in common sensor 
nodes [8]. In our work, we propose a variable timer technique to minimize energy 
consumption of the multithreading system. 

The system timer manages timer requests from threads and updates the remaining 
time quantum of currently running threads. In general-purpose threaded systems, the 
timer management relies on a periodic timer interrupt. This continuously triggers the 
interrupt handler whether timer handling requests are present or not, and so increases 
energy consumption of the sensor node, which stays idle most of the time. Moreover, 
the periodic timer interrupt restricts the time accuracy within the timer interval. If the 
interrupt interval is reduced, a significant amount of system power is wasted in order 
to handle the interrupt. Instead of the periodic timer, the system may use a variable-
time tick rate by way of reprogramming the tick rate with an upcoming timeout 
request. The variable timer can solve these problems. General purpose systems do not 
use the variable timer because the cost of reprogramming timer requests from 
hundreds of threads is much higher than for the periodic timer interrupt. Alternately, 
sensor network applications are typically programmed with a relatively small number 
of threads and timer requests. Thus, it is reasonable to adopt the variable timer tick 
rate for threaded sensor systems. 

 

Fig. 1. Variable- and periodic-timer based systems 

The variable timer reprograms the timer interrupt interval to the earliest upcoming 
timeout among the time quantum of currently running thread and the timer requests, 
such as the sleep() system-call. Figure 1 compares the periodic timer and variable 
timer systems. General-purpose systems handle the time quantum expiration through 
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the periodic timer interrupt. In Figure 1(a), thread B wants to wake up after 3ms, but 
with the 10ms interval it is difficult to meet this request in the system. Unnecessary 
timer interrupts are generated per 10ms. Figure 1(b) shows the case of the variable 
timer system; thread B can preempt other threads at 3ms, which is the time when 
thread B is originally requested, and no more timer interrupts are invoked. The effect 
of the variable timer system depends on the cost and frequency of timer 
reprogramming. Section 3 evaluates the correlation of the cost for reprogramming a 
timer and the frequency on a real sensor node device. 

2.4   Event-Boosting Thread Scheduling 

The RETOS operating system supports the POSIX 1003.1b real-time scheduling 
interface [19] to enable both programmers’ explicit priority assignment and kernel’s 
dynamic priority management. Threads are scheduled by three policies, SCHED_RR, 
SCHED_FIFO, and SCHED_OTHER, and the system-calls are provided for 
programmers to adjust their policy and priority. SCHED_OTHER is the default policy 
and always has less priority than SCHED_RR or SCHED_FIFO.  

 
Fig. 2. Typical sensor applications on the multithreading system 

We now describe the SCHED_OTHER policy proposed in our work. Although 
users do not manually give priority assignment to application threads, the operating 
system should satisfy threads with fast response time. Figure 2 shows typical sensor 
application codes. The key objectives of common sensor applications are packet 
forwarding and sensing. Threads usually receive a packet, process data, and forward 
the result. Threads also collect sensor data, process it, and sleep for a regular period. 
General operating systems typically classify threads into I/O bound and CPU bound, 
and they prefer I/O bound threads for high interactivity. From the aspect of sensor 
node operation, almost every sensor thread is treated as I/O bound, or else the thread 
property is infinitely switched between I/O bound and CPU bound due to the iteration 
of I/O and computation in the sensor thread. Therefore, a scheduling policy which 
specifically concerns sensor network applications should be developed to provide fast 
response time. 
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Table 2. Priority adjustment for event-boosting 

 Dynamic priority Description 
Init. 4 Thread created 
sleep() +3 Timer request 
radio_recv() +2 Radio event request 
sensor_read() +1 Sensor event request 
Consuming CPU time - 1 per 8ms Decrease dynamic priority 

