
Network Coding in P2P-Systems

Christian Ortolf

March 16, 2007

Contents

1 Introduction 2
1.1 History . 2
1.2 Motivation . 2

2 Galois field 4

3 Coupon Collector’s problem 4

4 Coding 4
4.1 Encoding . 4
4.2 Coding in Between . 4
4.3 Decoding . 5

5 Gain from Network coding 5

6 Problems 7
6.1 Overhead transmitting Coefficient Vectors 7
6.2 Computation power needed 7

7 Security 8
7.1 Security Problems . 8
7.2 Security Benefits . 9

8 Other Application than P2P 9

9 Conclusion 10

1

1 Introduction

Network coding is a new technique to improve datarates in scenarios with
multiple peers. The basic idea of networkcoding is to use a finite field (Galois
field) to create linear combinations of datablocks for transmission. A receiver
can then recalculate the original data when it received enough of these blocks,
also the receiver can produce new linear combinations of blocks it received
and send these to the next receiver in the system. This scheme specially
solves the Coupon Collector’s problem.

1.1 History

• 1999 first time used in ”Distributed Source Coding for Satellite Com-
munications” [6]

• 2000 first definition of network coding in ”Network Information Flow”
[1]

• 2005 through Avalanche [4] Networkcoding gets into the media

• since 2000 about 200 papers about Networkcoding.

1.2 Motivation

Usually when we look at a network of nodes we describe it as a directed
graph. With each node a peer in our peer-to-peer system. [1] proposes a new
”MAX-FLOW MIN-CUT THEOREM” for Dataflow in a Network from a
single source to multiple sinks. Which says that a Network is good if each of
the sinks reaches the maximum possible flow from the traditional Max-Flow
Min-Cut Theorem, beween the single source and single sink.

This bottleneck seems to be theoretic since we are potentially connected
with everyone in the internet, which means if our graph has a bad min-cut we
could just build a new graph with better min-cuts. But although our network
is usually not static in a p2p system we may have less control over contructing
a better graph. Also we wouldn’t even notice a bad graph, because we have
no complete knowledge on how our network looks like.

Also peers may fail, so our graph can change rapidly which makes it even
for a central instance like a bittorrent tracker rather impossible to maintain
such a max-flow graph. Also another problem remains, data is not a liquid
substance that can be distributed as the graph has capacity, meaning not
everyone is happy if he just gets x-bytes of data, everyone wants to receive

2

byte-1 to byte-x each only once. Thats why we make an example in Figure1
that graphs exist where the max-flow can’t be reached.

Figure 1: Max-Flow is 2 for both sinks, but can not be reached without
coding

Still we used in Figure1 that every node had a complete knowledge of
the network .. else the coding node wouldn’t have been able to do decide to
do coding at the right moment enableing us to receive what we want. And
respectively other nodes didn’t code or else one of the sink nodes on the
bottom may have ended up with two xors of a and b unable to recreate the
original data.

And thats where network coding now comes into play. It is an encoding
of data that will allways optimally use the max-flow of a graph while not
needing any information about how this graph looks like, and even if we
can’t change the graph it will guarantee us that we will optimally make use
of the overlay-graph provided by the p2p network. It does this by sending
linear combinations of the data instead of simply xor-ing the bits. By doing
this it solves the so called Coupon Collector’s problem because it is no longer
important which part of the file you get because if you have enough parts
you simply solve a system of linear equations to decode the data.

3

2 Galois field

To be able to do maths we need a field over the data so we can compute
linear combinations. Galois fields can be used for this. A Galois field is
a field with only a finite number of elements named after Evariste Galois.
GF(pn) would be the naming for a galois field containing pn elements and
can be constructed for any prime number p and any natural Number n.

3 Coupon Collector’s problem

The Coupon Collector’s problem is a kind of turned around (better known)
”Birthday Paradoxon”. While on the Birthday Paradoxon is counted how
many people are needed to have so two have the Birthday on the same day.
In the Coupon Collectors problem we would count how many people are
needed to get a birthday on every day of the year. So we repeatedly draw
a ”Coupon” from a Set , note which we got and then put it back. The
expected ammound of needed draws is then n log n. So if we just randomly
collect blocks of data we would need log n− 1 additional blocks witch is not
acceptable.

4 Coding

4.1 Encoding

We look at a file as a vector of elements from our Galois field. Especailly
if we use GF(28) as Galois field then one element can be expressed as one
byte. Which makes computation in the practice easier.

Now we devide the file in equally sized blocks.(Nr of Blocks = n) And
generate a coefficient vector with size n, containing elements from our Galois
field. Creating an encoded block, now works by multiplying each element in
the first block, with the element in the first entry in the vector, then adding
the second Block multiplied with the second entry in the vector and so on.
We can create n or more Blocks like this and send them into the network.

