Alexandru Oprea

Department of Computer Science University of Freiburg

Click to edit Master subtitle style 16th February 2010 Ad Hoc Networks Seminar

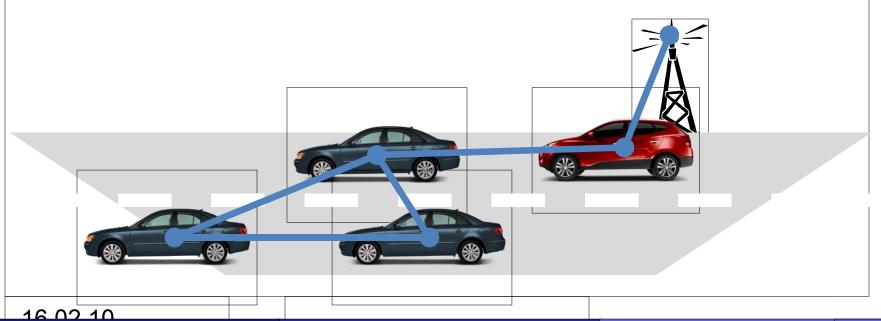


Based on:

Hamid Menouar and Fethi Filali, EURECOM

Massimiliano Lenardi, Hitachi Europe

A Survey and Qualitative Analysis of MAC Protocols for Vehicular Ad Hoc Networks


IEEE Wireless Communications, pages 30-35, October 2006.

- What is a VANET?
- Motivation
- Introduction
- Media access in MANETs
- MAC Protocols for VANETs
- Qualitative comparison
- Conclusions

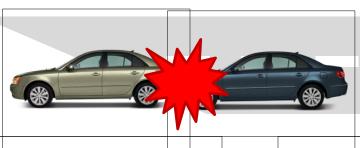
- What is a VANET?
- Motivation
- Introduction
- Media access in MANETs
- MAC Protocols for VANETs
- Qualitative comparison
- Conclusions

#### What is a VANET?

- VANET stands for Vehicular Ad-hoc N E Twork
- a special type of MANETs (mobile ad-hoc networks) designed to provide communication between nearby vehicles and between vehicles and road-side equipment



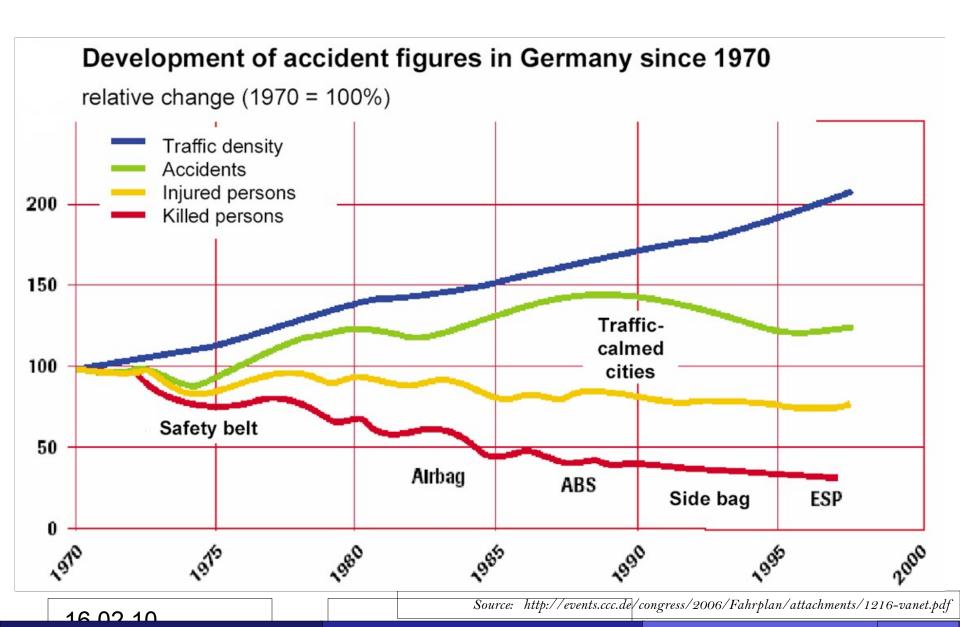
- What is a VANET?
- Motivation
- Introduction
- Media access in MANETs
- MAC Protocols for VANETs
- Qualitative comparison
- Conclusions


#### Motivation

# Why are VANETs important?

Active Safety: send warning messages about dangerous traffic situations (an accident, icy road, oil stain, sudden break, etc.)












