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ABSTRACT 
In this paper we study the rate at which a rumor spreads through an undirected graph. This 
study has two important applications in distributed computation: in simple, robust and 
efficient broadcast protocols, and in the maintenance of replicated databases. 
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1. INTRODUCTION 

Let G = (V, E) be a connected, undirected graph on N vertices. One vertex 
initially knows of a “rumor” that has to be conveyed to every other vertex in V. 
The rumor is propagated as follows: at each step, every vertex that knows of the 
rumor chooses one of its neighbors in G uniformly at random, and informs it of 
the rumor. How many steps elapse before every vertex knows the rumor? The 
answer clearly depends on the nature of G; for instance, if G were the complete 
graph on N vertices, KN, it is well known [9, 131 that O(1ogN) steps suffice 
almost surely. 

Consider the standard model of point to point communication networks, 
described by a connected, undirected graph: the vertices represent the processors 
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of the network and the edges represent bidirectional communication channels 
between the vertices. The study of rumor propagation has at least two applica- 
tions to distributed computing in such networks. The first is in algorithms for 
broadcasting: a single processor wishes to broadcast a piece of information to all 
the other processors in the network (see [ll] for a comprehensive survey). There 
are at least three advantages to a randomized broadcast algorithm such as the one 
we have described: 

1. Simplicity-the entire algorithm is simple and local, with no need to know 
the current global topology and no need to remember whether the rumor 
has already been sent to a particular neighbor. Despite this simplicity, the 
algorithm achieves fast broadcast, as we shall see. 

2. Scalability-the algorithm is independent of the size of the network; it does 
not grow more complex as the network grows. 

3. Robustness-randomized broadcast is robust in that it works well even in 
the face of 1inkInode failures in the network. Let us again consider 
broadcast on the complete graph K,; it is possible to devise deterministic 
broadcast algorithms that achieve O(1og N)-step broadcast in the absence of 
faults, just as our random broadcast does (almost surely). Now let f < cN be 
a positive integer for a constant c < 113; suppose that an adversary were 
allowed to choose f links in the network to “break.” For any deterministic 
algorithm, an adversary can select the link failures such that the algorithm 
takes O(f -t log N) steps. To see this, observe that in any deterministic 
algorithm, the vertex that initially knows the rumor will attempt to transmit 
the rumor to its N-1 neighbors in a fixed sequence. The adversary breaks 
the links to the first f neighbors in this sequence. In contrast, we prove in 
Theorem 2.4 that randomized broadcast achieves O(1og N) steps almost 
surely no matter how the adversary chooses the link failures. 

A second application comes from the maintenance of replicated databases, for 
instance, in name servers in a large corporate network [6]. There are updates 
injected at various nodes, and these updates must propagate to all the nodes in 
the network. At each step, a processor and its neighbor check whether their 
copies of the database agree, and if not make the necessary reconciliation. The 
goal is that eventually all copies of the database converge to the same contents. 
The reader is referred to [6] for details. 

The spread of rumors in a network bears a superficial resemblance to another 
stochastic process that has been studied much by computer scientists: the random 
walk [l]. In rumor propagation, every node that has already seen the rumor is 
broadcasting it at every subsequent step, whereas in the random walk propagation 
occurs from exactly one node at each step. The tools used in random walks, such 
as algebraic methods [2] or physical analogies [S] seem to be inappropriate to our 
study here. Also related to our work is the mathematical theory of epidemics [lo, 
121, although that theory deals with variants of rumor broadcast on the complete 
graph (rather than general graphs as we consider here). 

In Section 2 we give some fundamental theorems governing the rate of 
propagation of rumors in graphs. While these theorems yield tight results for 
many classes of graphs, it is sometimes necessary to examine the structure of the 
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graph more closely to precisely determine the rate of rumor propagation. We 
illustrate this in Section 3, where we show that a rumor reaches all vertices of a 
hypercube in @(log N )  steps almost surely; elementary analysis only yields O(log2 
N) steps. The hypercube also illustrates the difficulties introduced in the analysis 
due to the statistical correlation of several copies of a rumor repeatedly running 
into each other. In Section 4 we study the rate of rumor propagation on random 
graphs with various densities. 