In our work, we propose an event-boosting thread scheduler to increase the event 
response time of threads. The scheduler directly boosts the priority of the thread 
requesting to handle a specific event. Events in the sensor network applications are 
defined as the expiration of the timer request, the reception of a packet, and the 
completion of sensing. A thread issues a blocking system-call to handle one of these 
events, and the kernel enhances the thread’s priority according to the type of system-
call. When an event occurs, the priority-boosted thread will be able to rapidly preempt 
other threads. The priority of the thread reduces with the CPU-consumed time. Hence, 
other threads have chances to be re-scheduled. Table 2 shows the priority adjustment 
for event-boosting scheduling policy. Threads are created with the initial priority, and 
obtain higher priority if they call sleep(), radio_recv(), and sensor_read() system-calls. 
Thread priority is decreased by 1 per 8ms of consumed CPU time. Concerning the 
priority adjustment, we have not conducted any formal evaluation on the value of 
adjustment, but rather used a subjective user study on the RETOS operating system. 
We considered that the explicit timer request is the most critical job and the radio 
event is more important than the sensor event.  

In the real implementation, it is also important to avoid starvation and to provide 
fairness. Therefore, we compare the remaining thread time quantum if there are 
equally prioritized SCHED_OTHER threads. When all threads in the run-queue have 
exhausted their time quanta, the scheduler re-computes the time quantum duration of 
all threads in the system. The idea for assigning a new quantum is adopted from 
Linux, which gives half the previously remaining quantum plus a default time 
quantum to threads. 

3   Evaluation 

This section presents the experimental results of the proposed multithreading 
techniques. The experiment evaluates the efficiency of single kernel stack and stack-
size analysis, the timer handling overhead of variable timer management, and the 
concurrency supports of an event-boosting scheduler. Furthermore, the overall effect 
of optimization techniques are validated by running a real sensor application both on 
RETOS and TinyOS, the former being a dual mode based multithreaded system and 
the latter being a single mode and event-driven operating system. RETOS have been 
implemented for the TI MSP430 F1611 (8Mhz, 10Kb RAM, 48Kb Flash) and 
CC2420 (IEEE 802.15.4) based Tmote Sky hardware platform [14]. The execution 
results are based on the average results over 10 sets of 30 runs. 
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3.1   Effect of Stack Optimization 

The single kernel stack and stack-size analyses are to optimize stack usage of the 
multithreaded system. To adequately evaluate the efficiency of these techniques, we 
considered entire stack usage on the system. Seven sensor network applications were 
used for the test. MPT_mobile and MPT_backbone are decentralized multiple-object 
tracking programs [15]. When the MPT_mobile node moves around, it sends both an 
ultrasound signal and beacon messages every 300ms to nearby MPT_backbone nodes. 
MPT_backbone nodes then report their distance to the mobile node, and MPT_mobile 
computes its location using trilateration. R_send and R_recv are programs to send and 
receive radio packets with reliability. Sensing samples the data and forwards it to the 
neighbor node. Pingpong makes two nodes blink in turns by means of a counter-
exchange. Surge is a multihop data collecting application which manages a neighbor 
table and routes the packet. 

Table 3. Kernel stack and thread context block requirements 

 Kernel stack size 
(byte) 

Increase of TCB+  
H/W context (byte) 

Single kernel stack system 76 18 
Multiple kernel stack system 76 16 

Table 4. Efficiency of a single kernel stack based system 

Applications Num. of  User stack Data section Kernel stack (byte) 
 Threads (byte) (byte) Multiple Single 