4.2 Coding in Between

A node in between can send like the source any linear combination of the
Blocks it received until that point of time. The coefficient vector of the block
it sends can be easily computed from the coefficient vectors of the blocks he

4

Figure 2: Blockencoding of a file from [4]

has and the new linear factors it asserts. This can be seen in Figure2 on
Client A sending a newly encoded Block to Client B.

4.3 Decoding

When ever someone sends us a block he will first send the coefficient Vector
he used for encoding the Block. We put that Vector in a Matrix where we
store the Vectors of all received Blocks. We check if the rank of the Matrix
increased, if not the Block is linear dependent and not of use to us. If it
increased we download the Block. If we downloaded n Blocks, our Matrix
of coefficient Vectors is Rectangular, has the full rank and can therefore be
inverted. The inverted matrix then holds the coefficients we need for decoding
our blocks.

5 Gain from Network coding

In the Motivation we have seen how network coding can improve perfor-
mance in static or quasi-static enviroments by reaching the Max Flow of a
given network.

Another gain is that NetworkCoding solves the CouponCollector problem.
That has three benefits for p2p-Systems.

• The protocoll gets easier because a peers don’t have to tell each other
what they already have to determine what should be transmitted, if
the uploading peer has something useful for us the probability is high

5

Figure 3: In the figure we can see the chances of peers finishing if the
source only uploads 105% of the file and then leaves while normal peers
leave as soon as they are finished. (figure taken from [4])

that a randomly encoded block from all blocks he has, will be useful
for us. This could also be used in a p2p-media-broadcast to reduce the
delay of a network.

• If the original seed fails the chances are greatly increased that a reman-
ing copy stays in the p2p network. ie. Two peers that have each 50
percent of a file may usually have together about 75% but with net-
workcoding they may have 100% (if they didn’t upload to each other
before). See Figure 3.

• Often p2p-systems use inscentive mechanisms to reward peers that up-
load much with a better download rate, while peers that upload few get
penalty. While Bittorrent tries to solve the Coupon Collector problem
by giving each peer a lot of other peers he is directly connected with
so he can use schemes like local rarest to achieve a good block distri-
bution. Inscentive mechanisms make it harder for the peers to keep a
good distribution and at the same time upload more to ”better” peers.
NetworkCoding would untangle these two problems. So it would be
easier to produce better inscentive Mechanisms for a p2p system doing
Network coding.

6

6 Problems

6.1 Overhead transmitting Coefficient Vectors

The smaller the blocksize is choosen the larger the coefficient vectors get and
the more coefficient vectors have to be transmitted. For example a 4GiB file
with 512KiB blocks would result in 8000 blocks meaning for GF(28) 64MB
of data in vectors

In practice though this seems to be less a problem for example in BT we
rather have 100-1000 Blocks so the total size of our coefficient vectors would
vary only from 10KB to 1MB

6.2 Computation power needed

Inverting the matrix There exist asymptotically faster Algorithms than
O(n3) but those would need more time for such small Matrixes. And we need
to check the Rank on the Matrix anyway on each sent coefficient Vector, with
Gaussian-Elimination we can do this. If we use Gauss-Jordan- Elimination to
partially invert the partially received Matrix, we also get the inverted Matrix
at the same time. So while checking for the usefulness of an coefficient Vector
we get the inverting nearly for free.

Decoding the blocks The O(n2) for decoding all the blocks seems to be
the part where most computing power goes in the end. After we received
n blocks we have to read the data from all Blocks and multiply with the
matching vector from the inverted coefficient Matrix.

Encoding the blocks Needs as much computing power as the decoding
process, but this is done during the whole process of uploading the blocks.
One for one so it gives us no additional wait time after finishing our download
just constant computation in the background.

In [3] all these problems are described as neglictible in their tests with
a 2GHZ Pentium 4 and 512MB Ram. While downloading (encoding and
inverting) their test shows a usage of 20% of the cpu on finishing going up to
40% during decoding (about 5% of the downloadtime), then when finished
and only uploading going as low as 10% for only encoding. The problem
with this is that their cpu usage is only that low because the harddisc is
the bottleneck in the decoding process at the end. Todays harddiscs are not

7

build for reading at 100 places of a file at the same time, but this is needed
because we need the data of all blocks at once for decoding.

7 Security

Networkcoding has benefits and at the same time problems with some secu-
rity aspects.