2. DEFINITIONS AND GENERAL RESULTS 

Let deg(u) denote the degree of a vertex u, and let deg(G) be maxUEG deg(v). 
The length of the shortest path connecting two vertices u and u is denoted by 
dist(u, u) ,  and the length of the shortest path connecting a vertex u to some 
member of a set of vertices C is denoted by dkt(u, C). The diameter of a network 
G is denoted by diam(G). All logarithms in the paper are to the base 2. 

In this work we analyze the following random broadcast procedure; initially, at 
least one vertex in V starts off knowing the rumor. 

Procedure 99 
repeat 

for all u E V,  in parallel do 
if u has already received the rumor then 

u randomly chooses a neighbor uniformly at random, and sends the 
rumor to it; 

end 

Given a network G, the number of iterations of the procedure 99 until the 
rumor reaches all the vertices of G is a random variable that depends on the 
topology of G. 

Definition 1. We say that Y(G) is the almost sure rumor coverage time of a 
network G ,  if after Y(G) iterations of the procedure all vertices in G receive the 
rumor with probability 1 - 1 IN.  

Theorem 2.1. For a general network G ,  with N vertices, 

1. log N I 9( G) I 12N log N ,  
2. There are networks G for which Y( G )  = Q(N log N), 
3 .  There are networks G for which Y(G) = O(1og N). 

Proof. Each iteration of the procedure 99 can at most double the number of 
vertices that received the rumor; thus Y(G) 2 log N. 

Let u = x o ,  xl, .  . . , x ,  = u denote a shortest path connecting u to u in G. A 
vertex w is connected to two vertices xi and xi on the path only if they are at most 
one apart on the path (else there is a shorter path). Thus, E i z i  deg(xj) 5 3 N .  The 
expected number of iterations between the time xi receive a rumor until the time 
xi  sends the rumor to x i+ ,  is bounded by deg(xj). Thus, the expected number of 
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iterations until u receives the rumor is 3 N 7  and after 6 N  iterations the probability 
that u does not receive the rumor is bounded by 1 / 2 .  After 12N log N iterations 
of the procedure, the probabilit that there exists a vertex that did not receive the 
rumor is bounded by N2-2  log '5 1 IN.  

The bounds are tight within a constant factor since O(1og N )  iterations suffice 
for the complete graph 191, and a star graph clearly requires R ( N  log N )  itera- 
tions. 

Theorem 2.2. For every network G 

F(G) = O(deg(G)(diam(G) +log N ) )  . 

Proof. Given a shortest path between two vertices in G ,  the probability that the 
rumor fails to traverse that path in 3deg(G)(diarn(G) + 2 log N) iterations is 
bounded (by the Chernoff bound [4)) by 1 / N 2 .  Thus, the probability that a rumor 
does not reach all N vertices of the graph within this number of steps is bounded 
by 1/N. 

Corollary 2.3. For a bounded degree graph G ,  r (G)  5 O(diarn(G)). 

We now prove the result on the rate of propagation in the complete graph with 
f link failures. 

Theorem 2.4. Let f < cN be a positive integer for a constant c < 1 / 3 .  Let G be a 
graph derived from the complete graph K, by deleting any f of its edges. The Y ( G )  
is O(Log N ) .  

Proof. Let X, denote the set of nodes of G that have received the rumor before 
step t ;  thus X, = 1. Let x ,  = IX,l, and y ,  = N - x , .  We will show that ( 1 )  if 
x,  I N / 3 ,  then E [ x , + , ]  - x ,  L c p , ,  and (2) if x,  > N / 3 ,  then E [ y , + , ]  I c2yI7  for 
some constants c,, c2 in (0, 1 ) .  