MPT_backbone 1 68 131 152 76 
MPT_mobile 2 78 416 228 76 

R_send 3 78 217 304 76 
R_recv 3 50 214 304 76 
Sensing 2 18 157 228 76 

Pingpong 1 8 106 152 76 
Surge 4 98 336 380 76 

In order to evaluate the single kernel stack, we have implemented two versions of 
RETOS to measure the effectiveness of stack usage reduction. For the easy stack size 
comparison, the multiple kernel stack system also stores the hardware context in the 
TCB. Table 3 shows the size of the required kernel stack and the increase of TCB plus 
the hardware context for each kernel. The kernel stack requirement is detected by 
executing all system-calls and interrupt handlers in each system. As the two systems 
have the same kernel control flow except the kernel stack management scheme, the 
kernel stack size on the single kernel stack system is identical with the size on the 
multiple kernel stack system. The increase of TCB plus the amount of saving the 
hardware context on the single kernel stack system, however, differs from the 
multiple kernel stack system, since the single kernel stack system requires two more 
bytes to store the thread return address. 
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Table 4 shows the results of running sensor applications on two systems. With the 
multiple kernel stack system, the kernel stack is required for the idle thread and each 
application thread. Meanwhile, the single kernel stack system uses only 76 bytes of 
RAM for the kernel stack independent of the number of application threads. The more 
threads that are created, the more significant the expected stack efficiency on the this 
system. Our results also show that the stack reservation overhead on the threaded 
system is trivial. Most of sensor application threads require a little stack size. Sensing 
and Pingpong applications, for instance, can be implemented with 18 and 8 bytes of 
user stack, respectively. 

 As described in Section 2.2, we have developed a stack-size analysis technique. 
For the seven sensor applications, the estimated maximum stack size was compared 
with the worst stack depth via simulation. The sensor application does not use an 
indirectly addressed function call, so the technique successfully analyzes each 
program’s stack size. The results of the proposed technique were equal to 1 or 2 
words more than the results of simulation, and the technique gave the same call graph 
with the program’s control flow, which was determined manually. We also tested this 
technique on a program which uses indirect function calls. For this program, the 
technique could not produce a call graph. However, the stack overflow of an 
application with an immediate stack size was detected in run-time, indicating that the 
system safety was maintained.  

3.2   Effect of Variable Timer 

We have implemented two versions of the system using the variable and periodic 
timer techniques. Since the major difference in the energy consumption between the 
two systems is the amount of CPU usage, we measured the active CPU time to 
estimate the energy consumption. Figure 3(a) shows the performance efficiency of the 
variable timer compared to the periodic timer. One tick in the variable timer is 1ms, 
and 10ms on the periodic timer. The experimental results include the execution time 
of a timer interrupt handler and a timer reprogramming routine. The effectiveness of 
variable timer differs from the execution cycle of applications. MPT_mobile, R_send, 
Sensing, Pingpong, and Surge are periodic programs and are executed every 300ms, 
100ms, 1000ms, 1500ms, and 2048ms, respectively. R_send is the most energy 
consuming program among the seven benchmark applications. Because R_send 
transmits a radio packet every 100ms and performs ACK and the timeout-based 
packet retransmission, it creates more frequent timer requests than other applications. 
MPT_backbone and R_recv are reactive applications, which are only executed with 
radio packet reception. Pingpong and Surge have a relatively slow execution period. 
Therefore, these applications get significant energy reduction on the variable timer 
based system. 

In order to clearly compare the performance of variable timer and the periodic 
timer by the timer request interval, we measured the overhead of the timer 
management routine. The blink application was used for the evaluation by adjusting 
the period from 20ms to 1000ms. Figure 3(b) shows the results of this evaluation. 
When the timer request interval is long, variable timer system spends definitively less 
overhead than the periodic timer system. However, as the timer interval increases, the 
overhead on the variable timer becomes larger. At the 20ms of interval, two systems 
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Fig. 3. Timer management overhead 

have almost the same overhead because the variable timer takes a longer time per 
each timer request than the periodic timer, due to the time required to determine the 
next upcoming timeout event and reprogram the system timer. In this experiment, the 
periodic timer system has a 10ms tick. If the periodic timer system is implemented to 
use a 1ms tick as with the variable timer, more overhead would be required to handle 
timer interrupts. 

3.3   Effect of Event-Boosting Scheduling Policy 

This section shows that the event-boosting scheduler can effectively satisfy sensor 
applications’ event requests. The test application is a packet round-trip program which 
continuously sends and receives a packet between two nodes. The first node sends a 
packet out while the second node receives and returns it to the first node. The first node 
waits for a reply from the second node and then repeats this process. The round-trip 
application runs with only two nodes, so that the influence of radio channel and back-
off time of the MAC is minimized. The response time for the thread to handle a packet 
depends on the number of other threads in the system and the scheduling policy. 
Hence, we can evaluate the functionality of a thread scheduler with radio throughput of 
the application. The other threads in our experiment are designed to add loads to the 
scheduler, and perform 10ms of computation each at 100ms intervals. 
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Fig. 4. Scheduling policy comparison 

