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1 Introduction

As the semantic web has become more and more popular there is a growing
need for distributed RDFS reasoning to ensure scalability of Semantic Web
applications. This paper focuses on DHT-based RDF stores and presents two
alorithms - Forward Chaining and Backward Chaining - for RDFS reasoning
and Query Answering in such distributed environments.

1.1 RDF

The Resource Description Framework (RDF) is a language for representing in-
formation about recources in the World Wide Web [1]. This is done by so-called
RDF statements that consist of a subject, a predicate and an object. A RDF
statement can also be written as a triple (s, p, o) where s is the subject, p the
property and o the object of the statement.

1.2 RDFS and RDFS reasoning

An extension of RDF is the RDF Vocabulary Description Language: RDF
Schema (RDFS) [2] which provides means to define classes, properties and hi-
erarchies thereof.
Through RDFS reasoning it is possible to infer new knowledge from static infor-
mation, for that it is a very important feature for Semantic Web Applications.
For RDFS reasoning the RDFS entailment rules of RDF Semantics [3] are used.
By applying these rules, new triples can be inferred in a RDF store.
In Figure 1 there are the main entailment rules for RDFS reasoning and comput-
ing of the transitive closure listed. The first four rules compute all the instances
of a class, the next two rules compute the transitive closure of a property hier-
archy and finally the last two rules the transitive closure of a class hierarchy.
So suppose the follwoing two triples are stored in a RDF store: (artist, rdfs :
subClassOf, person) (painter, rdfs : subClassOf, artist)
Then triple (painter, rdfs : subClassOf, person)

can be inferred by applying the rules for computing the transitive closure of
class hierarchies (rule 7 and 8).

Rule Head Body
1 type(X,Y) triple(X,rdf:type,Y)
2 type(X,Y) triple(X,P,Z),triple(P,rdfs:domain,Y)
3 type(X,Y) triple(Z,P,X), triple(P,rdfs:range,Y)
4 type(X,Y) type(X,Z), subclass(Z,Y)

5 subProperty(X,Y) triple(X,rdfs:subPropertyOf,Y)
6 subProperty(X,Y) triple(X,rdfs:subPropertyOf,Z), subProperty(Z,Y)

7 subClass(X,Y) triple(X,rdfs:subClassOf,Y)
8 subClass(X,Y) triple(X,rdfs:subClassOf,Z), subClass(Z,Y)

Figure 1: RDFS entailment rules
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2 RDFS Reasoning and Querying in distributed
environments

In [4] there are two algorithms for RDFS reasoning and query answering pre-
sented that can cope with distributed environments: Forward Chaining and
Backward Chaining. This chapter first introduces the storing protocol that
both algorithms are built upon and then describes the algorithms in detail.

2.1 Storing protocol

Both algorithms are build upon DHT-based RDF stores. Distributed Hash
Tables(DHT), which are common in many Peer-to-Peer Networks, are overlay
networks which attempt to solve a simple lookup problem: Given a data item
x, the goal is to find the node where x is stored. The storage protocol that is
used was originally presented in [5]. Each RDF triple is stored three times in
the DHT, once for each element of the triple.

2.2 Forward Chaining

Forward Chaining (FC) is a data driven approach where all triples are precom-
puted and sent to the network to be stored. Each time a triple is sent to a node
to be stored, the node computes all inferred triples according to the entailment
rules. Then the node sends the inferred triples to the network to be stored.
Figure 2 shows by a small RDFS class hierarchy how FC works. At the begin-
ning, before running FC, only the RDF triples, that are not in bold, are inserted
in the local databases of the nodes in the network whereas the triples in bold
are the triples, that are inferred during the execution of FC. The underlined
parts of the RDF triples are the keys, that lead to a specific node.
In the first iteration of FC, in the local databases of nodes n2 and n6 the
new RDF triples, (musician, rdfs : subClassOf, person) and (musician, rdfs :
subClassOf, person), can be inferred by applying entailment rules 7 and 8.
In the second iteration node n2 and node n8 both infer triple (drummer, rdfs :
subClassOf, person). This results in the fact, that the same triple is sent twice
to the network to be stored. Generating redundancies is a severe drawback of
FC. The algorithm stops after the third iteration because no new triples can be
inferred in the local databases of the nodes.
Since all triples are precomputed the queries that query for all instances of a
certain class C only need one message to the node that is responsible for class
C. To achieve this, high storage load caused by generated redundancies and
high network traffic while storing, have to be accepted. Also, before querying, a
huge amount of triples are inferred and sent to the network to be stored without
the garantee that these triples are needed in the querying part.