We will refer to a node that sends the rumor to another as making a proposal 
to the recipient. We say that a node in X, is successful in step t if it proposes to a 
node u not in X ,  and no other node in X, proposes to u in step t .  

Case 1 (x ,  5 N13): Let f;: be the number of faulty edges between ui EX, and 
nodes not in X,; thus C fi: 5 f .  The probability that a node ui E X, fails to propose 
to some node in G - X ,  using a nonfaulty edge is at most (x ,  + f ; : ) / N .  The 
probability that some other node in X, also proposes to the same node as ui is at 
most x , / N .  Thus the probability that ui is unsuccessful is at most (2x ,  + f ; : ) l N ;  
summing over all the ui E X,, the expected number of unsuccessful nodes in X, is 
(since x ,  5 N / 3 )  at most 2x, /3  + f / N .  Thus the expected number of successful 
nodes E [ x , + , ]  - x ,  2 cIx, for some constant c,. 

be the number of edges 
between ui and nodes in X,; thus C f;: 5 f .  The probability that ui receives no 
proposal from any of the nodes in X, is 

Case 2 (x ,  > N / 3 ) :  For a node ui not in XI, let 
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Summing over the y ,  nodes ui in G - X,, we have that 

A simple calculation now shows that since x,/NE(1/3,  11, E [ y , + , ] s  c2yr for 
some c2.  w 

Note that the proof in fact holds even in the face of an adaptive adversary: one 
who can, at time step t ,  decide anew which f edges to render faulty (rather than 
fix them a priori at the beginning of the broadcast process). This demonstrates the 
resilience of the random broadcast procedure: it will work as claimed in Theorem 
2.4 even in the face of dynamically changing faults, provided the number of faults 
meets the prescribed bound. 

3. RANDOM BROADCAST ON THE HYPERCUBE 

We now focus on the hypercube, an important network for parallel computation 
for which the general theorems do not give the correct upper bound. For instance, 
Theorem 2.2 only gives an upper bound of O(log2 N) on the rumor coverage 
time. Here we determine the rumor coverage time of the hypercube, illustrating 
some of the difficulties and techniques in proving such a bound. Let H,, = (V,,, En) 
denote the n-dimensional hypercube, where V,, = {0,1}" and 

En = { ( x ,  y )  I x ,  y E V,, x and y differ in exactly one bit} 

The network has IV,,] = 2" = N nodes, /En/ = n . N/2 edges, and diameter n = log 
N. 

For the analysis that follows we need the following two estimates, proved in 
the Appendix. 

Lemma 3.1. For any constants O <  a, /3 C 1 such that 2/3 < a,  

(e(; - 1 ) y '  c (;;) c (4(; - 1 ) y  

for suficienily large n. 
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Lemma 3.2. For every 0 < a < 112, 

. k  ( i / Z + a ) n  n ( 1  - ( 1  - ;) ) > 2 - B " / k ,  
i = l  

where 6 = ( ~ ~ 1 6 )  log e z 2 . 3 7 .  

Theorem 3.3. For the n-dimensional hypercube H,,, F(Hn) = O(n)  = @(log N). 

Proof. The diameter of the hypercube is n,  but the expected number of steps to 
traverse any single path of length O(n) on the hypercube is O ( n 2 ) .  To prove the 
theorem we need to analyze the progress of the rumor along many paths in 
parallel. The main difficulty in this analysis is that the paths are not disjoint, and 
thus introduce dependencies to the analysis. We overcome this difficulty by 
analyzing the progress of the procedure in two phases. The first phase brings the 
rumor to within a distance of a n  from all vertices of the hypercube. The second 
phase completes the distribution. 

Definition 2. 
an a-cover of the hypercube if it a -approximates all vertices of V,, . 