Figure 4 represents the number of round-trips per minute according to the 
scheduling policy. If users are not concerned with adjusting scheduling policy, 
SCHED_OTHER is the default policy for threads. In the case of implementing 
SCHED_OTHER as a simple round-robin, the number of round-trips decreases 
according to the increment of the other threads. Because preemption is not performed 
when other threads do not finish their execution or exhaust their time quantum, the 
radio packet handling is delayed. In the case of explicitly configuration of the round-
trip thread as SCHED_RR, the application, which has always higher priority than 
others, maintains a fixed round-trip performance independent of the number of other 
threads. The performance of the system, which uses the proposed event-boosting 
technique for SCHED_OTHER threads, is nearly the same as the case of 
SCHED_RR. Although users do not manually configure the priority of threads, the 
dynamic priority adjustment of the event-boosting scheduler minimizes the event 
handling delay of sensor application threads.  

 3.4   RETOS vs. TinyOS  

This section compares the multithreaded operating system RETOS with the event-
driven TinyOS by developing a sensor application. TinyOS is a component-based 
operating system, and has no distinction between the kernel and the application. 
Components are programmed with event-driven model and compiled to a single 
binary image. RETOS provides a rich development environment with preemptive 
threads. The proposed thread optimization reduces the overhead of traditional 
multithreading and increases thread response time. We used RETOS v0.96 and 
TinyOS v1.1.13 for this experiment, and the applications used in the experiment are 
MPT and a simple packet transmission. MPT is a mobile object tracking program [15] 
based on ultrasound localization technique. MPT consists of mobile node and 
backbone node, and the mobile node computes its location using trilateration every 
300ms. The trilateration takes approximately 16ms to determine the location. We 
have considered inserting a simple code which periodically sends and receives a radio 
  



304 H. Kim and H. Cha 

 

 

Fig. 5. Packet handling delay 

packet to the above application. The sink node transfers a packet every 100ms, and 
the mobile node receives and counts it. We measured the time from the FIFOP 
interrupt handling at the CC2420 radio driver to the packet at the thread. 

Figure 5 shows the packet-handling latency on RETOS and TinyOS. The purpose 
of this experiment was to understand the dependency of MPT execution time and 
packet handling. The results were measured after the two applications’ start time was 
synchronized. With the RETOS system, the packet-handling latency was almost the 
same whether or not MPT was run, because application threads are preemptive and a 
packet was received by the radio device driver located in the kernel. In the case of the 
TinyOS system, the packet-handling latency without MPT was slightly shorter than 
RETOS. With MPT, the latency was considerably longer than in the other three cases. 
The extended latency was caused by long computation time of trilateration in the 
MPT application, which can delay the packet-handler task’s execution on the TinyOS. 

 

Fig. 6. Execution time of MPT Trilateration observed by oscilloscope 

Figure 6 shows the execution pattern of trilateration as observed by oscilloscope. 
Trilateration was performed every 300ms and took approximately 16ms. We tried to 
reduce the delay by splitting the trilateration into several phases, but this made the 
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Table 5. Code size for MPT application 

 
TinyOS 
(bytes) 

RETOS Kernel 
(bytes) 

RETOS Lib.  
+ App. (bytes) 

RETOS Total 
(bytes) 

 ROM RAM ROM RAM ROM RAM ROM RAM 
MPT 

Backbone 
12614 467 18314 748 492 143 18806 891 

MPT 
Mobile 

17222 701 18314 748 6848 434 25162 1182 

program control flow complex and rendered it difficult to manage the increased 
number of states. Moreover, measurement of the execution time of each code fragment 
was necessary to determine whether the split provided reasonable performance. 

As RETOS is a multithreaded operating system, it is considered to have more time 
and space overhead than the event-driven TinyOS. Table 5 shows the code size of 
MPT on RETOS and TinyOS. The RETOS system uses less than 30Kbytes of flash 
memory and 2Kbytes of RAM. Although the code size of RETOS is bigger than that 
of TinyOS, RETOS supports functionality such as application safety mechanism [9], 
dynamic loadable module [10] and the network stack [11], which are barely supported 
by the native TinyOS system.  