#### Motivation



#### Motivation

#### And there is more:

- traffic conditions
  - improve traffic efficiency
  - Preduce traffic congestions
- driving comfort
  - Odriver assistance
  - news/info/entertainment applications
- economical reasons
  - 80% of innovation in new cars is electronics
  - OABS & ESP Market: 3 billion € in 2010
  - VANETs Market: estimated to reach 1 billion \$ in 2012 [3]

- What is a VANET?
- Motivation
- Introduction
- Media access in MANETs
- MAC Protocols for VANETs
- Qualitative comparison
- Conclusions

## Introduction

# Properties of VANETs:

- decentralized
- self-organizing

**MANETs** 

network nodes = cars

# Introduction

#### Cellular Networks

- mobile
- centralized

#### **MANETs**

- mobile
- decentralized

#### **VANETs**

- mobile
- decentralized
- nodes = cars

Source: http://petsymposium.org/2005/workshop/talks/VANET-privacy-final-official.ppt

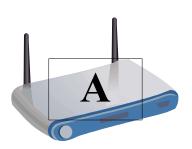
#### Introduction

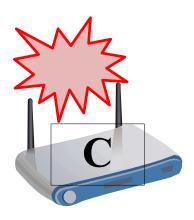
#### Differences to MANETs:

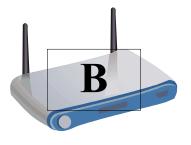
- restricted mobility (highways and roads)
- fast topology changes (network nodes move at high speeds)
- no power and storage limitations
- nodes are aware of their position (via GPS)

# Requirements:

high reliability

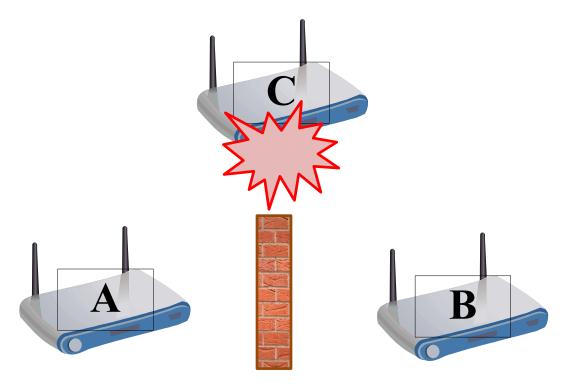

- What is a VANET?
- Motivation
- Introduction
- Media access in MANETs
- MAC Protocols for VANETs
- Qualitative comparison
- Conclusions


Major problems


- transmission collisions
- hidden terminal problem
- exposed terminal problem

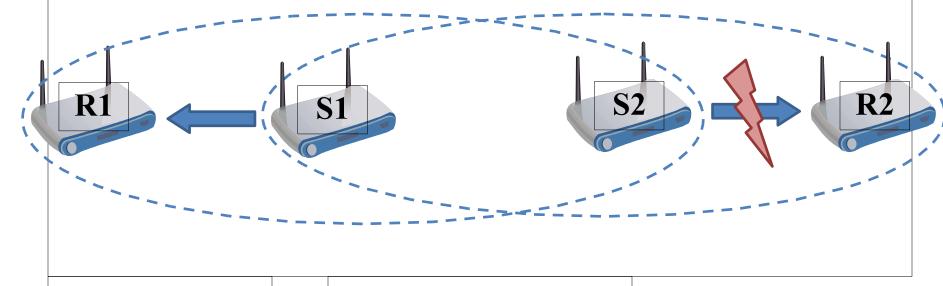
#### Transmission collisions

- shared communication medium
- two terminals (A,B) try to transmit at the same time to a third terminal (C)
- solution: terminals should be aware of ongoing transmissions









## Hidden terminal problem

terminals could be hidden from each other



# Exposed terminal problem

a node (S2) is prevented from sending packets to other nodes (R2) due to a neighboring transmitter.