A set of vertices C, a-approximates a vertex t ifdist(t, C )  5 a n .  C is 

Lemma 3.4. 
probability 1 - 2-2", the rumor has reached every vertex of some a-cover C. 

For any 0 < ct < 1,  after 3nla iterations of the procedure 393, with 

Proof. In analyzing the process of a-approximating a vertex t ,  we concentrate 
on one path s = x o ,  x , ,  . . . generated by the procedure 99 in the following 
way: 

1. s is the vertex that initiated the rumor. 
2. 

rumor from x i .  
is the first vertex satisfying dist(xi,l, t )  < dist(xi, t )  that received the 

The probability that in 3nla iterations of the procedure 993 the path does not 
a-approximate the vertex t is bounded by the probability that there is a set of a n  
coordinates that were not hit in 3nla successive trials. This probability is bounded 
by 

Thus, the probability that there exists a vertex that is not a-approximated is 
bounded by 1 - 2-"-'. 

Definition 3. 
vertices at distance exactly h from v ,  i. e., 

For any vertex u and integer 1 5 h 5 n,  the band B(v ,  h )  is the set of 

B(u ,  h )  = {uldist(u, u )  = h }  . 
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Lemma 3.5. 
set of vertices Sh( t )  such that the following properties hold. 

Given a 1164-cover C, for any vertex t there exist an integer h and a 

1. 31n/64 < h < 33n/64, 

3. ]sh(t)J 2 ,"I4, and 
4 .  the distance between every two vertices of S h ( r )  is at least n / 8 .  

2 .  S,(t) G B(t, h )  n C, 

Proof. Let S'C C be some minimal collection of vertices of C that 1/64- 
approximate the vertices of the band B(t ,  n / 2 ) .  The number of vertices in this 
band is 

A vertex may serve as an a-approximation only for vertices at distance an  or 
less from it. The number of vertices that can have the same 1164-approximation is 
bounded, using Lemma 3.1, by 

11/64 

y = 2 ( y ) I ( ny64) 5 n(4(64 - 1))"/64  I n . 252"'64 , 
r = l  

and 

By the definition of 1 /64-approximation, S' contains vertices at distances 
n / 2  5 n/64 from t. Therefore, there is a band B(t, h )  for some h in this range such 
that the set S" = S' n B(t, h) satisfies 

Using the greedy method, we now pick vertices from S" into our final set S h ( t ) ,  
each at distance n / 8  or more from all previously selected vertices. The number of 
vertices that each new pick rules out is bounded, using Lemma 3.1 again, by 

n / 8  

z = 2 ( ) 5 ( n;8) 5 n(4(8 - l ) ) n / 8  5 n . 28"18 . 
t = l  

Thus the total number of vertices we can pick into S,(t) is at least 

for sufficiently large n. 
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In analyzing the process of reaching a vertex t in the second phase of 
distributing the rumor, we concentrate only on paths that start at vertices in Sh(t)' 
In order to define a sequence of independent events, we further restrict our 
discussion to paths that were built at a predefined set of time intervals. Formally, 
consider a set of paths L(t, T,  h,  k ) ,  generated by a subprocess of the procedure 
993 in the following way: 

1 .  The process starts at time T after a11 vertices in S,(t) have already received 

2. Each s E S,(t) is a start-point of a path in L(t ,  7, h,  k ) .  
3. Let xo, xI, . . . denote a path in L(t, T, h,  k ) .  For every i, xi  E B(t, h - i), 

and x i + l  is the first vertex in B(t, h - i - 1) that received the rumor from x i  
in the time interval [7+ ik,. . . 7 + (i + 1)k - 11. If no vertex in B(t ,  
h - i - 1 )  received the rumor from x i  in that time interval, x i  is the last 
vertex in this path. 

the rumor. 

Note that the set of paths L(t, 7,  h ,  k )  are independent from the set of paths 
L(c, T + k ,  h, k ) ,  since for every i, the i-vertices of the paths in the first set, and 
the i-vertices of paths in the second set, were chosen at different time intervals. 

