Albert- Ludwigs- Universität Freiburg

Peer -To - Peer Networks

**Iuetooth Scatternet Based on Cube Connected Cycle

H. K. Al-Hasani

Iuetooth Scatternet Based on Cube Connected Cycle

- What is?
 - Piconet
 - Scatternet
- Other approaches:
 - TSF and BlueRings
 - Chains and Loops
 - Stars
 - BlueCubes

- CCC
- CCC and Scatternet
- CCC and iCCC
- What makes CCC different...?
- Conclusion

Iuetooth Scatternet Based on CCC

What is?

Piconet Scatternet

Piconet: One Master, seven Slaves

Master determines Hopping- frequency.

Active Slaves : can communicate.

Parked Salves: listen

Piconet: One Master, seven Slaves

Master determines Hopping- frequency.

Active Slaves : can communicate.

Parked Salves: listen

Scatternet: Two or more Piconets are connected through a bridge.

Slave- Slave bridge

Piconet: One Master, seven Slaves

Master determines Hopping- frequency.

Active Slaves : can communicate.

Parked Salves: listen

Scatternet: Two or more Piconets are connected through a bridge.

Master- Slave bridge

Master-Master bridge is forbidden

Piconet: One Master, seven Slaves

Master determines Hopping- frequency.

Active Slaves : can communicate.

Parked Salves: listen

Scatternet: Two or more Piconets are connected through a bridge.

Master- Slave bridge

Iuetooth Scatternet Based on CCC

Other approaches:

TSF and BlueRings

Chains and Loops

Stars

BlueCubes

TSF: Roles assignment; unique path. Nodes in the middle are Master-Slave.

Extending the tree = Extending Routing length

Time complexity: n-1

TSF: Roles assignment; unique path. Nodes in the middle are Master-Slave.

Extending the tree = Extending Routing length

Time complexity: n-1

BlueRings: Multi path; fault tolerance; no Roles assignment

<u>Time complexity: n</u>

Chains and Loops: No Master-Slave bridge, Parked in one and active in another; Time delay.

Chains and Loops: No Master-Slave bridge, Parked in one and active in another; Time delay.

Star:Node in the middle is bottleneck.

<u>Time complexity: n-1</u>

Chains and Loops: No Master-Slave bridge, Parked in one and active in another; Time delay.

Collisions = Retransmission = Power consuming

Star:Node in the middle is bottleneck.

<u>Time complexity: n-1</u>

BlueCubes: start with ring and end up with cube

- # Piconets is controlled
- Roles assignment
- No Master- Slave link
- Multi disjoint path
- Scatternet of the same degree (dimension) can connect.

Time complexity: log₂ n

Iuetooth Scatternet Based on Cube Connected Cycle

CCC

CCC and Scatternet

CCC and iCCC

What makes CCC different...?

Cube Connected Cycle

CCC:

- n-dimensional cube
- Vertex are replaced by cycles
- Each cycle has n nodes
- CCC has n.2ⁿ node
- X is cyclic index (integer n-1>=X>=0)
- Y is cubic index
 (binary Y<= 2ⁿ-1)

- node (x,y)
- e cyclic neighbors (x ±1,y)
- Cubic neighbors (x, y⊕2^x)

Cube Connected Cycle

CCC:

- Cyclic index and cubic index
- Local cycles and primary nodes
- Outside and Inside leaf sets

Cube Connected Cycle

Node ID(1,011)	
Routing table	
cubical neighbour: (0,)	
cyclic neighbour: (0,101)	
cyclic neighbour: (0, 001)	
half smaller, half larger	
Inside Leaf Set	
(0,011)	(2,011)
Outside Leaf Set	
(1,100)	(2,010)

CCC and Scatternet

CCC:

- CCC has n.2ⁿ Piconets
- Every node is a Master
- Master communicate through bridges

min CCC = 5 . n .2ⁿ⁻¹ n >=3,
max CCC = 13. n.
$$2^{n-1}$$
 n >=3

CCC and Scatternet

CCC:

- CCC has n.2ⁿ Piconets
- Every node is a Master
- Master communicate through bridges

min CCC = 5 . n .2ⁿ⁻¹ n >=3, max CCC = 13. n. 2^{n-1} n >=3

4-dimentional cube *

CCC and Scatternet

CCC:

- CCC has n.2ⁿ Piconets
- Every node is a Master
- Master communicate through bridges

min CCC = 5 . n .2ⁿ⁻¹ n >=3,
max CCC = 13. n.
$$2^{n-1}$$
 n >=3

4-dimentional cube *

New Master (x,y)

CCC and iCCC

Extending CCC is expensive

iCCC:

- Intermediate CCC
- Reconstructed CCC has (n+1).2ⁿ Piconets instead of (n+1).2ⁿ⁺¹
- Local transmission

What makes CCC different...?

If CCC with iCCC are combined:

- Efficient communication
- Fast lookup O(n)
- · Broadcast and unicast
- Dynamic system
- Fixed routing table
- Bounded number of reconstruction
- Roles assignment

luetooth Scatternet Based on CCC

Conclusion

Expensive and complicated to reality.

Thank you

References

Cycloid: A constant-degree and lookup-efficient P2P overlay network

Haiying Shen, Cheng-Zhong Xu, and Guihai Chen

Cube Connected Cycles Based Bluetooth Scatternet Formation

Marcin Bienkowski1,, Andr'e Brinkmann2, Miroslaw Korzeniowski1,, and Orhan Orhan1

Routing Strategy for Bluetooth Scatternet

Christophe Lafon, and Tariq S. Durrani

Bluetooth scatternet formation

Søren Debois, IT University of Copenhagen

Energy-Efficient Bluetooth Scatternet Formation Based on Device and Link Characteristics

Canan PAMUK

On Efficient topologies for Bluetooth Scatternets

Department of Information Engineering University of Padova, ITALY

Daniele Miorandi, Arianna Trainito, Andrea Zanella

BlueCube: Constructing a hypercube parallel computing and communication environment over Bluetooth

radio systems Chao-Tsun Chang

Introduction to Bluetooth Technology

Lecture notes by Jeffrey Lai , http://www.ensc.sfu.ca

Introduction to Wireless and Mobile Systems

Dharma Parkash Agrawal, Qing - An Zeng

Ad Hok Wireless Networks, architecture and protocols

* Cayley DHTs —A Group-Theoretic Framework for Analyzing DHTs Based on Cayley Graphs

Changtao Qu, Wolfgang Nejdl, Matthias Kriesell

Wireless ad hoc networking—The art of networking without networking

Magnus Frodigh, Per Johansson and Peter Larsson

http://bluetooth.com/bluetooth/

http://www.palowireless.com/bluetooth/