- What is a VANET?
- Motivation
- Introduction
- Media access in MANETs
- MAC Protocols for VANETs
- Qualitative comparison
- Conclusions

#### Advantages of VANETs over MANETs:

- restricted mobility (highways and roads)
- no power and storage limitations
- nodes are aware of their position (via GPS)

#### Disadvantages:

fast topology changes (network nodes move at high speeds)

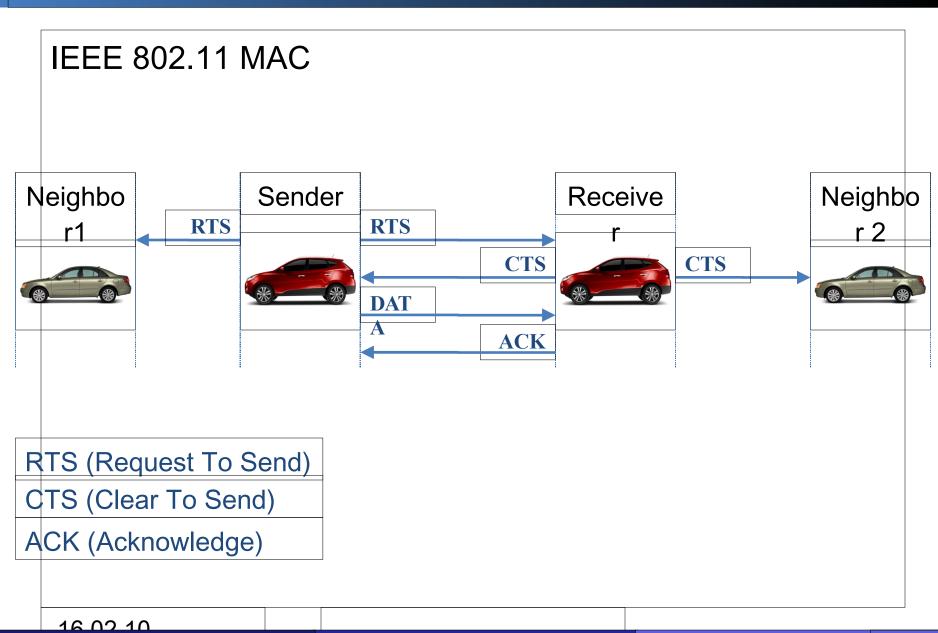
#### Requirements for VANETs:

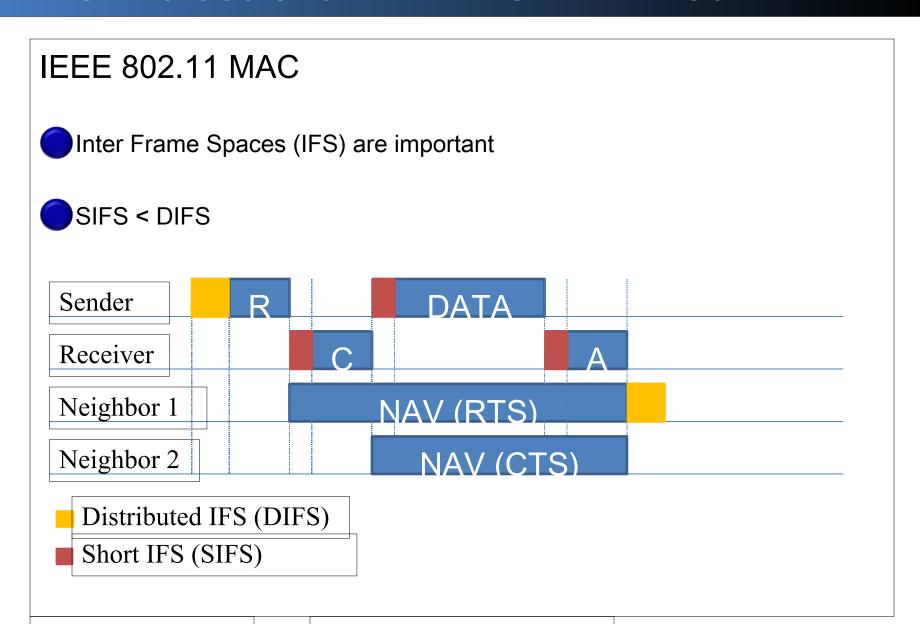
reliable communication

## Proposed MAC Protocols:

- ●IEEE 802.11 Standard
- ADHOC MAC
- Directional antenna based MAC protocols

## Proposed MAC Protocols:


- ●IEEE 802.11 Standard
- **O**ADHOC MAC
- Directional antenna based MAC protocols