2.3 Backward Chaining

Backward Chaining(BC) is one solution to overcome the drawbacks of FC, is
presented in [4]. In contrast to FC, Backward Chaining only evaluates RDFS
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(musician, rdfs:subClassOf, artist)
(drummer, rdfs:subClassOf, musician)
(musician, rdfs:subClassOf,person)

(artist, rdfs:subClassOf, person)
(musician, rdfs:subClassOf,artist)
(drummer, rdfs:subClassOf, artist)

(artist, rdfs:subClassOf, person)
(musician, rdfs:subClassOf,person)
(drummer, rdfs:subClassOf, person)

(drummer, rdfs:subClassOf, musician)
(drummer, rdfs:subClassOf, artist)
(drummer, rdfs:subClassOf,person)

n7

n8   artist
n6   person
n2   musician
n5   drummer

Figure 2: Example of FC

entailment rules at query processing time. The problem that arises is the pro-
cessing of recursive rules in a distributed RDF store. To solve that problem,
rule adornements are used to get a good order which subgoals in a collection of
rules to evaluate first.
Definition 1. An adornement of a predicate p with n arguments is an ordered
string a of k’s, b’s and f’s of length n, where k indicates an argument which
is the key, b indicates a bound argument which is not the key and f is a free
argument.[4]
Figure 3 shows the adorned RDFS entailment rules.

Head Body
typekf (X, Y) triplekbf (X, rdf:type, Y)
typekf (X, Y)  triplekff (X, P, Z), triplefbf (P, rdfs:domain, Y)

                 typekf (X, Y) tripleffk (Z, P, X), triplefbf (P, rdfs:range, Y)
                 typekf (X, Y) triplekbf (X, rdf:type, Z), subClassff (Z, Y)
                 typefk (X, Y) triplefbk (X, rdf:type, Y)

 typefk (X, Y) triplefff (X, P, Z), triplefbk (P, rdfs:domain, Y)
                  typefk (X, Y) triplefff (Z, P, X), triplefbk (P, rdfs:range, Y)
                  typefk (X, Y) typeff (X, Z), triplefbk (Z, rdfs:subClassOf, Y)

subPropertykf (X,Y) triplekbf (X, rdfs:subPropertyOf, Y)
subPropertykf (X,Y)  triplekbf (X, rdfs:subPropertyOf, Z), subPropertyff (Z, Y)
subPropertyfk (X,Y)  triplefbk (X, rdfs:subPropertyOf, Y)
subPropertyfk (X,Y)  subPropertyff(X, Z), triplefbk (Z, rdfs:subPropertyOf, Y)

subClasskf (X,Y)  triplekbf (X, rdfs:subClassOf, Y)
subClasskf (X,Y)  triplekbf (X, rdfs:subClassOf, Z), subClassff (Z, Y)
subClassfk (X,Y)  triplefbk (X, rdfs:subClassOf, Y)
subClassfk (X,Y)  subClassff(X, Z), triplefbk (Z, rdfs:subClassOf, Y)

    Rule
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 3: Adorned RDFS entailment rules
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If an adorned RDFS entailment rule consists of two subgoals, BC chooses
first the subgoal that has a k in its adornement. In any case, there will be
such a predicate, since one of the arguments of the head predicate is going to
be the key that lead to that certain node. So this body predicate with the k
in its adornement can always be evaluated locally. After evaluating this body
predicate there will be values returned that can be passed to the second body
predicate.

artist

painter musician

sc sc

n1

n3

n4

(painter, rdfs:subClassOf,artist)

(painter, rdfs:subClassOf,artist)
 (musician, rdfs:subClassOf, artist)

 (musician, rdfs:subClassOf, artist)

Figure 4: Example of a class hierarchy and how its triples can be stored

triplefbk (X, rdf:type, artist)

typefk (X, artist) 

triplefbk (Z, rdfs:subClassOf, artist)
typeff (X, Z)

typefk (X, painter) typefk (X, musician) 

Z/painter Z/musician

triplefbk (X, rdf:type, painter)
triplefbk (Z, rdfs:subClassOf, painter)

triplefbk (X, rdf:type, musician)
triplefbk (Z, rdfs:subClassOf, musician)

Figure 5: Proof tree of BC for example in Figure 4 and query for all instances
of class artist

Figure 5 shows the proof tree of BC for the example in Figure 4. The task
is to find all instances of class artist: (X, rdf : type, artist). Since node n3 is
the responsible node for key artist, the request to evaluate this tripple pattern
will be sent to this node.
BC starts from the adorned predicate typefk(X, artist) in node n3 . This pred-
icate is checked against the adornement rules. Rules 5 and 9 can be found.
Rule 5 can be evaluated locally in node n3, since it only has one predicate in
its body. In rule 9 the predicate triplefbk(Z, rdfs : subClassOf, Y ) is evaluated
first, because it has a k in its adornement. So the two bindings for Z are painter
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and musician. Then BC goes on in the two nodes responsible for keys painter
(n1) and musician (n4). Since evaluation of RDFS entailment rules is only done
at querying time, only these triples are inferred that are needed for querying.
So only a constant number of messages are sent to the network while storing
and storage load remain constant.

3 Comparison of FC and BC

In FC the network traffic increases as the depth of the RDF graph increases
whereas in BC the number of messages that are sent is independent from the
RDF schema.
The storage load in FC increases with the depth of the RDF graph because of
the generated redundancies. In BC, only the triples are inferred, that are needed
for query answering so the storage load remains constant. Query answering in
FC only needs one step, since all inferred triples are precomputed before. Query
processing time in BC depends on the depth of the RDF graph.
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