7.1 Security Problems

Homomorphic Hashfunctions In usual p2p applications files are veri-
fied using secure Hashfunctions like SHA or Tiger. Each peer can instantly
verify each block he receives with the help of a set of hashvalues he may have
received before starting downloding a file. Problem is that this mechanisms
don’t work on linear combinations of blocks. So we could only check our
blocks when we have finished downloading. In between every linear combina-
tion we create that contains a corrupted block will propagate the corruption
to more and more peers which will do likewise corrupting the whole network
very fast.
In p2p systems using Networkcoding this is not as easy to accomplish. A
solution to this would be a homomorphic Hashfunction, meaning a hash-
function H that would survive the linear encoding operations. Problematic
is according to [5] that such hashfunctions are very slow about a factor of
1000 slower than a usual hashfunction. So they propose several ways to cir-
cumvent this problem. We could for example create a linear combination
from all blocks we have and then hash that block. So we could check all our
blocks at once and we would only have to check multiple blocks if the hash-
function finds this combination of all our blocks corrupted. Problem with
this is that we have to wait rather long until we have got a bulk of blocks to
verify, in this time we can’t (or shouldn’t) upload these blocks, especially in
the beginning of the download this adds a very critical delay where we can’t
upload although we already have downloaded several blocks.

Another potential method proposed in [5] is cooperative hashing where
everyone hashes his blocks with some probability and then tells everyone that
got a linear combination from the block found to be corrupted. The problem
to this method is that it is vulnerable to DoS attacks. Peers can give false
alarms and like this try to jam the system. To prevent this Secure Random
Checksums (SRCs) are used.

8

SRCs (proposed in [5]) SRCs are ”Mask Based” checksums. They are
generated by creating a random vector ~r with the lenght of a block then
building the scalar product with each unencoded block. What we get as a
checksum is an Element of our GaloisField. If we now want to check some
block ~b we simply multiply the checksum of each block with the coefficient
of the coefficient vector for this block and then check if the sum matches the
scalar product of ~r and ~b. Note that the seed must compute these checksums
for us on entering the network and comunicate these checksums and the
vector ~r to us (or the random seed it used to create ~r)

Basically this is a fast verification of false alarms [5] proposes only to use
this for the prevention of DoS attacks because the SRCs are not equally secure
as Homomorphic hashfunctions though about a 1000 times faster. Much
easier according to [3] may be to just compute a multiple SRCs for each new
arriving peer. And send them securely to that peer. Because an attacker can
only generate a block that tricks the SRCs if he knows what SRCs a peer
has. Sending multiple SRCs to a peer may even increase the security because
the chance of creating a corrupted block that can’t be detected by pure luck
gets less feasible.

7.2 Security Benefits

Tapping the wire Listening to the packets that are sent over a network
doesn’t give a listening peer much information except he can get all n packets.
This protection may be less secure than encryption, but encryption is still
not allowed everywhere, while networkcoding does not encrypt data while
still giving attackers a hard time finding out what is sent in the network.

Modifieing Data Though data modificaion can usually be prevented with
the help of hashfunctions. In a network doing network coding an attacker
may be able to change and corrupt package. But he can’t change a file
directly in a way he wants, because if he is only able to modify the blocks of
the file he gets he can’t predict the outcome of his modifications.

8 Other Application than P2P

SAN Network coding can be used to build Storage Area Networks. Espe-
cially in p2p the redundancy Network coding can provide without the need
for a central sheduling of the file blocks is very compfortable.

9

Figure 4: Throughput of S is highered. From [2]

WLAN In WLAN or other scenarios where Multicast is possible, we can
get higher throughput with Networkcoding / use less energy. See Figure 4.

9 Conclusion

Network coding is a rather new and very active field of science. I am shure
we will see many things evolve out of it, especially the next generation of
p2p systems may use it to its benefit. The problem of computation power
and disc access may be huge but the benefit of Networkcoding seems to be
too large to not use it. Also computation power is growing rather fast while
Solid State and hybrid discs becomeing a new standard for pcs, could solve
the problem with the disc access. Also a lot of people are working on the
problem trying to reduce the total cost of the coding.

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information
flow. IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

[2] C. Fragouli, J.-Y. L. Boudec, and J. Widmer. Network coding: An instant
primer. Technical report, 2005.

[3] C. Gkantsidis, J. Miller, and P. Rodriguez. Anatomy of a p2p content
distribution system with network coding. IPTPS, 2006.

[4] C. Gkantsidis and P. Rodriguez. Network coding for large scale content
distribution. In INFOCOM, pages 2235–2245. IEEE, 2005.

10

[5] P. Rodriguez and C. Gkantsidis. Cooperative security for network cod-
ing file distribution. Technical Report MSR-TR-2004-137, Microsoft Re-
search (MSR), Oct. 2004.

[6] R. W. Yeung and Z. Zhang. Distributed source coding for satellite com-
munications. IEEE Transactions on Information Theory, 45(4):1111–
1120, 1999.

11