#### The IEEE 802.11 Standard

- addresses both the MAC and the Physical Layer
- widely accepted by the network community

#### **IEEE 802.11 MAC**

- medium access: Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
- To solve the hidden terminal problem: virtual carrier sensing using a Network Allocation Vector (NAV)





IEEE 802.11p WAVE (Wireless Access in Vehicular

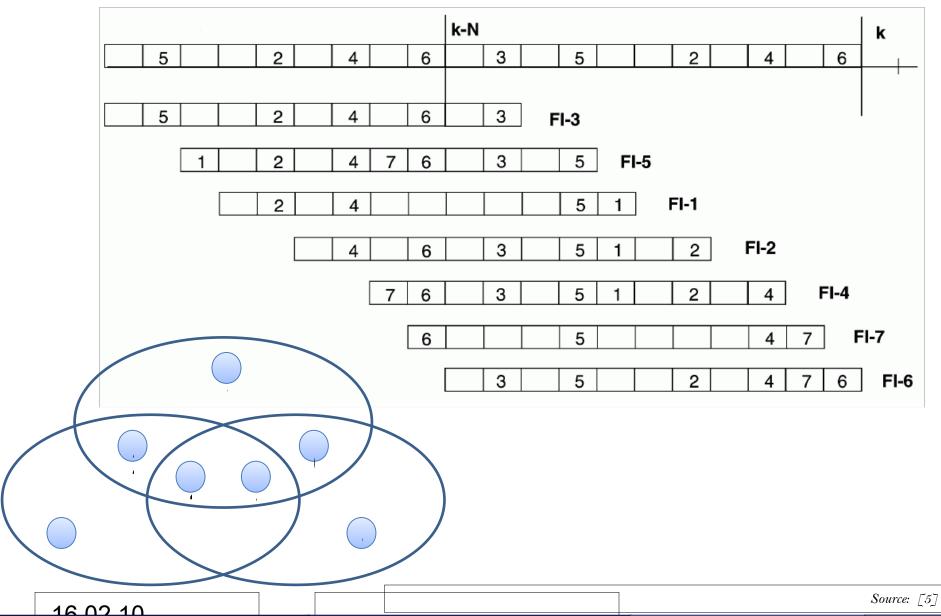
**Environments**)

- an amendment to all IEEE 802.11 protocols
- main goal: adapt the IEEE 802.11 standard for inter-vehicular communications (low latency and high reliability)
- scheduled to be published in November 2010 (according to the official IEEE 802.11 Working Group project timelines)

#### IEEE 802.11 PHY (Physical) Layer

| Name    | Year | Band (GHz) | Throughput (Mbps) |
|---------|------|------------|-------------------|
| 802.11a | 1999 | 5          | 54                |
| 802.11b | 1999 | 2.4        | 11                |
| 802.11g | 2003 | 2.4        | 54                |
| 802.11n | 2009 | 2.4/5      | 600               |

## Proposed MAC Protocols:


- IEEE 802.11 Standard
- ADHOC MAC
- Directional antenna based MAC protocols

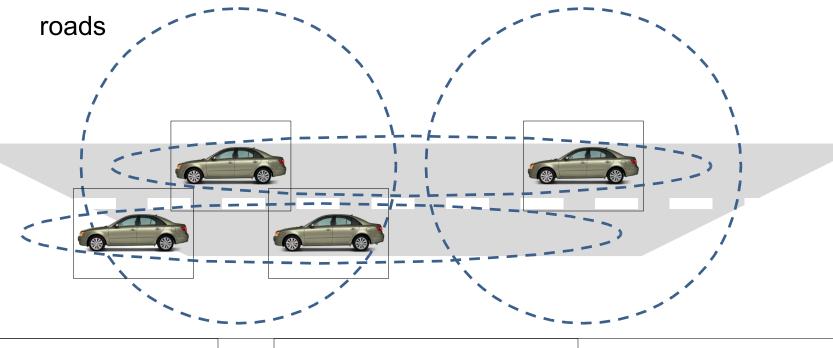
## MAC Protocols for VANETs – ADHOC MAC

#### **ADHOC MAC**

- based on a circuit switching method: Time Division Multiple Access (TDMA)
- uses UMTS Terrestrial Radio Access Time Division Duplex (UTRA-TDD) as PHY Layer
- uses the Reliable Reservation ALOHA (RR-ALOHA) protocol:
  - the medium is divided into several repeated time frames
  - each frame is divided into N time slots