Lemma 3.6. Assume that all vertices in S,(t) have received the rumor at time T. 
The probability that at least one of the paths in L(t, 7, h,  11) reaches the vertex t is 
at least 2 13. 

Proof. Let rn = lSh(t)l, and let s,, . . . , s, denote the vertices of S,(t). Denote by 
pd  the probability that a path from s E Sh(t) reaches the band B(t,  d ) .  By 
symmetry, this probability is equal for all s E S,(t). Let xi  be the random variable 
defined by 

1 if the path from si reaches t , ..=( 0 otherwise. 

Let p = p o  = Prob(x, = l) ,  and let X =  Zy=l x i .  
Assuming that the path from si successfully reaches distance d from t ,  the 

probability that it reaches distance d - 1 is (1 - (1 - d/n)") .  In other words, 

Thus, by Lemma 3.2, for sufficiently large n, 

By Lemma 3.5, m > ,"I4, hence the expected number of successful paths that 
reach t satisfies E [ X ]  = mp > 12. 

To bound the probability that at least one of the m paths reaches t we need a 
bound on Var[X] = Ci,j E [ x i x j ]  - ( E [ A ) * .  

Let GP,!,, denote the event that sj reaches t without intersecting s,'s path, and let 
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S:j  denote the event that sj intersects si's path (and from then on the two paths 
merge). Then 

Prob(xixj = 1) = Prob(x, = I ) .  ( P r o b ( q j )  + P r o b ( q , ) ) .  

Clearly, Pr0b(Z?~1.~) s p .  It remains to bound P r ~ b ( € f ? ~ ) .  Let g12,,(d) denote the 
event: s j7s  path intersects si7s path in band B(t ,  d )  and they did not intersect 
before. Clearly, S:,= U ,,,, '8:,j(d). 

The path from sj can meet the path from si only in vertices u satisfying 

u E ~ ( t ,  d )  n B ( s ~ ,  h - d )  n B(s, ,  h - d )  . 

Furthermore, there is only one set of h - d coordinates that the path for s2 can 
cross in its first h - d transitions in order to meet the other path in B(t ,  d ) .  

The two origins si and sj are at a distance of at least n/8 apart, and thus there 
exists some d' I h - n/16 such that 

Thus, using the bound of Lemma 3.1, 

d=n116  

for sufficiently large n. 
For the last segment of the path we need a different analysis. 

the ratio between the probabilities of intersection at band d and 
Using (l), 

Let R, denote 
at band d + 1. 

We are interested in R, only for 0 4 d 5 n/16. In this range R, > 2. Furthermore, 
for constant d and sufficiently large n, 

i i (d+ l )  h Il(d+ 1) . 31n > 5  .- 
d + 1 2  n 64(d + 1) R, 1 n 

Recalling that the probability of intersection at d = 0 is at most p, 

11116-8 
P 

8 

P r o b ( 8 : j ) < p  2 5- ,+$ 2 2 - , + L < - .  
d =  1 5 d - 1  100 4 
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Thus, Exixj I p2( 1 + 1 / 4 )  when i Z j and p otherwise 

for sufficiently large n (recalling that rn 2 2”14 by Lemma 3.5). 
Using Chebyshev’s inequality, 

Lemma 3.7. Let C be a 1 /64-cover1 and assume that at time 70 all the vertices of 
C already received the rumor. There exists a constant c > 0 such that after cn 
additional iterations of the Procedure 33 all vertices receive the rumor with 
probability 1 - 2-’: 

Proof. Let 2(f, 7, h, k) denote the event: at least one of the paths in L(t,  T, h ,  
k )  reached the vertex t. Let k = 11. Consider the following sequence of 1 events: 
P(t, T ~ ,  h,  k ) ,  2 ( t ,  70 + k ,  h ,  k), 2 ( t ,  70 + 2 k ,  h ,  k), . . . , 2 ( t ,  70 + (2n - l ) k ,  h ,  
k ) .  