Figure 7(a) compares the computational overhead of MPT with RETOS and TinyOS. 
MPT_mobile spends 2% more overhead with RETOS; it performs thread preemption 
and scheduling, and also dynamic code checking for system safety. Figure 7(b) shows 
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Fig. 7. Computational overhead 
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the CPU usage distribution of the RETOS system. The user thread occupies 55% of 
total processing time. The kernel portion is approximately 42% due to the frequent 
use of radio communication. On the other hand, the amount of calculation time caused 
by mode switching, scheduler execution and context switching is trivial, compared 
with the entire processing time. The portion of context switching, mode switching and 
scheduler execution overhead may be bigger when an application requires little radio 
communication or computations. Nevertheless, the experiment results show that 
multithreading could be implemented with reasonable overhead on current sensor 
node hardware. 

4   Related Work 

TinyOS [1], the industry defacto sensor network operating system, is based on an 
event-driven model and provides nesC [16] programming language. TinyOS is 
considered to provide high concurrency without thread stack reservation, which is 
essential to multithreading. SOS [2] provides dynamically loadable modules and 
adopts an event-driven model to avoid context switching overhead for multithreading. 
However, event-driven models can be inconvenient when developing applications. As 
event handlers are run to completion, programmers must split long-lived tasks into 
several phases of codes for concurrency. The tasks of the event-model cannot be 
blocked, hence a single conceptual function with an I/O operation should be divided 
into two separate sub functions, one for before and the other for after the I/O 
operation. The stack frame in the split function is manually maintained by 
programmers, and it increases the use of global variables. These issues of event-
driven model induce poor software structure and render it difficult to debug and 
develop applications [6, 17]. 

MANTIS [8] provides a multithreaded programming model, which implement 
traditional multithreading in sensor nodes. The system shows that programming long-
running tasks is much easier than in an event-driven model. With the MANTIS 
system, programmers heuristically assign a stack size to each thread. If the stack size 
is too big, the system will suffer from memory insufficiency. If the stack is too small, 
stack may overflow and system will fail. In MANTIS, fixed priority scheduling based 
on round-robin is not able to fully utilize the advantage of preemption without the 
programmer making a manual priority adjustment. As the MANTIS scheduler is 
executed every 10ms, the overhead for context switching and timer interrupt handling 
is not trivial. Contiki [7] provides a thread library that works on the event-driven 
system. With Contiki, programmers empirically choose an appropriate programming 
model among event-driven, protothread [18], and multithread libraries to develop an 
application. Hybrid approaches have been studied to integrate the merits of an event 
model and thread-based model. Adya et al. [17] suggest the combined usage of event 
and thread model in the same program, but this requires programmers to thoroughly 
understand the differences between the two models and to appropriately choose the 
alternatives. Protothread [18] does not require stack reservation; however it cannot 
maintain local variables and can block only in an explicitly declared area. 
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5   Conclusion 

In this paper, we described multithreading optimization techniques for sensor 
applications development. Our techniques contribute to possible solutions toward 
three major problems involved in the implementation of threaded operating systems 
on resource-constraint sensor nodes—memory resource, energy consumption, and 
scheduling policy. Single kernel stack and stack-size analysis techniques reduce the 
memory requirement of a thread model. Variable timer achieves power reduction by 
improving the timer management scheme. Event-boosting scheduling policy reflects 
the characteristics of sensor applications and provides fast response time of threads 
without explicit priority configuration. With the proposed techniques, the overhead of 
multithreading is reported to be approximately 2% of the total execution time on the 
TI MSP430 processor, and the system guarantees minimal response delay to sensor 
applications. 

Application libraries or system calls are being implemented, and extensive testing 
is also conducted on the RETOS sensor operating system. We are presently improving 
the performance and the energy efficiency of the network stack for radio 
communication on RETOS, as well as implementing device drivers for diverse 
sensors and porting them to other processors. 
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