# MAC Protocols for VANETs – ADHOC MAC

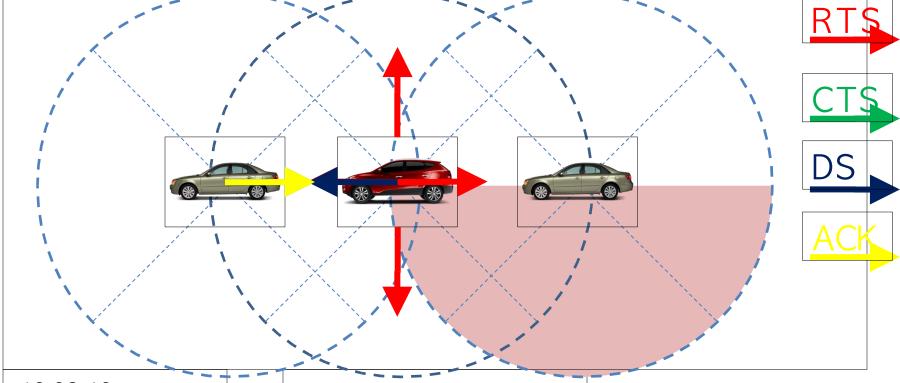



## Proposed MAC Protocols:

- OIEEE 802.11 Standard
- ADHOC MAC
- Directional antenna based MAC protocols

## MAC Protocols for VANETs – Directional

#### Directional antennas-based MAC protocols


- increase the coverage and special reuse, therefore leading to greater channel capacity
- can be a good solution for VANETs because cars move only on



# MAC Protocols for VANETs – Directional

#### Directional MAC (D-MAC)

- each terminal must know its geographic position (easy via GPS)
- Based on IEEE 802.11, uses a 4 way handshake



- What is a VANET?
- Motivation
- Introduction
- Media access in MANETs
- MAC Protocols for VANETs
- Qualitative comparison
- Conclusions

# Qualitative comparison

|                                 | 802.11 MAC              | ADHOC MAC | D-MAC      |
|---------------------------------|-------------------------|-----------|------------|
| Based on                        | CSMA/CA                 | RR-ALOHA  | CSMA/CA    |
| Implementation maturity         | Mature and evolving     | Medium    | Low        |
| QoS and RT capability           | Small                   | Medium    | High       |
| Mobility                        | Medium evolving to High | Medium    | High       |
| Reliability multicast/broadcast | No                      | Yes       | No         |
| Time synchronization            | Not needed              | Mandatory | Not needed |

IEEE 802.11p could represent a real solution, but waits

to be published

Directional antennes offer high reliability and low latency

- What is a VANET?
- Motivation
- Introduction
- Media access in MANETs
- MAC Protocols for VANETs
- Qualitative comparison
- Conclusions

## Conclusions

- VANETs have many practical applications, but the most important ones are in terms of active safety
- there are no standardized protocols, but a lot of research is done in this area (http://www.vanet.info/projects)
- VANETs are likely to become the most important realization of mobile ad hoc networks
- what about security?

#### References

1. Hamid Menouar and Fethi Filali, EURECOM

Massimiliano Lenardi, Hitachi Europe

A Survey and Qualitative Analysis of MAC Protocols for Vehicular Ad Hoc Networks

IEEE Wireless Communications, pages 30-35, October 2006.

2. Florian Dötzer, BMW Group Research and Technology

Privacy Issues in Vehicular Ad Hoc Networks

Workshop on Privacy Enhancing Technologies, Dubrovnik, June 2005

#### References

F. Borgonovo, A. Capone, M. Cesena and L. Fratta, Politecnico di Milano

ADHOC MAC: New MAC Architecture for Ad Hoc Networks Providing Efficient and Reliable Point-to-Point and Broadcast Services

Wireless Networks, 10, pages 359-366, July 2004.

# Conclusions Thank you for your attention!