The 1 events are independent, since each event considers the performance of 
vertices in each band at a different interval of k iterations. 

By Lemma 3.6 each event holds with probability greater than 2/3 ,  thus, at time 
70 + 2nk + kh the probability that t did not receive the rumor is bounded by 
(1/3)’”n ~ 2 - ~ ~ - ~  , and the probability that any vertex did not receive the rumor is 
bounded by 2-“-’. 

We are now ready to complete the proof of the main theorem. By Lemma 3.4 
after r0 = 3n/a iterations, with probability 1 - 2-”-’ there exists an a-cover, for 
a = 1/64, in which all vertices received the rumor. By Lemma 3.6 an additional 
cn iterations guarantee that the rumor reaches every vertex with probability 
1 - 2-”-’, thus O(n) = O(1og N )  iterations are sufficient for distributing the 
rumor among all vertices of the hypercube with probability 1 - 1/N. D 

4. R A N D O M  BROADCAST ON R A N D O M  GRAPHS 

In this section we show that, in a certain sense, “almost all” connected graphs 
have fast rumor coverage time. For p E [0, 11, we say that G is drawn from gN,? if 
G is an N-vertex graph each of whose edges is present independently with 
probability p.  (Thus CgN,112 is the space of all N-vertex graphs chosen equiprob- 
ably.) Similarly, CgN,M denotes the space of graphs on N vertices with M randomly 
placed edges. 

The following theorem characterizes the rumor coverage time on random 
graphs. 

Theorem 4.1. For almost all G E %N,p (G E gN,+,), 
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1. Ifp I (log N - o(N)) / N  (resp. M I (log N - w(N))N/2), where o(N)-+ a, 

2. I fp=(logN+o(N))I”(resp.  M = ( l o g N +  w ( N ) ) N / 2 ) ,  whereo(N)+a, 

3. I f p ? ( l + ~ ) ( l o g N ) / N  (resp. M ? ( ( l + ~ ) N l o g N ) N / 2 ) ,  for some fixed 

then Y(G) =a. 

w ( N )  = O(log log N), then Y(G) = @(logz N). 

E > 0, then Y(G) = @(log N). 

Proof. 1. If p 5 (log N - w ( N ) ) / N  (resp. M I (log N - w ( N ) ) N / 2 ) ,  where 
w ( N ) - + a ,  then almost all graphs in %N,p (resp. % N . M )  are not connected [7], thus 
T( G) = a. 

2. If p = (log N + o ( N ) ) / N  (resp. M = (log N + w ( N ) ) N / 2 ) ,  where o(N) = 
(k - 1) log log N (k 2 1 constant), then the minimum degree of almost all graphs 
in %N.p (resp. ’sN M )  is not larger than k [8]. Let Xmin be a vertex with minimum 
degree in G. The probability that Xmin has a neighbor with degree smaller than 
1 = (log N)/4 is bounded in %N.p by 

N(F)p*(l  -p)N-*-lk(y)p’(l - p )  N-/-1 I - 1 
NlJ4 ’ 

similar estimate holds in ’sNVM. If all the neighbors of Xmin have degree at least I ,  
then even if all of them have the rumor at time 0, the probability that the rumor 
does not reach Xmin in (log2 N)/8k steps is lar er than 1/N, thus for almost all 
graphs in this probability space, Y(G) = fi(log N). Since with high probability 
the maximum degree of G is O(log N) and its diameter is O(1og Nllog log N) [3], 
by Theorem 2.2, Y(G) = O(log2 N). 

3. If p r ( l + ~ ) ( l o g N ) / N  (resp. M ? ( ( l + ~ ) N l o g N ) N / 2 ) ,  for some fixed 
e > 0, then there exist two constants a! C 1 and p > 1, such that for almost all 
graphs in G E %N,p (resp. G E % N . M )  the degrees in G are bounded between 
cuD(N) and p D ( N ) ,  D ( N )  = p ( N  - 1) (resp. D ( N )  = 2 M / N ) .  Let u and u be two 
vertices in G. We show that the probability that a rumor that was initiated in u 
fails to reach u in O(log N) steps is bounded by l/N3, which implies that for any 
start-point in G, Y(G) = O(log N). 

We analyze the progress of the broadcasting process in three stages. In stage A 
we consider only the first four vertices used by each vertex and ignore transmis- 
sion through any other vertex in the graph. Stage A can be analyzed as a discrete 
branching process in which each element has a chance to generate 5 offsprings. 
The probability that an offspring survives is the probability that a vertex chooses 
to send the rumor to a vertex that has not received it yet. Let Xi denote the 
number of elements in the ith generation of this branching process. Then 

i! 

thus Prob{X,,, < N/} 5 (log2 N ) / N 4 .  Stage A takes no more than 5 log N 
steps. 

Stage B lasts 6 log N steps. In analyzing this stage we consider only messages 
sent from vertices that received the rumor in the first stage, and only messages 
transmitted through edges that were not used in the first stage. The probability 
that vertex with degree d ,  a D ( N )  5 d 5 P D ( N )  that received the rumor in stage 
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A fails to transmit the rumor through at least (a log N )  / 2  distinct edges in stage B 
is bounded by 

1 
N' . 

d )((a 1 0 g d N ) / 2 ) ~ ' " ~ ~  - <- 
((a log N) 12 

Thus, with probability 1 - l/N4, in stage B the rumor traversed at least N(CY - 5 ) /  
4 distinct edges that were not used in stage A. 

Let deg(u) denote the degree of u. The probability that fewer than half of the 
neighbors of u received the rumor in stage B is bounded by 

In stage C we consider only messages from neighbors of u. At least half of the 
neighbors have already received the rumor before stage C. The degree of each 
neighbor of u is bounded by P D ( N ) ,  and there are at least a D ( N )  neighbors. 
Thus, the probability that u does not receive the rumor in (8p log N / ) a  steps of 
stage C is bounded by 

Thus, with probability greater than 1 - l / N 3  the rumor that started in u reaches u 
in no more than 5 log N + 6 log N + (8p log N ) / a  = O(1og N )  steps. m 
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APPENDIX 

Proof of Lemma 3.1. By Stirling's formula 

Rearranging and neglecting O( 1 I*), 
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Noting that 1 / 4  < (1 - p/a)"" < 1 /e for 2p < a, we conclude that 

(e(; - I))@' < (;;) < (4(; - 1 ) y  . D 

Proof of Lemma 3.2. We evaluate an expression A which is certainly smaller than 
that in the lemma, namely, 

( 1 / 2 + a ) n  

A = fI (1 - (1 - f)l) < r=l n (1 - (1 - qk) n . 
i = 2  

Substituting j = n - i, we get 

A = (1 - (f)l) .  
/=0 

Taking natural logarithms, 

Changing sums to integrals and adjusting the range of integration, 

Substituting x = j / n ,  dj = n dx, 

For 0 < y < 1, ln(1 - y) = -Ey=l yi/i, and so 

Exchanging the order between summation and integration, and integrating, 

.O ( n - l ) / n  ( X k ) i  0 ( x k ) i  ] [ n - l ) / n  

B = - E ]  i S l  r = O  - d x = - [ x c  1 i = l  i ( k i + l )  o 

n - 1  >-- c 
n i = l  ki' 

But E:=l l / i 2  = 7r2/6. Substituting into the last expression we get 

?rz >--  1 n - 1 n2 ( (n  - ~ ) / n ) ~  
n n 6  k 6k ' - In A > B > -- . - .  



460 

and finally 

FEICE ET AL. 

for 0 as in the lemma. rn 
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